Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/19101
Toàn bộ biểu ghi siêu dữ liệu
Trường DC | Giá trị | Ngôn ngữ |
---|---|---|
dc.contributor.author | Cihan, M Timur | - |
dc.date.accessioned | 2020-06-06T14:53:41Z | - |
dc.date.available | 2020-06-06T14:53:41Z | - |
dc.date.issued | 2019 | - |
dc.identifier.issn | 1687-8086 | - |
dc.identifier.issn | 1687-8094 (eISSN) | - |
dc.identifier.other | BBKH1443 | - |
dc.identifier.uri | http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/19101 | - |
dc.description | "Hindawi Advances in Civil Engineering Volume 2019, Article ID 3069046, 11 pages https://doi.org/10.1155/2019/3069046" | vi |
dc.description.abstract | Machine learning methods have been successfully applied to many engineering disciplines. Prediction of the concrete compressive strength (fc) and slump (S) is important in terms of the desirability of concrete and its sustainability. The goals of this study were (i) to determine the most successful normalization technique for the datasets, (ii) to select the prime regression method to predict the fc and S outputs, (iii) to obtain the best subset with the ReliefF feature selection method, and (iv) to compare the regression results for the original and selected subsets. Experimental results demonstrate that the decimal scaling and min-max normalization techniques are the most successful methods for predicting the compressive strength and slump outputs, respectively. According to the evaluation metrics, such as the correlation coefficient, root mean squared error, and mean absolute error, the fuzzy logic method makes better predictions than any other regression method. Moreover, when the input variable was reduced from seven to four by the ReliefF feature selection method, the predicted accuracy was within the acceptable error rate. | vi |
dc.language.iso | en | vi |
dc.publisher | Hindawi Limited, | vi |
dc.subject | Laboratories | vi |
dc.subject | Machine learning | vi |
dc.subject | Accuracy | vi |
dc.subject | Datasets | vi |
dc.subject | Regression analysis | vi |
dc.subject | Fuzzy sets | vi |
dc.subject | Artificial intelligence | vi |
dc.subject | Concrete | vi |
dc.subject | Fuzzy logic | vi |
dc.subject | Concretes | vi |
dc.subject | Correlation coefficients | vi |
dc.subject | Composite materials | vi |
dc.subject | Statistics | vi |
dc.subject | Design optimization | vi |
dc.subject | Regression | vi |
dc.subject | Data mining | vi |
dc.subject | Studies | vi |
dc.subject | Neural networks | vi |
dc.subject | Variables | vi |
dc.subject | Methods | vi |
dc.subject | Errors | vi |
dc.subject | Predictions | vi |
dc.subject | Predictions | vi |
dc.subject | Compressive strength | vi |
dc.title | Prediction of Concrete Compressive Strength and Slump by Machine Learning Methods | vi |
dc.type | Other | vi |
Bộ sưu tập: | Bài báo_lưu trữ |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
BBKH1443_TCCN_Prediction of Concrete Compressive.pdf Giới hạn truy cập | Prediction of Concrete Compressive Strength and Slump by Machine Learning Methods | 1.3 MB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.