Illiquid Assets

Andrew Ang

DOI:10.1093/acprof:oso/9780199959327.003.0013

Abstract and Keywords
After taking into account biases induced by infrequent trading and selection, it is unlikely that illiquid asset classes have higher risk-adjusted returns than traditional liquid stock and bond markets. However, there are significant illiquidity premiums within asset classes. Portfolio choice models incorporating illiquidity risk recommend that investors should retain only modest holdings of illiquid assets and demand high risk premiums for investing in them.

Keywords: liquidity premium, survivorship bias, infrequent trading, unsmoothing, de-smoothing, selection bias, illiquidity risk, liquidity crisis, market making, rebalancing, transaction costs, portfolio choice

Chapter Summary
After taking into account biases induced by infrequent trading and selection, it is unlikely that illiquid asset classes have higher risk-adjusted returns, on average, than traditional liquid stock and bond markets. However, there are significant illiquidity premiums within asset classes. Portfolio choice models incorporating illiquidity risk recommend only modest...
holdings of illiquid assets and that investors should demand high-risk premiums for investing in them.
1. Liquidating Harvard

No one thought it could happen to Harvard.¹

In 2008, Harvard University’s endowment—the world’s largest—fell victim to the worldwide plunge in asset prices triggered by the financial crisis. In contrast to its 15% average annual returns since 1980, Harvard’s endowment suffered its worst decline in history, falling 22% between July 1 and October 31, 2008. More than $8 billion in value had been wiped out in three months.

Concerned with the impending budget shortfall due to the collapse in the endowment, Harvard University President Drew Faust and Executive Vice President Edward Forst sounded the alarm by sending a memo to the Council of Deans on December 2, 2008. They asked each school to cut expenses and compensation and to scale back ambitions in the face of reduced revenue. As bad as the reported losses were, they cautioned that the true losses were even worse: “Yet even the sobering figure is unlikely to capture the full extent of actual losses for this period, because it does not reflect fully updated valuations in certain managed asset classes, most notably private equity and real estate.”²

(p.411) Harvard relied on endowment earnings to meet a large share of university expenses. In its fiscal year ending June 30, 2008, more than one-third of operating revenue came from endowment income. For some of the university’s individual departments, the proportion was even higher: the Radcliffe Institute for Advanced Study derived 83% of its revenue from the endowment, the Divinity School 71%, and the Faculty of Arts and Sciences 52%.

Harvard Management Company (HMC), the funds manager of Harvard’s endowment, was one of the early adopters of the endowment model, which recommends that long-term investors hold lots of illiquid, alternative assets, especially private equity and hedge funds. Advocated by David Swensen in his influential book, Pioneering Portfolio Management, the endowment model was based on the economic concept of diversification originally attributable to Harry Markowitz (1952; see chapter 3). Through diversification, a portfolio of many low-correlated assets has a risk-return trade-off superior to that of conventional portfolios consisting of only stocks and bonds. Swensen went further and advocated holding large
proportions of illiquid private equity and hedge funds. Not only were these assets supposed to have low correlations to stocks and bonds, but they potentially carried an illiquidity risk premium.

Swensen argued that in liquid markets, the potential for making excess returns (or “alpha”; see chapter 10) was limited. In these markets, crowded with thousands of active managers vying for an edge, information is freely available and almost everyone has access to it. Illiquid asset markets, like venture capital and private equity, had large potential payoffs for investors who had superior research and management skills. Swensen argued that alpha was not competed away in illiquid assets because most managers have short horizons. University endowments, with their longer horizons, would seem to have an advantage in illiquid assets. Swensen recommended that long-term institutions with sufficient resources who can carefully select expert managers in alternative, illiquid assets could achieve superior risk-adjusted returns.

Dutifully following Swensen’s advice, many endowments, including Harvard, loaded up with illiquid assets during the 1990s. In 2008, HMC held 55% of its portfolio in hedge funds, private equity, and real assets. Only 30% was in developed-world equities and fixed income, with the remainder of its portfolio in emerging-market equities and high-yield bonds.

