Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/21186
Toàn bộ biểu ghi siêu dữ liệu
Trường DC | Giá trị | Ngôn ngữ |
---|---|---|
dc.contributor.author | Brown, N. C. | - |
dc.contributor.author | Crowley, R. M. | - |
dc.contributor.author | Elliott, W. B. | - |
dc.date.accessioned | 2020-08-18T04:36:45Z | - |
dc.date.available | 2020-08-18T04:36:45Z | - |
dc.date.issued | 2020 | - |
dc.identifier.issn | 1475-679X | - |
dc.identifier.other | BBKH1883 | - |
dc.identifier.uri | http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/21186 | - |
dc.description | 55 tr. ; 1045 kb; Journal of Accounting Research Vol. 58 No. 1 March 2020 | vi |
dc.description.abstract | "We use a machine learning technique to assess whether the thematic content of financial statement disclosures (labeled topic) is incrementally informative in predicting intentional misreporting. Using a Bayesian topic modeling algorithm, we determine and empirically quantify the topic content of a large collection of 10-K narratives spanning 1994 to 2012. We find that the algorithm produces a valid set of semantically meaningful topics that predict financial misreporting, based on samples of Securities and Exchange Commission (SEC) enforcement actions (Accounting and Auditing Enforcement Releases [AAERs]) and irregularities identified from financial restatements and 10-K filing amendments. Our out-of-sample tests indicate that topic significantly improves the detection of financial misreporting by as much as 59% when added to models based on commonly used financial and textual style variables. Furthermore, models that incorporate topic significantly outperform traditional models when detecting serious revenue recognition and core expense errors. Taken together, our results suggest that the topics discussed in annual report filings and the attention devoted to each topic are useful signals in detecting financial misreporting." | vi |
dc.language.iso | en | vi |
dc.publisher | University of Chicago | vi |
dc.subject | Topic Modeling | vi |
dc.subject | Disclosure | vi |
dc.subject | Latent Dirichlet Allocation | vi |
dc.subject | Financial Misreporting | vi |
dc.title | What Are You Saying? Using topic to Detect Financial Misreporting | vi |
dc.type | Other | vi |
Bộ sưu tập: | Bài báo_lưu trữ |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
BBKH1883_What Are You Saying.pdf Giới hạn truy cập | "What Are You Saying? Using topic to Detect Financial Misreporting" | 1.04 MB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.