Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18610
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorLi, Shengyuan-
dc.contributor.authorZhao, Xuefeng-
dc.date.accessioned2020-06-01T02:05:04Z-
dc.date.available2020-06-01T02:05:04Z-
dc.date.issued2019-
dc.identifier.issn1687-8086-
dc.identifier.issn1687-8094 (eISSN)-
dc.identifier.otherBBKH1285-
dc.identifier.urihttp://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18610-
dc.description"Hindawi; Advances in Civil Engineering; Volume 2019, Article ID 6520620, 12 pages; https://doi.org/10.1155/2019/6520620"vi
dc.description.abstractCrack detection is important for the inspection and evaluation during the maintenance of concrete structures. However, conventional image-based methods need extract crack features using complex image preprocessing techniques, so it can lead to challenges when concrete surface contains various types of noise due to extensively varying real-world situations such as thin cracks, rough surface, shadows, etc. To overcome these challenges, this paper proposes an image-based crack detection method using a deep convolutional neural network (CNN). A CNN is designed through modifying AlexNet and then trained and validated using a built database with 60000 images. Through comparing validation accuracy under different base learning rates, 0.01 was chosen as the best base learning rate with the highest validation accuracy of 99.06%, and its training result is used in the following testing process. The robustness and adaptability of the trained CNN are tested on 205 images with 3120 × 4160 pixel resolutions which were not used for training and validation. The trained CNN is integrated into a smartphone application to mobile more public to detect cracks in practice. The results confirm that the proposed method can indeed detect cracks in images from real concrete surfaces.vi
dc.language.isoenvi
dc.publisherHindawi Limitedvi
dc.subjectInternational conferencesvi
dc.subjectFeature extractionvi
dc.subjectInspectionvi
dc.subjectLearningvi
dc.subjectArchitectural engineeringvi
dc.subjectFourier transformsvi
dc.subjectSmartphonesvi
dc.subjectArtificial intelligencevi
dc.subjectConcretevi
dc.subjectArtificial neural networksvi
dc.subjectImage detectionvi
dc.subjectConcrete structuresvi
dc.subjectCivil engineeringvi
dc.subjectNeural networksvi
dc.subjectClassificationvi
dc.subjectFlaw detectionvi
dc.subjectAsphalt pavementsvi
dc.subjectMethodsvi
dc.subjectData basesvi
dc.subjectCracksvi
dc.titleImage-Based Concrete Crack Detection Using Convolutional Neural Network and Exhaustive Search Techniquevi
dc.typeOthervi
Bộ sưu tập: Bài báo_lưu trữ

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
BBKH1285_TCCN_Image-Based Concrete Crack Detection.pdf
  Giới hạn truy cập
Image-Based Concrete Crack Detection Using Convolutional Neural Network and Exhaustive Search Technique4.65 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.