Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18778
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorTang, Limin-
dc.contributor.authorXiao, Duyang-
dc.date.accessioned2020-06-01T10:02:58Z-
dc.date.available2020-06-01T10:02:58Z-
dc.date.issued2019-
dc.identifier.issn1687-8086-
dc.identifier.issn1687-8094 (eISSN)-
dc.identifier.otherBBKH1379-
dc.identifier.urihttp://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18778-
dc.description"Hindawi; Advances in Civil Engineering; Volume 2019, Article ID 9274653, 11 pages; https://doi.org/10.1155/2019/9274653"vi
dc.description.abstractDue to the uncertainty and variability of various factors affecting the pavement performance, the change in pavement performance cannot be completely determined. In addition, this uncertainty is not accurately reflected by the pavement performance prediction model. In particular, the gray GM (1, 1) model is very suitable due to it is ability to better predict the existing situation of a domestic asphalt pavement along with the actual performance of a road surface of the “small sample, poor information” gray system. In this regard, the gray GM (1, 1) model is being increasingly used to forecast the performance of an asphalt pavement. When a gray GM (1, 1) model is used to predict the performance of an asphalt pavement, the condition number of the GM (1, 1) model matrix is too large, which, in turn, leads to the deviation of calculation and even wrong results in some cases. This study analyzed the reason for a large condition number of the GM (1, 1) model matrix. Combined with the numerical characteristics of the pavement condition index (PCI) and pavement quality index (PQI), this study focused on the annual, monthly, and daily attenuations of PCI and PQI to the condition number of the GM (1, 1) model matrix. Accordingly, we propose a method to forecast the performance of an asphalt pavement using the monthly attenuation of PCI and PQI. The PCI and PQI in Hunan Province in recent years have been predicted, and the findings reveal that the prediction GM (1, 1) model for the monthly attenuation of PCI and PQI not only effectively lowered the condition number of the matrix but also ensured that the relative error was small.vi
dc.language.isoenvi
dc.publisherHindawi Limitedvi
dc.subjectMechanical propertiesvi
dc.subjectAttenuationvi
dc.subjectPerformance predictionvi
dc.subjectNeural networksvi
dc.subjectRoadsvi
dc.subjectAsphalt pavementsvi
dc.subjectMorbidityvi
dc.subjectMathematical modelsvi
dc.subjectResearchvi
dc.subjectUncertaintyvi
dc.subjectSystem theoryvi
dc.subjectPavement conditionvi
dc.titleMonthly Attenuation Prediction for Asphalt Pavement Performance by Using GM (1, 1) Modelvi
dc.typeOthervi
Bộ sưu tập: Bài báo_lưu trữ

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
BBKH1379_TCCN_Monthly Attenuation Prediction.pdf
  Giới hạn truy cập
Monthly Attenuation Prediction for Asphalt Pavement Performance by Using GM (1, 1) Model1.97 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.