In its desperate need for cash, HMC tried to sell some of its $1.5 billion private equity portfolio, which included marquee names such as Apollo Investment and Bain Capital. But buyers in secondary markets demanded huge discounts. Nina Munk, a journalist writing in *Vanity Fair*, recounts a surreal conversation between the CIO of HMC, Jane Mendillo, and a money manager specializing in alternative investments.3

(p.412) FUNDS MANAGER: Hey look, I’ll buy it back from you. I’ll buy my interest back.
MENDILLO: Great.
FUNDS MANAGER: Here, I think it’s worth you know, today the [book] value is a dollar, so I’ll pay you 50 cents.
MENDILLO: Then why would I sell it?
FUNDS MANAGER: Well, why are you? I don’t know. You’re the one who wants to sell, not me. If you guys want to sell, I’m happy to rip your lungs out. If you are desperate, I’m a buyer.

MENDILLO: Well, we’re not desperate.

But in truth Harvard was desperate.

The reaction to Faust and Forst’s cost-cutting memo was swift and sharp. Faculty, students, and alumni were incredulous. Alan Dershowitz, a famous professor at Harvard Law School, said:4 “Apparently nobody in our financial office has read the story in Genesis about Joseph interpreting Pharaoh’s dream. . . . You know, during the seven good years you save for the seven lean years.”

All the short-term decisions for Harvard leaders and Mendillo at HMC were painful: slashing budgets, hiring freezes, and the postponement of the university’s planned Allston science complex. Asset-liability management for Harvard University had failed. In the longer term, was the endowment model with illiquid, alternative assets still appropriate?

2. Illiquid Asset Markets
2.1. Sources of Illiquidity

Vayanos and Wang (2012) provide a taxonomy of how illiquidity arises due to market imperfections:

1. Clientele effects and participation costs
 Entering markets can be costly; investors often must spend money, time, or energy to learn their way around and gain the necessary skills. In many large, illiquid asset markets, only certain types of investors with sufficient capital, expertise, and experience can transact.

2. Transaction costs
 These include commissions, taxes, and, for certain illiquid assets, the costs of due diligence, title transfers, and the like, as well as the bread-and-butter costs incurred for trading. It also includes fees paid to lawyers, accountants, and investment bankers.

Academics sometimes assume that investors can (p. 413) trade whenever they want as long as they pay
(sometimes a substantial) a transaction cost, but this is not always true because of . . .

3. Search frictions
For many assets, you need to search to find an appropriate buyer or seller. Only certain investors have the skills to value a complicated structured credit product, for example. Few investors have sufficient capital to invest in skyscrapers in major metropolitan areas. You might have to wait a long time to transact.

4. Asymmetric information
Markets can be illiquid because one investor has superior knowledge compared with other investors. Fearing they’ll be fleeced, investors become reluctant to trade. When asymmetric information is extreme—all the products are lemons, and no one wants to buy a lemon—markets break down. Many liquidity freezes are caused by these situations. The presence of asymmetric information also causes investors to look for nonpredatory counterparties, so information is a form of search friction.

5. Price impact
Large trades will move markets.

6. Funding constraints
Many of the investment vehicles used to invest in illiquid assets are highly leveraged. Even investing in a house requires substantial leverage for most consumers. If access to credit is impaired, investors cannot transact in illiquid asset markets.

2.2. Characteristics of Illiquid Markets
Illiquid asset markets are characterized by many, and sometimes all, of the market imperfections on this list. I refer to these effects as “illiquidity.” On the basis of this reasoning, all assets are at least somewhat illiquid—even the large-cap equities that trade many times every second—but of course some assets are much more illiquid than others. Illiquidity manifests as infrequent trading, small amounts being traded, and low turnover. Intervals between trades in illiquid markets can extend to decades. Table 13.1, adapted from Ang, Papanikolaou, and Westerfield (2013), lists average intervals between trading and turnover for several asset classes. First, note that . . .
<table>
<thead>
<tr>
<th>Asset Class</th>
<th>Typical Time between Transactions</th>
<th>Annualized Turnover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Equities</td>
<td>Within seconds</td>
<td>Well over 100%</td>
</tr>
<tr>
<td>OTC (Pinksheet) Equities</td>
<td>Within a day, but many stocks over a week</td>
<td>Approx 35%</td>
</tr>
<tr>
<td>Corporate Bonds</td>
<td>Within a day</td>
<td>25–35%</td>
</tr>
<tr>
<td>Municipal Bonds</td>
<td>Approx 6 months, with 5% of muni bonds trading more infrequently than once per decade</td>
<td>Less than 10%</td>
</tr>
<tr>
<td>Private Equity</td>
<td>Funds last for 10 years; the median investment duration is 4 years; secondary trade before exit is relatively unusual</td>
<td>Less than 10%</td>
</tr>
<tr>
<td>Residential Housing</td>
<td>4–5 years, but ranges from months to decades</td>
<td>Approx 5%</td>
</tr>
<tr>
<td>Institutional Real Estate</td>
<td>8–11 years</td>
<td>Approx 7%</td>
</tr>
<tr>
<td>Institutional Infrastructure</td>
<td>50–60 years for initial commitment, some as long as 99 years</td>
<td>Negligible</td>
</tr>
<tr>
<td>Art</td>
<td>40–70 years</td>
<td>Less than 15%</td>
</tr>
</tbody>
</table>
(p.414) Most Asset Classes Are Illiquid

