Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18771
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorZhi-Jun Lyu-
dc.contributor.authorLu, Qi-
dc.contributor.authorSong, YiMing-
dc.contributor.authorQian, Xiang-
dc.contributor.authorYang, Guanghui-
dc.date.accessioned2020-06-01T09:45:17Z-
dc.date.available2020-06-01T09:45:17Z-
dc.date.issued2018-
dc.identifier.issn1687 - 8086-
dc.identifier.otherBBKH1115-
dc.identifier.urihttp://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18771-
dc.description"Hindawi Advances in Civil Engineering Volume 2018, Article ID 6326049, 14 pages https://doi.org/10.1155/2018/6326049"vi
dc.description.abstractThe rack columns have so distinctive characteristics in their design, which have regular perforations to facilitate installation of the rack system that it is more difficult to be analyzed with traditional cold-formed steel structures design theory or standards. The emergence of industrial “big-data” has created better innovative thinking for those working in various fields including science, engineering, and business. The main contribution of this paper lies in that, with engineering data from finite element simulation and physical test, a novel data-driven model (DDM) using artificial neural network technology is proposed for optimization design of thin-walled steel specific perforated members. The data-driven model based on machine learning is able to provide a more effective help for decision-making of innovative design in steel members. The results of the case study indicate that compared with the traditional finite element simulation and physical test, the DDM for the solving the hard problem of complicated steel perforated column design seems to be very promising.vi
dc.language.isoenvi
dc.publisherHindawi Limitedvi
dc.subjectFinite element methodvi
dc.subjectColdvi
dc.subjectMathematical analysisvi
dc.subjectModel testingvi
dc.subjectArtificial intelligencevi
dc.subjectArtificial neural networksvi
dc.subjectProduct qualityvi
dc.subjectPhysical testsvi
dc.subjectMachine learningvi
dc.subjectDecision makingvi
dc.subjectDesign standardsvi
dc.subjectComputer simulationvi
dc.subjectCold workingvi
dc.titleData-Driven Decision-Making in the Design Optimization of Thin-Walled Steel Perforated Sections: A Case Studyvi
dc.typeOthervi
Bộ sưu tập: Bài báo_lưu trữ

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
BBKH1115_TCCN_ Data-Driven Decision.pdf
  Giới hạn truy cập
Data-Driven Decision-Making in the Design Optimization of Thin-Walled Steel Perforated Sections: A Case Study3.36 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.