Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18698
Nhan đề: | Comparison of Machine Learning Techniques for the Prediction of Compressive Strength of Concrete |
Tác giả: | Chopra, Palika Sharma, Rajendra Kumar Kumar, Maneek Chopra, Tanuj |
Từ khoá: | Mathematical programming Research Concrete mixing Model accuracy Accuracy Data mining Datasets Regression analysis; Neural networks Architectural engineering |
Năm xuất bản: | 2018 |
Nhà xuất bản: | Hindawi Limited |
Tóm tắt: | A comparative analysis for the prediction of compressive strength of concrete at the ages of 28, 56, and 91 days has been carried out using machine learning techniques via “R” software environment. R is digging out a strong foothold in the statistical realm and is becoming an indispensable tool for researchers. The dataset has been generated under controlled laboratory conditions. Using R miner, the most widely used data mining techniques decision tree (DT) model, random forest (RF) model, and neural network (NN) model have been used and compared with the help of coefficient of determination (R2) and root-mean-square error (RMSE), and it is inferred that the NN model predicts with high accuracy for compressive strength of concrete. |
Mô tả: | "Hindawi Advances in Civil Engineering Volume 2018, Article ID 5481705, 9 pages https://doi.org/10.1155/2018/5481705" |
Định danh: | http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18698 |
ISSN: | 1687 - 8086 |
Bộ sưu tập: | Bài báo_lưu trữ |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
BBKH1089_TCCN_ Comparison of Machine.pdf Giới hạn truy cập | Comparison of Machine Learning Techniques for the Prediction of Compressive Strength of Concrete | 1.17 MB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.