Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18771
Toàn bộ biểu ghi siêu dữ liệu
Trường DC | Giá trị | Ngôn ngữ |
---|---|---|
dc.contributor.author | Zhi-Jun Lyu | - |
dc.contributor.author | Lu, Qi | - |
dc.contributor.author | Song, YiMing | - |
dc.contributor.author | Qian, Xiang | - |
dc.contributor.author | Yang, Guanghui | - |
dc.date.accessioned | 2020-06-01T09:45:17Z | - |
dc.date.available | 2020-06-01T09:45:17Z | - |
dc.date.issued | 2018 | - |
dc.identifier.issn | 1687 - 8086 | - |
dc.identifier.other | BBKH1115 | - |
dc.identifier.uri | http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18771 | - |
dc.description | "Hindawi Advances in Civil Engineering Volume 2018, Article ID 6326049, 14 pages https://doi.org/10.1155/2018/6326049" | vi |
dc.description.abstract | The rack columns have so distinctive characteristics in their design, which have regular perforations to facilitate installation of the rack system that it is more difficult to be analyzed with traditional cold-formed steel structures design theory or standards. The emergence of industrial “big-data” has created better innovative thinking for those working in various fields including science, engineering, and business. The main contribution of this paper lies in that, with engineering data from finite element simulation and physical test, a novel data-driven model (DDM) using artificial neural network technology is proposed for optimization design of thin-walled steel specific perforated members. The data-driven model based on machine learning is able to provide a more effective help for decision-making of innovative design in steel members. The results of the case study indicate that compared with the traditional finite element simulation and physical test, the DDM for the solving the hard problem of complicated steel perforated column design seems to be very promising. | vi |
dc.language.iso | en | vi |
dc.publisher | Hindawi Limited | vi |
dc.subject | Finite element method | vi |
dc.subject | Cold | vi |
dc.subject | Mathematical analysis | vi |
dc.subject | Model testing | vi |
dc.subject | Artificial intelligence | vi |
dc.subject | Artificial neural networks | vi |
dc.subject | Product quality | vi |
dc.subject | Physical tests | vi |
dc.subject | Machine learning | vi |
dc.subject | Decision making | vi |
dc.subject | Design standards | vi |
dc.subject | Computer simulation | vi |
dc.subject | Cold working | vi |
dc.title | Data-Driven Decision-Making in the Design Optimization of Thin-Walled Steel Perforated Sections: A Case Study | vi |
dc.type | Other | vi |
Bộ sưu tập: | Bài báo_lưu trữ |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
BBKH1115_TCCN_ Data-Driven Decision.pdf Giới hạn truy cập | Data-Driven Decision-Making in the Design Optimization of Thin-Walled Steel Perforated Sections: A Case Study | 3.36 MB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.