ISSERTATION COMMITTEE’S FEEDBACK
PREFACE

Graduation thesis is a Scientific research project based on both theory and practical to create a complete task that shows all the knowledge students have achieved for 4 years of studying. This project is also a pedal for student’s future career.

The design project “ME system of LANCASTER LINCOL” is collected and use for the thesis. With the great support of the supervisor, we are able to gain a lot of useful knowledge and experience that will help a lot for the future job.

During the process of the thesis, with the great effort of each members and the useful guidance of supervisor Nguyễn Hồng Phương, we are able to complete the thesis. During the presentation, we will try our best to avoid any significant errors, we appreciate to get any useful opinions and correction from our teacher.

Thank you and best regards!

Student
Võ Lâm Minh Triệt
Trần Ngọc Hoàng
Vy Chí Thành
CHAPTER 1: OVERVIEW OF LANCASTER LINCOLN ... 8
 1.1 PROJECT INTRODUCTION .. 8
 1.2 INFORMATION ABOUT PROJECT .. 9
 1.3 ME WORKS .. 9
 1.3.1 Power supply system .. 9
 1.3.2 Firefighting system .. 11
 1.3.3 HVAC system .. 12
 1.3.4 Plumping system: ... 14

CHAPTER 2: HVAC COOLING LOAD CALCULATION .. 15
 2.1 LOCATION’S WEATHER DATA ... 15
 2.1.1 General purpose: .. 15
 2.1.2 Climatic design conditions: ... 15
 2.1.3 Calculating hourly design temperature profile .. 16
 2.1.4 Location Climate Zone (3) ... 16
 2.1.5 Definitions, abbreviations, and acronyms .. 16
 2.1.6 Related table ... 17
 2.1.7 References ... 18
 2.2 BUILDING DATA SELECTION .. 19
 2.2.1 General purpose .. 19
 2.2.2 Building envelope material selection .. 19
 2.2.3 Shading device .. 20
 2.2.4 Ventilation and infiltration ... 20
 2.2.5 Indoor air temperature .. 23
 2.2.6 Other design data .. 25
 2.2.7 References ... 26
 2.3 COOLING LOAD CALCULATION .. 27
 2.3.1 General purpose .. 27
 2.3.2 Calculating clear-sky solar radiation .. 27
 2.3.3 Calculating wall heat gain for grocery store ... 31
 2.3.4 Calculating window heat gain for grocery store 40
 2.3.4 Calculating heat gain from floor and partition ... 47
 2.3.5 Calculating lighting’s heat gain ... 47
CHAPTER 3 PLUMPING SYSTEM

3.1 WATER SUPPLY SYSTEM
3.1.1 Introduction
3.1.2 Water supply net
3.1.3 Pipe sizing calculation:
3.1.4 Water block selection:
3.1.5 Storage water tank:
3.1.6 Supply pump calculation:

3.2 DOMESTIC WASTE WATER SYSTEM
3.2.1 Introduction:
3.2.2 Pipe flow rate:
3.2.3 Pipe sizing:

3.3 STORMWATER DRAIN PIPE
3.3.1 Volumetric flow rate and pipe sizing:

3.4 SEPTIC TANK
3.4.1 Introduction:
3.4.2 Septic tank volume:

3.5 WASTE WATER TREATMENT
3.5.1 Wastewater Collection
3.5.2 Odor Control