Except for “plain-vanilla” public equities and fixed income, most asset markets are characterized by long periods, sometimes decades, between trades, and they have very low turnover. Even among stocks and bonds, some subasset classes are highly illiquid. Equities trading in pink-sheet over-the-counter markets may go for a week or more without trading. The average municipal bond trades only twice per year, and the entire muni-bond market has an annual turnover of less than 10% (see also chapter 11). In real estate markets, the typical holding period is four to five years for single-family homes and eight to eleven years for institutional properties. Holding periods for institutional infrastructure can be fifty years or longer, and works of art sell every forty to seventy years, on average. Thus most asset markets are illiquid in the sense that they trade infrequently and turnover is low.

Illiquid Asset Markets Are Large

The illiquid asset classes are large and rival the public equity market in size. In 2012, the market capitalization of the NYSE and NASDAQ was approximately (p.415) $17 trillion. The estimated size of the U.S. residential real estate market is $16 trillion, and the direct institutional real estate market is $9 trillion. In fact, the traditional public, liquid markets of stocks and bonds are smaller than the total wealth held in illiquid assets.
Investors Hold Lots of Illiquid Assets

Illiquid assets dominate most investors’ portfolios. For individuals, illiquid assets represent 90% of their total wealth, which is mostly tied up in their house—and this is before counting the largest and least liquid component of individuals’ wealth, human capital (see chapter 5). There are high proportions of illiquid assets in rich investors’ portfolios, too. High net worth individuals in the United States allocate 10% of their portfolios to “treasure” assets like fine art and jewelry. This rises to 20% for high net worth individuals in other countries.7

The share of illiquid assets in institutional portfolios has increased dramatically over the past twenty years. The National Association of College and University Business Officers reported that, in 2011, the average endowment held a portfolio weight of more than 25% in alternative assets versus roughly 5% in the early 1990s. A similar trend is evident among pension funds. In 1995, they held less than 5% of their portfolios in illiquid alternatives, but today the figure is close to 20%.8

Liquidity Dries Up

Many normally liquid asset markets periodically become illiquid. During the 2008 to 2009 financial crisis, the market for commercial paper (or the money market)—usually very liquid—experienced “buyers’ strikes” by investors unwilling to trade at any price. This was not the first time that the money market had frozen: trading in commercial paper also ceased when the Penn Central railroad collapsed in 1970. In both cases, the money market needed to be resuscitated by the Federal Reserve, which stepped in to restore liquidity.

During the financial crisis, illiquidity also dried up in the repo market (which allows investors to short bonds), residential and commercial mortgage-backed securities, structured credit, and the auction rate security market (a market for floating rate municipal bonds; see chapter 11). The last example was one of the first markets to become illiquid at the onset of the financial crisis in 2008 and at the time of writing in 2013 is still frozen. This market is dead in its present form.

Illiquidity crises occur regularly because liquidity tends to dry up during periods of severe market distress. The Latin American debt crisis in the 1980s, the Asian emerging market
crisis in the 1990s, the Russian default crisis in 1998, and of course the financial crisis of 2008 to 2009 were all characterized (p.416) by sharply reduced liquidity, and in some cases liquidity completely evaporated in some markets. Major illiquidity crises have occurred at least once every ten years, most in tandem with large downturns in asset markets.

2.3. Summary
Illiquid asset classes as a whole are larger than the traditional liquid, public markets of stocks and bonds. Even normally liquid markets periodically become illiquid. Most investors’ wealth is tied up in illiquid assets. Thus asset owners must consider illiquidity risk in the construction of their portfolios. Doing this requires estimating risk-return trade-offs of illiquid assets, but measuring illiquid asset returns is not straightforward.

