Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/33655
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorS. Kodogiannis (Ed.), Vassilis-
dc.date.accessioned2021-08-19T15:52:02Z-
dc.date.available2021-08-19T15:52:02Z-
dc.date.issued2019-
dc.identifier.issn978-3-03921-760-1-
dc.identifier.urihttp://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/33655-
dc.descriptionx, 103 p. ; 7,17 Mb ; https://doi.org/10.3390/books978-3-03921-761-8 ; CC BY-NC-NDvi
dc.description.abstractElectric power systems around the world are changing in terms of structure, operation, management and ownership due to technical, financial, and ideological reasons. Power systems keep on expanding in terms of geographical areas, asset additions, and the penetration of new technologies in generation, transmission, and distribution. The conventional methods for solving the power system design, planning, operation, and control problems have been extensively used for different applications, but these methods suffer from several difficulties, thus providing suboptimal solutions. Computationally intelligent methods can offer better solutions for several conditions and are being widely applied in electrical engineering applications. This Special Issue represents a thorough treatment of computational intelligence from an electrical power system engineer's perspective. Thorough, well-organised, and up-to-date, it examines in detail some of the important aspects of this very exciting and rapidly emerging technology, including machine learning, particle swarm optimization, genetic algorithms, and deep learning systems. Written in a concise and flowing manner by experts in the area of electrical power systems who have experience in the application of computational intelligence for solving many complex and difficult power system problems, this Special Issue is ideal for professional engineers and postgraduate students entering this exciting field.vi
dc.description.tableofcontentsAbout the Special Issue Editor ...................................... vii Preface to ”Applications of Computational Intelligence to Power Systems” ........... ix Arpita Samanta Santra and Jun-Lin Lin Integrating Long Short-Term Memory and Genetic Algorithm for Short-Term Load Forecasting Reprinted from: Energies 2019, 12, 2040, doi:10.3390/en12112040 ................... 1 Fengli Jiang, Yichi Zhang, Yu Zhang, Xiaomeng Liu and Chunling Chen An Adaptive Particle Swarm Optimization Algorithm Based on Guiding Strategy and Its Application in Reactive Power Optimization Reprinted from: Energies 2019, 12, 1690, doi:10.3390/en12091690 ................... 12 Shahbaz Hussain, Mohammed Al-Hitmi, Salman Khaliq, Asif Hussain and Muhammad Asghar Saqib Implementation and Comparison of Particle Swarm Optimization and Genetic Algorithm Techniques in Combined Economic Emission Dispatch of an Independent Power Plant Reprinted from: Energies 2019, 12, 2037, doi:10.3390/en12112037 ................... 26 Jiaying Deng, Wenhai Zhang and Xiaomei Yang Recognition and Classification of Incipient Cable Failures Based on Variational Mode Decomposition and a Convolutional Neural Network Reprinted from: Energies 2019, 12, 2005, doi:10.3390/en12102005 ................... 41 Haiyan Cheng, Yongjie Zhai, Rui Chen, Di Wang, Ze Dong and Yutao Wang Self-Shattering Defect Detection of Glass Insulators Based on Spatial Features Reprinted from: Energies 2019, 12, 543, doi:10.3390/en12030543 .................... 57 Zhenhao Tang, Xiaoyan Wu and Shengxian Cao Adaptive Nonlinear Model Predictive Control of the Combustion Efficiency under the NOx Emissions and Load Constraints Reprinted from: Energies 2019, 12, 1738, doi:10.3390/en12091738 ................... 71 Basanta Raj Pokhrel, Birgitte Bak-Jensen and Jayakrishnan R. Pillai Integrated Approach for Network Observability and State Estimation in Active Distribution Grid Reprinted from: Energies 2019, 12, 2230, doi:10.3390/en12122230 ................... 87vi
dc.language.isoenvi
dc.publisherMDPIvi
dc.subjectNeural networksvi
dc.subjectDeep learning systemsvi
dc.subjectFuzzy systemsvi
dc.subjectEvolutionary computingvi
dc.titleApplications of Computational Intelligence to Power Systemsvi
dc.typeBookvi
Bộ sưu tập: Kỹ thuật_TLNM_SACH

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
SA11464_1. Applications_of_Computational_Intelligence_to_Power_Systems - Cover.pdf
  Giới hạn truy cập
Cover662.82 kBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA11464_2. Applications_of_Computational_Intelligence_to_Power_Systems - Copyright.pdf
  Giới hạn truy cập
Copyright533.1 kBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA11464_3. Applications_of_Computational_Intelligence_to_Power_Systems - index.pdf
  Giới hạn truy cập
index515.86 kBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA11464_4. Applications_of_Computational_Intelligence_to_Power_Systems - About the Special Issue Editor.pdf
  Giới hạn truy cập
About the Special Issue Editor523.68 kBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA11464_5. Applications_of_Computational_Intelligence_to_Power_Systems - Chap 1.pdf
  Giới hạn truy cập
Integrating Long Short-Term Memory and Genetic Algorithm for Short-Term Load Forecasting858.15 kBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA11464_6. Applications_of_Computational_Intelligence_to_Power_Systems - Chap 2.pdf
  Giới hạn truy cập
An Adaptive Particle Swarm Optimization Algorithm Based on Guiding Strategy and Its Application in Reactive Power Optimization1.24 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA11464_7. Applications_of_Computational_Intelligence_to_Power_Systems - Chap 3.pdf
  Giới hạn truy cập
Implementation and Comparison of Particle Swarm Optimization and Genetic Algorithm Techniques in Combined Economic Emission Dispatch of an Independent Power Plant1.01 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA11464_8. Applications_of_Computational_Intelligence_to_Power_Systems - Chap 4.pdf
  Giới hạn truy cập
Recognition and Classification of Incipient Cable Failures Based on Variational Mode Decomposition and a Convolutional Neural Network3.17 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA11464_9. Applications_of_Computational_Intelligence_to_Power_Systems - Chap 5.pdf
  Giới hạn truy cập
Self-Shattering Defect Detection of Glass Insulators Based on Spatial Features2.08 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA11464_10. Applications_of_Computational_Intelligence_to_Power_Systems - Chap 6.pdf
  Giới hạn truy cập
Adaptive Nonlinear Model Predictive Control of the Combustion Efficiency under the NOx Emissions and Load Constraints1.29 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA11464_11. Applications_of_Computational_Intelligence_to_Power_Systems - Chap 7.pdf
  Giới hạn truy cập
Integrated Approach for Network Observability and State Estimation in Active Distribution Grid1.01 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.