Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/20971
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorLi, Fangyi-
dc.contributor.authorZhou, Minggen-
dc.contributor.authorZou, Zijun...[et al.]-
dc.date.accessioned2020-08-16T00:17:24Z-
dc.date.available2020-08-16T00:17:24Z-
dc.date.issued2018-
dc.identifier.issn2093-7482-
dc.identifier.otherBBKH1760-
dc.identifier.urihttp://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/20971-
dc.description6 tr. ; 305 kb, Asian Nursing Research 12 (2018) 299e303vi
dc.description.abstractPurpose: Developing a risk prediction model for invasive fungal disease based on an analysis of the disease-related risk factors in critically ill patients in the intensive care unit (ICU) to diagnose the invasive fungal disease in the early stages and determine the time of initiating early antifungal treatment. Methods: Data were collected retrospectively from 141 critically ill adult patients with at least 4 days of general ICU stay at Sun Yat-sen Memorial Hospital, Sun Yat-sen University during the period from February 2015 to February 2016. Logistic regression was used to develop the risk prediction model. Discriminative power was evaluated by the area under the receiver operating characteristics (ROC) curve (AUC). Results: Sequential organ failure assessment (SOFA) score, antibiotic treatment period, and positive culture of Candida albicans other than normally sterile sites are the three predictors of invasive fungal disease in critically ill patients in the ICU. The model performs well with an ROC-AUC of .73. Conclusion: The risk prediction model performs well to discriminate between critically ill patients with or without invasive fungal disease. Physicians could use this prediction model for early diagnosis of invasive fungal disease and determination of the time to start early antifungal treatment of critically ill patients in the ICUvi
dc.language.isoenvi
dc.publisherElsevier Limitedvi
dc.subjectCritical illnessvi
dc.subjectInvasive fungal infectionsvi
dc.subjectLogistic modelsvi
dc.subjectRiskvi
dc.subjectRisk factorsvi
dc.titleA Risk Prediction Model for Invasive Fungal Disease in Critically Ill Patients in the Intensive Care Unitvi
dc.typeOthervi
Bộ sưu tập: Bài báo_lưu trữ

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
BBKH1760_A Risk Prediction Model for Invasive.pdf
  Giới hạn truy cập
"A Risk Prediction Model for Invasive Fungal Disease in Critically Ill Patients in the Intensive Care Unit"304.16 kBAdobe PDFXem/Tải về  Yêu cầu tài liệu


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.