3. Illiquid Asset Reported Returns Are Not Returns
As Faust and Forst note in their memo to Harvard’s Council of Deans, the true illiquid asset losses were greater than the reported ones, which leads us to an important corollary. Reported illiquid asset returns are not returns. Three key biases cause people to overstate expected returns and understate the risk of illiquid assets:

1. Survivorship bias,
2. Infrequent sampling, and
3. Selection bias.

In illiquid asset markets, investors must be highly skeptical of reported returns.
3.1. Survivorship Bias

Survivorship bias results from the tendency of poorly performing funds to stop reporting. Many of these funds ultimately fail—but we only rarely count their failures. This makes true illiquid asset returns worse than the reported data.

Here’s an analogy: Suppose we wanted to test the hypothesis that smoking is bad for you. We’re going to run our tests only on a sample of smokers that have puffed cigarettes for at least twenty years and are in good health today. Lo and behold, we conclude that this select group of smokers has a slightly better mortality rate than the general population. Is this a valid conclusion? Of course not! We have taken a biased sample of smokers blessed with longevity who are, so far, invulnerable to the detrimental effects of tobacco. If you were to take up smoking today, what are the odds that you would end up in this lucky group twenty years later? Or would you die from emphysema (or heart disease, or lung cancer, etc.) before the experiment could be repeated in twenty years’ time?

Surviving funds in illiquid asset management are like those lucky, long-lived smokers. We observe the returns of surviving funds precisely because they are still around, and they are generally above average. All of the unlucky illiquid managers disappear and thus stop reporting returns. Of course, these nonsurvivors have below-average returns.9 Industry analysis of buy-out funds, venture capital funds, or [insert your favorite illiquid asset class] tends to encompass only firms that have survived over the period of the analysis. But do we know that the small venture capital firm we’re investing in today will be around ten years later? Existing firms and funds, by dint of being alive today, tend to have better-than-average track records. This produces reported returns of these illiquid assets that are too good to be true.

The only way to completely remove the effect of survivorship bias is to observe the entire population of funds. Unfortunately, in illiquid asset markets we never observe the full universe.

We can gauge the impact of survivorship bias with mutual funds, which are required to report their returns to the Securities and Exchange Commission because they fall under the 1940 Investment Act. This allows us to see the whole mutual fund universe, at least when the funds become
registered, and to compute the effect of survivorship bias. (I provide more details in chapter 16.) Survivorship bias knocks at least 1% to 2% off the estimates of expected returns of mutual funds if we fail to include dead funds in our sample. However, industry often bases its conclusion only on funds in existence at a given point in time. When we separately compare defunct and live funds, the survivorship effect can go above 4%. Take these as lower bounds for illiquid asset managers. Chapters 17 and 18, covering hedge funds and private equity, respectively, show that managers of these investment vehicles often further massage (or manipulate) returns because standardized disclosure is not required and the underlying asset values are not readily observable. In chapter 17, I show that the effect of survivorship and reporting biases for hedge funds is even larger than for mutual funds.

There are data biases other than survivorship bias: for funds specializing in very illiquid assets, reporting returns to database vendors is almost always voluntary. This introduces reporting biases. Survivorship bias results when your fund is in the database now and you stop reporting returns because you know your returns are going to be low. Reporting bias also occurs when you don’t start reporting your returns in the first place because your fund never achieves a sufficiently attractive track record.

(p.418) 3.2. Infrequent Trading

With infrequent trading, estimates of risk—volatilities, correlations, and betas—are too low when computed using reported returns.

To illustrate the effect of infrequent trading, consider Figure 13.2. Panel A plots prices of an asset that starts at $1. Each circle denotes an observation at the end (p.419) of each quarter. I produced the graphs in Figure 13.2 by simulation and deliberately chose one sample path where the prices have gone up and then down to mirror what happened to equities during the 2000s’ Lost Decade. The prices in Panel A appear to be drawn from a series that does not seem excessively volatile; the standard deviation of quarterly returns computed using the prices in Panel A is 0.23.
The true daily returns are plotted in Panel B of Figure 13.2. These are much more volatile than the ones in Panel B. Prices go below 0.7 and above 3.0 in Panel B with daily sampling, whereas the range of returns in Panel A is between 1.0 and 2.5 with quarterly sampling. The volatility of quarterly returns, computed from (overlapping) daily data in Panel B is 0.28, which is higher than the volatility of quarterly-sampled returns of 0.23 in Panel A.

