Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/33655
Toàn bộ biểu ghi siêu dữ liệu
Trường DC | Giá trị | Ngôn ngữ |
---|---|---|
dc.contributor.author | S. Kodogiannis (Ed.), Vassilis | - |
dc.date.accessioned | 2021-08-19T15:52:02Z | - |
dc.date.available | 2021-08-19T15:52:02Z | - |
dc.date.issued | 2019 | - |
dc.identifier.issn | 978-3-03921-760-1 | - |
dc.identifier.uri | http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/33655 | - |
dc.description | x, 103 p. ; 7,17 Mb ; https://doi.org/10.3390/books978-3-03921-761-8 ; CC BY-NC-ND | vi |
dc.description.abstract | Electric power systems around the world are changing in terms of structure, operation, management and ownership due to technical, financial, and ideological reasons. Power systems keep on expanding in terms of geographical areas, asset additions, and the penetration of new technologies in generation, transmission, and distribution. The conventional methods for solving the power system design, planning, operation, and control problems have been extensively used for different applications, but these methods suffer from several difficulties, thus providing suboptimal solutions. Computationally intelligent methods can offer better solutions for several conditions and are being widely applied in electrical engineering applications. This Special Issue represents a thorough treatment of computational intelligence from an electrical power system engineer's perspective. Thorough, well-organised, and up-to-date, it examines in detail some of the important aspects of this very exciting and rapidly emerging technology, including machine learning, particle swarm optimization, genetic algorithms, and deep learning systems. Written in a concise and flowing manner by experts in the area of electrical power systems who have experience in the application of computational intelligence for solving many complex and difficult power system problems, this Special Issue is ideal for professional engineers and postgraduate students entering this exciting field. | vi |
dc.description.tableofcontents | About the Special Issue Editor ...................................... vii Preface to ”Applications of Computational Intelligence to Power Systems” ........... ix Arpita Samanta Santra and Jun-Lin Lin Integrating Long Short-Term Memory and Genetic Algorithm for Short-Term Load Forecasting Reprinted from: Energies 2019, 12, 2040, doi:10.3390/en12112040 ................... 1 Fengli Jiang, Yichi Zhang, Yu Zhang, Xiaomeng Liu and Chunling Chen An Adaptive Particle Swarm Optimization Algorithm Based on Guiding Strategy and Its Application in Reactive Power Optimization Reprinted from: Energies 2019, 12, 1690, doi:10.3390/en12091690 ................... 12 Shahbaz Hussain, Mohammed Al-Hitmi, Salman Khaliq, Asif Hussain and Muhammad Asghar Saqib Implementation and Comparison of Particle Swarm Optimization and Genetic Algorithm Techniques in Combined Economic Emission Dispatch of an Independent Power Plant Reprinted from: Energies 2019, 12, 2037, doi:10.3390/en12112037 ................... 26 Jiaying Deng, Wenhai Zhang and Xiaomei Yang Recognition and Classification of Incipient Cable Failures Based on Variational Mode Decomposition and a Convolutional Neural Network Reprinted from: Energies 2019, 12, 2005, doi:10.3390/en12102005 ................... 41 Haiyan Cheng, Yongjie Zhai, Rui Chen, Di Wang, Ze Dong and Yutao Wang Self-Shattering Defect Detection of Glass Insulators Based on Spatial Features Reprinted from: Energies 2019, 12, 543, doi:10.3390/en12030543 .................... 57 Zhenhao Tang, Xiaoyan Wu and Shengxian Cao Adaptive Nonlinear Model Predictive Control of the Combustion Efficiency under the NOx Emissions and Load Constraints Reprinted from: Energies 2019, 12, 1738, doi:10.3390/en12091738 ................... 71 Basanta Raj Pokhrel, Birgitte Bak-Jensen and Jayakrishnan R. Pillai Integrated Approach for Network Observability and State Estimation in Active Distribution Grid Reprinted from: Energies 2019, 12, 2230, doi:10.3390/en12122230 ................... 87 | vi |
dc.language.iso | en | vi |
dc.publisher | MDPI | vi |
dc.subject | Neural networks | vi |
dc.subject | Deep learning systems | vi |
dc.subject | Fuzzy systems | vi |
dc.subject | Evolutionary computing | vi |
dc.title | Applications of Computational Intelligence to Power Systems | vi |
dc.type | Book | vi |
Bộ sưu tập: | Kỹ thuật_TLNM_SACH |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
SA11464_1. Applications_of_Computational_Intelligence_to_Power_Systems - Cover.pdf Giới hạn truy cập | Cover | 662.82 kB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
SA11464_2. Applications_of_Computational_Intelligence_to_Power_Systems - Copyright.pdf Giới hạn truy cập | Copyright | 533.1 kB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
SA11464_3. Applications_of_Computational_Intelligence_to_Power_Systems - index.pdf Giới hạn truy cập | index | 515.86 kB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
SA11464_4. Applications_of_Computational_Intelligence_to_Power_Systems - About the Special Issue Editor.pdf Giới hạn truy cập | About the Special Issue Editor | 523.68 kB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
SA11464_5. Applications_of_Computational_Intelligence_to_Power_Systems - Chap 1.pdf Giới hạn truy cập | Integrating Long Short-Term Memory and Genetic Algorithm for Short-Term Load Forecasting | 858.15 kB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
SA11464_6. Applications_of_Computational_Intelligence_to_Power_Systems - Chap 2.pdf Giới hạn truy cập | An Adaptive Particle Swarm Optimization Algorithm Based on Guiding Strategy and Its Application in Reactive Power Optimization | 1.24 MB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
SA11464_7. Applications_of_Computational_Intelligence_to_Power_Systems - Chap 3.pdf Giới hạn truy cập | Implementation and Comparison of Particle Swarm Optimization and Genetic Algorithm Techniques in Combined Economic Emission Dispatch of an Independent Power Plant | 1.01 MB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
SA11464_8. Applications_of_Computational_Intelligence_to_Power_Systems - Chap 4.pdf Giới hạn truy cập | Recognition and Classification of Incipient Cable Failures Based on Variational Mode Decomposition and a Convolutional Neural Network | 3.17 MB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
SA11464_9. Applications_of_Computational_Intelligence_to_Power_Systems - Chap 5.pdf Giới hạn truy cập | Self-Shattering Defect Detection of Glass Insulators Based on Spatial Features | 2.08 MB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
SA11464_10. Applications_of_Computational_Intelligence_to_Power_Systems - Chap 6.pdf Giới hạn truy cập | Adaptive Nonlinear Model Predictive Control of the Combustion Efficiency under the NOx Emissions and Load Constraints | 1.29 MB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
SA11464_11. Applications_of_Computational_Intelligence_to_Power_Systems - Chap 7.pdf Giới hạn truy cập | Integrated Approach for Network Observability and State Estimation in Active Distribution Grid | 1.01 MB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.