Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/32681
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorHasager, Charlotte Bay-
dc.contributor.authorSjöholm, Mikael (editor)-
dc.date.accessioned2021-07-21T03:26:06Z-
dc.date.available2021-07-21T03:26:06Z-
dc.date.issued2019-
dc.identifier.isbn9783038979432-
dc.identifier.otherSA10772-
dc.identifier.urihttp://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/32681-
dc.descriptionhttps://doi.org/10.3390/books978-3-03897-943-2 CC BY-NC-ND.vi
dc.description.abstract"Wind energy is the renewable energy source that contributes the most to the electricity generation worldwide. The need to further understand and efficiently use available wind resources is the key motivation for research in wind energy. The levelized cost of energy from wind power is competitive with that of the conventional energy sources at wind-favorable land sites, while efforts are made to lower the cost of wind energy at offshore, complex, and forested areas. The wake effect within and between wind farms and wind-power forecasting are areas with increasing importance because of the need to accurately predict wind power. There is, therefore, a need for reliable, robust, and accurate measurements and datasets to further improve our understanding of the physical conditions in which wind turbines and wind farms operate and for flow model evaluation. Nowadays, remote sensing observations are used widely in wind energy applications. During the last couple of years, remote sensing technologies for wind have been improved, both in terms of accuracy and costs. Combined measurement infrastructures, such as that of WindScanner.eu, and new advancements for the measurement of atmospheric turbulence and the wind turbine power performance, turbine wakes, and for improvement of the turbine control, are being progressively achieved. Commercial acceptance of lidars, including floating/buoy lidars, for wind resource assessment, is also on-going. Based on airborne lidar, high-resolution land surface maps are retrieved in forested and complex terrain and provide new valuable inputs to micro- and meso-scale modeling. Surface roughness, terrain elevation, albedo, vegetation parameters, and land- and sea surface temperatures are assessed based on Earth Observation (EO) data and used as input for flow modeling of wind resources (wind atlas) and for the forecasting of wind power at short temporal scales. EO microwave data are used for offshore wind field mapping and applied for wind resource estimation, wind park wake effect, and long-term wind climate conditions."vi
dc.language.isoenvi
dc.publisherMDPIvi
dc.subjectWind Energy Applicationsvi
dc.subjectWind energyvi
dc.titleRemote Sensing of Atmospheric Conditions for Wind Energy Applicationsvi
dc.typeBookvi
Bộ sưu tập: Khoa học cơ bản_TLNM_SACH

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
SA10772_1.Remote Sensing of Atmospheric Conditions for Wind Energy Applications_Cover.pdf
  Giới hạn truy cập
Cover776.24 kBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA10772_2.Remote Sensing of Atmospheric Conditions for Wind Energy Applications_Copyright.pdf
  Giới hạn truy cập
Copyright536.06 kBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA10772_3.Remote Sensing of Atmospheric Conditions for Wind Energy Applications_Contents.pdf
  Giới hạn truy cập
Contents524.16 kBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA10772_4.Remote Sensing of Atmospheric Conditions for Wind Energy Applications_About the editors.pdf
  Giới hạn truy cập
About the editors536.38 kBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA10772_5.Remote Sensing of Atmospheric Conditions for Wind Energy Applications_Chapter 1.pdf
  Giới hạn truy cập
Editorial for the Special Issue “Remote Sensing of Atmospheric Conditions forWind Energy Applications”580.09 kBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA10772_6.Remote Sensing of Atmospheric Conditions for Wind Energy Applications_Chapter 2.pdf
  Giới hạn truy cập
IEA Wind Task 32: Wind Lidar Identifying and Mitigating Barriers to the Adoption of Wind Lidar1.37 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA10772_7.Remote Sensing of Atmospheric Conditions for Wind Energy Applications_Chapter 3.pdf
  Giới hạn truy cập
Coherent Focused Lidars for Doppler Sensing of Aerosols and Wind4.32 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA10772_8.Remote Sensing of Atmospheric Conditions for Wind Energy Applications_Chapter 4.pdf
  Giới hạn truy cập
Optimizing Lidars forWind Turbine Control Applications—Results from the IEA Wind Task 32 Workshop1.55 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA10772_9.Remote Sensing of Atmospheric Conditions for Wind Energy Applications_Chapter 5.pdf
  Giới hạn truy cập
Wind Turbine Wake Characterization with Nacelle-Mounted Wind Lidars for Analytical Wake Model Validation8 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA10772_10.Remote Sensing of Atmospheric Conditions for Wind Energy Applications_Chapter 6.pdf
  Giới hạn truy cập
Using a Virtual Lidar Approach to Assess the Accuracy of the Volumetric Reconstruction of a Wind Turbine Wake6.83 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA10772_11.Remote Sensing of Atmospheric Conditions for Wind Energy Applications_Chapter 7.pdf
  Giới hạn truy cập
Wind Gust Detection and Impact Prediction for Wind Turbines10.64 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA10772_12.Remote Sensing of Atmospheric Conditions for Wind Energy Applications_Chapter 8.pdf
  Giới hạn truy cập
Comments on “Wind Gust Detection and Impact Prediction forWind Turbines”575.91 kBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA10772_13.Remote Sensing of Atmospheric Conditions for Wind Energy Applications_Chapter 9.pdf
  Giới hạn truy cập
Reducing the Uncertainty of Lidar Measurements in Complex Terrain Using a Linear Model Approach1.4 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA10772_14.Remote Sensing of Atmospheric Conditions for Wind Energy Applications_Chapter 10.pdf
  Giới hạn truy cập
Wind in Complex Terrain—Lidar Measurements for Evaluation of CFD Simulations6.73 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA10772_15.Remote Sensing of Atmospheric Conditions for Wind Energy Applications_Chapter 11.pdf
  Giới hạn truy cập
Airborne Doppler Wind Lidar Observations of the Tropical Cyclone Boundary Layer5.96 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA10772_16.Remote Sensing of Atmospheric Conditions for Wind Energy Applications_Chapter 12.pdf
  Giới hạn truy cập
On the Use of Dual-Doppler Radar Measurements for Very Short-Term Wind Power Forecasts4.76 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA10772_17.Remote Sensing of Atmospheric Conditions for Wind Energy Applications_Chapter 13.pdf
  Giới hạn truy cập
Investigation of the Fetch Effect Using Onshore and Offshore Vertical LiDAR Devices7.27 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA10772_18.Remote Sensing of Atmospheric Conditions for Wind Energy Applications_Chapter 14.pdf
  Giới hạn truy cập
The NEWA Ferry Lidar Experiment: Measuring Mesoscale Winds in the Southern Baltic Sea1.81 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA10772_19.Remote Sensing of Atmospheric Conditions for Wind Energy Applications_Chapter 15.pdf
  Giới hạn truy cập
vEstimation of the Motion-Induced Horizontal-Wind-Speed Standard Deviation in an Offshore Doppler Lidar3.09 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA10772_20.Remote Sensing of Atmospheric Conditions for Wind Energy Applications_Chapter 16.pdf
  Giới hạn truy cập
Assessing Global Ocean Wind Energy Resources Using Multiple Satellite Data6.25 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu
SA10772_21.Remote Sensing of Atmospheric Conditions for Wind Energy Applications_Back cover.pdf
  Giới hạn truy cập
Back cover565.69 kBAdobe PDFXem/Tải về  Yêu cầu tài liệu


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.