For a full comparison, Panel C plots both the quarterly and daily sampled returns and just overlays Panels A and B in one picture. Infrequent sampling has caused the volatility estimate
using the quarterly sampled returns to be too low. The same effect also happens with betas and correlations—risk estimates are biased downward by infrequent sampling.11

\textbf{3.3. Unsmoothing Returns}
To account for the infrequent trading bias, we need to go from Panel A of Figure 13.2, which samples quarterly, to Figure B, which samples daily. That is, the quarterly observed returns are too smooth, and we need to tease out the true, noisier returns. This process is called *unsmoothing or de-smoothing*, and the first algorithms to do this were developed by David Geltner (1991), a noted professor of real estate at MIT, and Stephen Ross and Randall Zisler (1991). Ross is the same professor who developed multifactor models (see chapter 6) and Zisler is a real estate professional who started his career as an academic. Ross and Zisler’s work originally grew out of a series of reports written for Goldman Sachs in the late 1980s. This methodology has been extended in what is now an extensive literature.

Unsmoothing is a *filtering problem*. Filtering algorithms are normally used to separate signals from noise. When we’re driving on a freeway and talking on a cell phone, our phone call encounters interference—from highway overpasses and tall buildings—or the reception becomes patchy when we pass through an area without enough cell phone towers. Telecommunication engineers use clever algorithms to enhance the signal, which carries our voice, against all the static. The full transmission contains both the signal and noise, and so the true signal is less volatile than the full transmission. Thus standard filtering problems are designed to remove noise. The key difference is that unsmoothing *adds* noise back to the reported returns to uncover the true returns.

To illustrate the Geltner-Ross-Zisler unsmoothing process, denote the true return at the end of period t as r_t, which is unobservable, and the reported return as r^*_t, which is observable. Suppose the observable returns follow

\begin{equation}
 r^*_t = c + \phi r^-_{t-1} + \varepsilon_t
\end{equation}

where ϕ is the autocorrelation parameter and is less than one in absolute value. Equation 13.1 is an AR(1) process, where “AR” stands for autoregressive and the “1” denotes that it captures autocorrelation effects for one lag. Assuming the observed returns are functions of current and lagged true returns (this is called a *transfer function* or an *observation equation* in the parlance of engineers), we can use equation 13.1 to invert out the true returns. If the smoothing process...
only involves averaging returns for this period and the past period, then we can filter the observed returns to estimate the true returns, r_t, from observed returns, r_t^*, using:

\[(13.2)\]

\[r_t = \frac{1}{1-\phi} r_t^* - \frac{\phi}{1-\phi} r_{t-1}^*\]

Equation 13.2 unsmooths the observed returns. If our assumption on the transfer function is right, the observed returns implied by equation 13.2 should have zero autocorrelation. Thus, the filter takes an autocorrelated series of observed returns and produces true returns that are close to IID (or not forecastable). Note that the variance of the true returns is higher than the observed returns:

\[(13.3)\]

\[\text{var}(r_t) = \frac{1+\phi^2}{1-\phi^2} \text{var}(r_t^*) \geq \text{var}(r_t^*)\]

since $|\phi| < 1$, so we are adding variance to the observed returns to produce estimates of the true returns.

Another way to interpret the unsmoothing process in equations 13.1 and 13.2 is that it is equivalent to assuming that the smoothed, or reported, return follows:

\[(13.4)\]

\[r_t^* = (1-\phi) r_t + \phi r_{t-1}^*\]

and thus the unsmoothed return at time t, r_t, is a weighted average of the unsmoothed, or true, return at time t, r_t^*, and the lagged unsmoothed return in the previous period, r_{t-1}^*. Thus the smoothed returns only slowly update—they partly reflect what is happening in the true returns, but there are lags induced from the appraisal process.

The unsmoothing process has several important properties:

1. Unsmoothing affects only risk estimates and not expected returns.

 Intuitively, estimates of the mean require only the first and last price observation (with dividends take “total prices,” which count reinvested dividends). Smoothing spreads the shocks over several periods, but it still counts all the shocks. In Figure 13.2, we can see that the first and last observations are unchanged by...
infrequent sampling; thus unsmoothing changes only
the volatility estimates.

2. Unsmoothing has no effect if the observed returns
are uncorrelated.

In many cases, reported illiquid asset returns are
autocorrelated because illiquid asset values are
appraised. The appraisal process induces smoothing
because appraisers use, as they should, both the most
recent and comparable sales (which are transactions)
together with past appraised values (which are
estimated, or perceived, values). The artificial
smoothness from the appraisal process has pushed
many in real estate to develop pure transactions-based,
rather than appraisal-based indexes. Autocorrelation
also results from more (p.422) shady aspects of
subjective valuation procedures—the reluctance of
managers to mark to market in down markets.

