Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/19101
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorCihan, M Timur-
dc.date.accessioned2020-06-06T14:53:41Z-
dc.date.available2020-06-06T14:53:41Z-
dc.date.issued2019-
dc.identifier.issn1687-8086-
dc.identifier.issn1687-8094 (eISSN)-
dc.identifier.otherBBKH1443-
dc.identifier.urihttp://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/19101-
dc.description"Hindawi Advances in Civil Engineering Volume 2019, Article ID 3069046, 11 pages https://doi.org/10.1155/2019/3069046"vi
dc.description.abstractMachine learning methods have been successfully applied to many engineering disciplines. Prediction of the concrete compressive strength (fc) and slump (S) is important in terms of the desirability of concrete and its sustainability. The goals of this study were (i) to determine the most successful normalization technique for the datasets, (ii) to select the prime regression method to predict the fc and S outputs, (iii) to obtain the best subset with the ReliefF feature selection method, and (iv) to compare the regression results for the original and selected subsets. Experimental results demonstrate that the decimal scaling and min-max normalization techniques are the most successful methods for predicting the compressive strength and slump outputs, respectively. According to the evaluation metrics, such as the correlation coefficient, root mean squared error, and mean absolute error, the fuzzy logic method makes better predictions than any other regression method. Moreover, when the input variable was reduced from seven to four by the ReliefF feature selection method, the predicted accuracy was within the acceptable error rate.vi
dc.language.isoenvi
dc.publisherHindawi Limited,vi
dc.subjectLaboratoriesvi
dc.subjectMachine learningvi
dc.subjectAccuracyvi
dc.subjectDatasetsvi
dc.subjectRegression analysisvi
dc.subjectFuzzy setsvi
dc.subjectArtificial intelligencevi
dc.subjectConcretevi
dc.subjectFuzzy logicvi
dc.subjectConcretesvi
dc.subjectCorrelation coefficientsvi
dc.subjectComposite materialsvi
dc.subjectStatisticsvi
dc.subjectDesign optimizationvi
dc.subjectRegressionvi
dc.subjectData miningvi
dc.subjectStudiesvi
dc.subjectNeural networksvi
dc.subjectVariablesvi
dc.subjectMethodsvi
dc.subjectErrorsvi
dc.subjectPredictionsvi
dc.subjectPredictionsvi
dc.subjectCompressive strengthvi
dc.titlePrediction of Concrete Compressive Strength and Slump by Machine Learning Methodsvi
dc.typeOthervi
Bộ sưu tập: Bài báo_lưu trữ

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
BBKH1443_TCCN_Prediction of Concrete Compressive.pdf
  Giới hạn truy cập
Prediction of Concrete Compressive Strength and Slump by Machine Learning Methods1.3 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.