Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/21184
Toàn bộ biểu ghi siêu dữ liệu
Trường DC | Giá trị | Ngôn ngữ |
---|---|---|
dc.contributor.author | Bao, Yang | - |
dc.contributor.author | Ke, Bin | - |
dc.contributor.author | Li, Bin…[et al.] | - |
dc.date.accessioned | 2020-08-18T04:31:56Z | - |
dc.date.available | 2020-08-18T04:31:56Z | - |
dc.date.issued | 2020 | - |
dc.identifier.issn | 1475-679X | - |
dc.identifier.other | BBKH1882 | - |
dc.identifier.uri | http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/21184 | - |
dc.description | 37 tr. ; 298 kb; Journal of Accounting Research Vol. 58 No. 1 March 2020 | vi |
dc.description.abstract | "We develop a state-of-the-art fraud prediction model using a machine learning approach. We demonstrate the value of combining domain knowledge and machine learning methods in model building. We select our model input based on existing accounting theories, but we differ from prior accounting research by using raw accounting numbers rather than financial ratios. We employ one of the most powerful machine learning methods, ensemble learning, rather than the commonly used method of logistic regression. To assess the performance of fraud prediction models, we introduce a new performance evaluation metric commonly used in ranking problems that is more appropriate for the fraud prediction task. Starting with an identical set of theory-motivated raw accounting numbers, we show that our new fraud prediction model outperforms two benchmark models by a large margin: the Dechow et al. logistic regression model based on financial ratios, and the Cecchini et al. support-vector-machine model with a financial kernel that maps raw accounting numbers into a broader set of ratios." | vi |
dc.language.iso | en | vi |
dc.publisher | University of Chicago | vi |
dc.subject | Fraud Prediction | vi |
dc.subject | Machine Learning | vi |
dc.subject | Ensemble Learning | vi |
dc.title | Detecting Accounting Fraud in Publicly Traded U.S. Firms Using a Machine Learning Approach | vi |
dc.type | Other | vi |
Bộ sưu tập: | Bài báo_lưu trữ |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
BBKH1882_Detecting Accounting Fraud in Publicly.pdf Giới hạn truy cập | "Detecting Accounting Fraud in Publicly Traded U.S. Firms Using a Machine Learning Approach" | 297.44 kB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.