Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/31153
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorPham, Thi-Thiet-
dc.contributor.authorDo, Tung-
dc.contributor.authorNguyen, Anh-
dc.contributor.authorVo, Bay-
dc.date.accessioned2021-06-10T01:24:16Z-
dc.date.available2021-06-10T01:24:16Z-
dc.date.issued2020-
dc.identifier.issnElectronic ISSN: 2169-3536-
dc.identifier.otherBBKH2466-
dc.identifier.urihttp://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/31153-
dc.description8p. ; 5.4mbvi
dc.description.abstractThe problem of exploiting Closed Sequential Patterns (CSPs) is an essential task in data mining, with many different applications. It is used to resolve the situations of huge databases or low minimum support (minsup) thresholds in mining sequential patterns. However, it is challenging and needs a lot of time to customize the minsup values for generating appropriate numbers of CSPs desired by users. To conquer this issue, the TSP algorithm for mining top-k CSPs was previously proposed, with k being a given parameter. The algorithm would return the k CSPs which have the highest support values in a database. However, its execution time and memory usage were high. In this paper, an algorithm named TKCS (Top-K Closed Sequences) is proposed to mine the top-k CSPs ef ciently. To improve the execution time and memory usage, it uses a vertical bitmap database to represent data. Besides, it adopts some useful strategies in the process of exploiting the top-k CSPs such as: always choosing the sequential patterns with the greatest support values for generating candidate patterns and storing top-k CSPs in an ascending order of the support values to increase the minsup value more quickly. The empirical results show that TKCS has better performance than TSP for discovering the top-k CSPs in terms of both runtime and memory usage.vi
dc.language.isoenvi
dc.publisherIEEE Access ( Volume: 8)vi
dc.subjectClosed sequential patternvi
dc.subjectdata miningvi
dc.subjectsequential patternvi
dc.subjecttop-k sequential patternsvi
dc.titleAn Efficient Method for Mining Top-K Closed Sequential Patternsvi
dc.typeArticlevi
Bộ sưu tập: Bài báo khoa học giảng viên

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
BBKH2466_An Efficient Method for Mining.pdf
  Giới hạn truy cập
An Efficient Method for Mining Top-K Closed Sequential Patterns5.43 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.