Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/21186
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorBrown, N. C.-
dc.contributor.authorCrowley, R. M.-
dc.contributor.authorElliott, W. B.-
dc.date.accessioned2020-08-18T04:36:45Z-
dc.date.available2020-08-18T04:36:45Z-
dc.date.issued2020-
dc.identifier.issn1475-679X-
dc.identifier.otherBBKH1883-
dc.identifier.urihttp://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/21186-
dc.description55 tr. ; 1045 kb; Journal of Accounting Research Vol. 58 No. 1 March 2020vi
dc.description.abstract"We use a machine learning technique to assess whether the thematic content of financial statement disclosures (labeled topic) is incrementally informative in predicting intentional misreporting. Using a Bayesian topic modeling algorithm, we determine and empirically quantify the topic content of a large collection of 10-K narratives spanning 1994 to 2012. We find that the algorithm produces a valid set of semantically meaningful topics that predict financial misreporting, based on samples of Securities and Exchange Commission (SEC) enforcement actions (Accounting and Auditing Enforcement Releases [AAERs]) and irregularities identified from financial restatements and 10-K filing amendments. Our out-of-sample tests indicate that topic significantly improves the detection of financial misreporting by as much as 59% when added to models based on commonly used financial and textual style variables. Furthermore, models that incorporate topic significantly outperform traditional models when detecting serious revenue recognition and core expense errors. Taken together, our results suggest that the topics discussed in annual report filings and the attention devoted to each topic are useful signals in detecting financial misreporting."vi
dc.language.isoenvi
dc.publisherUniversity of Chicagovi
dc.subjectTopic Modelingvi
dc.subjectDisclosurevi
dc.subjectLatent Dirichlet Allocationvi
dc.subjectFinancial Misreportingvi
dc.titleWhat Are You Saying? Using topic to Detect Financial Misreportingvi
dc.typeOthervi
Bộ sưu tập: Bài báo_lưu trữ

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
BBKH1883_What Are You Saying.pdf
  Giới hạn truy cập
"What Are You Saying? Using topic to Detect Financial Misreporting"1.04 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.