Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18381
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorPraks, Pavel-
dc.contributor.authorBrkić, Dejan-
dc.date.accessioned2020-05-27T12:58:47Z-
dc.date.available2020-05-27T12:58:47Z-
dc.date.issued2018-
dc.identifier.issn1687-8086-
dc.identifier.otherBBKH1027-
dc.identifier.urihttp://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18381-
dc.descriptionAdvances in Civil Engineering; New York Vol. 2018, (2018). DOI:10.1155/2018/5451034vi
dc.description.abstractThe empirical Colebrook equation from 1939 is still accepted as an informal standard way to calculate the friction factor of turbulent flows (4000 < Re < 108) through pipes with roughness between negligible relative roughness (ε/D ⟶ 0) to very rough (up to ε/D = 0.05). The Colebrook equation includes the flow friction factor λ in an implicit logarithmic form, λ being a function of the Reynolds number Re and the relative roughness of inner pipe surface ε/D: λ = f(λ, Re, ε/D). To evaluate the error introduced by the many available explicit approximations to the Colebrook equation, λ ≈ f(Re, ε/D), it is necessary to determinate the value of the friction factor λ from the Colebrook equation as accurately as possible. The most accurate way to achieve that is by using some kind of the iterative method. The most used iterative approach is the simple fixed-point method, which requires up to 10 iterations to achieve a good level of accuracy. The simple fixed-point method does not require derivatives of the Colebrook function, while the most of the other presented methods in this paper do require. The methods based on the accelerated Householder’s approach (3rd order, 2nd order: Halley’s and Schröder’s method, and 1st order: Newton–Raphson) require few iterations less, while the three-point iterative methods require only 1 to 3 iterations to achieve the same level of accuracy. The paper also discusses strategies for finding the derivatives of the Colebrook function in symbolic form, for avoiding the use of the derivatives (secant method), and for choosing an optimal starting point for the iterative procedure. The Householder approach to the Colebrook’ equations expressed through the Lambert W-function is also analyzed. Finally, it is presented one approximation to the Colebrook equation with an error of no more than 0.0617%.vi
dc.language.isoenvi
dc.publisherHindawi Limitedvi
dc.subjectFrictionvi
dc.subjectAccuracyvi
dc.subjectMathematical analysisvi
dc.subjectIterative methodsvi
dc.subjectHydraulic engineeringvi
dc.subjectApproximationsvi
dc.subjectFriction factorvi
dc.subjectFixed points (mathematics)vi
dc.subjectRoughnessvi
dc.subjectFluid flowvi
dc.subjectSystems analysisvi
dc.subjectTurbulent flowvi
dc.titleAdvanced Iterative Procedures for Solving the Implicit Colebrook Equation for Fluid Flow Frictionvi
dc.typeOthervi
Bộ sưu tập: Bài báo_lưu trữ

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
BBKH1027_TCCN_ Advanced Iterative Procedures.pdf
  Giới hạn truy cập
Advanced Iterative Procedures for Solving the Implicit Colebrook Equation for Fluid Flow Friction2.16 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.