Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/21101
Toàn bộ biểu ghi siêu dữ liệu
Trường DC | Giá trị | Ngôn ngữ |
---|---|---|
dc.contributor.author | Salah, Hanen Ben | - |
dc.contributor.author | Gooijer, Jan G. De | - |
dc.contributor.author | Gannoun, Ali | - |
dc.contributor.author | Ribatet, Mathieu | - |
dc.date.accessioned | 2020-08-17T06:19:32Z | - |
dc.date.available | 2020-08-17T06:19:32Z | - |
dc.date.issued | 2018 | - |
dc.identifier.issn | 2373-8529 | - |
dc.identifier.other | BBKH1864 | - |
dc.identifier.uri | http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/21101 | - |
dc.description | 19 tr. ; 634kb, "Financial Markets and Portfolio Management (2018) 32:419–436 | vi |
dc.description.abstract | "While univariate nonparametric estimation methods have been developed for estimating returns in mean-downside risk portfolio optimization, the problem of handling possible cross-correlations in a vector of asset returns has not been addressed in portfolio selection. We present a novel multivariate nonparametric portfolio optimization procedure using kernel-based estimators of the conditional mean and the conditional median. The method accounts for the covariance structure information from the full set of returns. We also provide two computational algorithms to implement the estimators. Via the analysis of 24 French stock market returns, we evaluate the in-sample and out-of-sample performance of both portfolio selection algorithms against optimal portfolios selected by classical and univariate nonparametric methods for three highly different time periods and different levels of expected return. By allowing for cross-correlations among returns, our results suggest that the proposed multivariate nonparametricmethod is a useful extension of standard univariate nonparametric portfolio selection approaches." | vi |
dc.language.iso | en | vi |
dc.publisher | Springer Nature B.V. | vi |
dc.subject | Downside risk | vi |
dc.subject | Forecasting | vi |
dc.subject | Multivariate kernel-based mean estimation | vi |
dc.subject | Multivariate kernel-based median estimation | vi |
dc.subject | Semivariance | vi |
dc.title | Mean–variance and mean–semivariance portfolio selection: amultivariate nonparametric approach | vi |
dc.type | Other | vi |
Bộ sưu tập: | Bài báo_lưu trữ |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
BBKH1864_Mean–variance and mean–semivariance portfolio.pdf Giới hạn truy cập | "Mean–variance and mean–semivariance portfolio selection: amultivariate nonparametric approach" | 633.87 kB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.