Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/31192
Toàn bộ biểu ghi siêu dữ liệu
Trường DC | Giá trị | Ngôn ngữ |
---|---|---|
dc.contributor.author | Le, Chi Kien | - |
dc.contributor.author | Duong, Thanh Long | - |
dc.contributor.author | Phan, Van-Duc | - |
dc.contributor.author | Nguyen, Thang Trung | - |
dc.date.accessioned | 2021-06-10T14:21:16Z | - |
dc.date.available | 2021-06-10T14:21:16Z | - |
dc.date.issued | 2020 | - |
dc.identifier.issn | 2071-1050 | - |
dc.identifier.other | BBKH2501 | - |
dc.identifier.uri | http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/31192 | - |
dc.description | 35p. ; 9.7 MB | vi |
dc.description.abstract | In the paper, a proposed particle swarm optimization (PPSO) is implemented for dealing with an economic load dispatch (ELD) problem considering the competitive electric market. The main task of the problem is to determine optimal power generation and optimal reserve generation of available thermal generation units so that total profit of all the units is maximized. In addition, constraints, such as generation limit and reserve limit of each unit, power demand and reserve demand, must be exactly satisfied. PPSO is an improved version of conventional particle swarm optimization (PSO) by combining pseudo gradient method, constriction factor and a newly proposed position update method. On the other hand, in order to support PPSO to reach good results for the considered problem, a new constraint handling method (NCHM) is also proposed for determining maximum reserve generation and correcting reserve generation. Three test systems with 3, 10 and 20 units are employed to evaluate the real performance of PPSO. In addition to the comparisons with previous methods, salp swarm optimization (SSA), modified di erential evolution (MDE) and eight other PSO methods are also implemented for comparisons. Through the result comparisons, two main contributions of the study are as follows: (1) NCHM is very e ective for PSO methods to reach a high success rate and higher solution quality, (2) PPSO is more e ective than other methods. Consequently, NCHM and PPSO are the useful combination for the considered problem." | vi |
dc.language.iso | en | vi |
dc.publisher | Sustainability 2020, 12, 1265 | vi |
dc.subject | competitive electricity market | vi |
dc.subject | maximum total profit | vi |
dc.subject | particle swarm optimization | vi |
dc.subject | total fuel cost | vi |
dc.subject | total revenue | vi |
dc.title | Maximizing Total Profit of Thermal Generation Units in Competitive Electric Market by Using a Proposed Particle Swarm Optimization | vi |
dc.type | Article | vi |
Bộ sưu tập: | Bài báo khoa học giảng viên |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
BBKH2501_Maximizing Total Profit of Thermal.pdf Giới hạn truy cập | Maximizing Total Profit of Thermal Generation Units in Competitive Electric Market by Using a Proposed Particle Swarm Optimization | 9.62 MB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.