Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/19101
Nhan đề: Prediction of Concrete Compressive Strength and Slump by Machine Learning Methods
Tác giả: Cihan, M Timur
Từ khoá: Laboratories
Machine learning
Accuracy
Datasets
Regression analysis
Fuzzy sets
Artificial intelligence
Concrete
Fuzzy logic
Concretes
Correlation coefficients
Composite materials
Statistics
Design optimization
Regression
Data mining
Studies
Neural networks
Variables
Methods
Errors
Predictions
Predictions
Compressive strength
Năm xuất bản: 2019
Nhà xuất bản: Hindawi Limited,
Tóm tắt: Machine learning methods have been successfully applied to many engineering disciplines. Prediction of the concrete compressive strength (fc) and slump (S) is important in terms of the desirability of concrete and its sustainability. The goals of this study were (i) to determine the most successful normalization technique for the datasets, (ii) to select the prime regression method to predict the fc and S outputs, (iii) to obtain the best subset with the ReliefF feature selection method, and (iv) to compare the regression results for the original and selected subsets. Experimental results demonstrate that the decimal scaling and min-max normalization techniques are the most successful methods for predicting the compressive strength and slump outputs, respectively. According to the evaluation metrics, such as the correlation coefficient, root mean squared error, and mean absolute error, the fuzzy logic method makes better predictions than any other regression method. Moreover, when the input variable was reduced from seven to four by the ReliefF feature selection method, the predicted accuracy was within the acceptable error rate.
Mô tả: "Hindawi Advances in Civil Engineering Volume 2019, Article ID 3069046, 11 pages https://doi.org/10.1155/2019/3069046"
Định danh: http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/19101
ISSN: 1687-8086
1687-8094 (eISSN)
Bộ sưu tập: Bài báo_lưu trữ

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
BBKH1443_TCCN_Prediction of Concrete Compressive.pdf
  Giới hạn truy cập
Prediction of Concrete Compressive Strength and Slump by Machine Learning Methods1.3 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.