In many cases, we expect the true illiquid asset returns
to be autocorrelated as well. Illiquid asset markets—
like real estate, private equity, timber plantations, and
infrastructure—are markets where information is not
available to all participants, information does not
spread rapidly, and capital cannot be immediately
deployed into new investments. Informationally
inefficient markets with slow-moving capital are
characterized by persistent returns.

3. Unsmoothing is an art.

The unsmoothing example in equations 13.1 and 13.2
uses the simplest possible autocorrelated process, an
AR(1), to describe reported returns. Many illiquid
assets have more than first-order lag effects. Real
estate, for example, has a well-known fourth-order lag
working with quarterly data arising from many
properties being reappraised only annually. A good
unsmoothing procedure takes a time-series model that
fits the reported return data well and then with a
general transfer function assumption, the filter for true
returns in equation 13.2 becomes a very complicated
function of present and past lagged observed returns.

Doing this properly requires good statistical skills. It
also requires underlying economic knowledge of the
structure of the illiquid market to interpret what is a
reasonable lag structure and to judge how much unsmoothing is required.

(p.423) Unsmoothed Real Estate Returns
To illustrate the effects of unsmoothing, Figure 13.3 plots direct real estate returns from the National Council of Real Estate Investment Fiduciaries (NCREIF), which constructs an institutional property index from data reported by its members. Because this is an appraisal index, NCREIF real estate returns are highly autocorrelated. From March, 1978 to December, 2011, the first-order autocorrelation of NCREIF returns is 0.78. The raw reported data is shown in the solid line. I graph unsmoothed returns in the squares applying the filter of equations 13.1 and 13.2. All returns are at the quarterly frequency.

Unsmoothing produces a dramatic effect. The minimum reported return during the real estate downturn in the early 1990s is –5.3% during the quarter ending December 1991. The corresponding unsmoothed return is –22.6%. During the financial crisis, NCREIF returns reached a low of –8.3% in December 2008. The unsmoothed return during this quarter is –36.3%. The volatility of the raw NCREIF returns is 2.25% per quarter, whereas the volatility of the unsmoothed returns is 6.26% per quarter. This approximates the volatility of stock returns, which is around 7.5% per quarter. Correlation (and hence beta) estimates are also affected by unsmoothing: the correlation of raw NCREIF returns with the S&P 500 is 9.2% and this rises to 15.8% once the unsmoothing correction is applied.

(p.424) 3.4. Selection Bias
Sample selection bias results from the tendency of returns only to be observed when underlying asset values are high.

Buildings tend to be sold when their values are high—otherwise, many sellers postpone sales until property values recover. This causes more transactions to be observed when the underlying real estate values are high.

In private equity, selection bias is acute. In buyout funds, companies are taken public only when stock values are high. Many venture capital investments are structured over multiple rounds. Better-performing companies tend to raise more money in more rounds. The venture capitalist tends to sell a small company, and the transaction is recorded, when the company’s value is high. Distressed companies are usually not formally liquidated, and these “zombie” companies are often left as shell companies. When observing old companies without recent transactions, it is not clear whether these companies are alive and well or whether they are zombies.

To illustrate the selection bias problem, consider Figure 13.4, which is adapted from Korteweg and Sorensen (2010). Panel A shows the full universe of returns of an illiquid asset marked by dots. These returns (on the y-axis) are plotted contemporaneous with market returns (on the x-axis). In the full universe, there is no alpha, and the intercept of the line summarizing the relationship between the illiquid asset and the market goes through the origin (this line is called the security market line (SML; see chapter 6). The slope of the SML is the beta of the illiquid asset and is a measure of risk.
Panel B illustrates the sample selection problem. Bad returns, which are shaded gray, are not observed in the databases—we record transactions only when prices are high. Now only the black dots are reported. An estimated SML fitted to these observed returns yields a positive alpha when the true alpha is zero. The slope of the fitted SML is flatter than the slope of the true SML in panel A, and hence we underestimate beta. When we compute the volatility of the observed returns, we only count those returns that are high, and so the volatility estimate is biased downward. Thus we overestimate expected return, and we underestimate risk as measured by beta and volatility.

The statistical methodology for addressing selection bias was developed by James Heckman (1979), who won the Nobel Prize in 2000 for inventing these and other econometric techniques. Studies that use models to correct for these biases do not take such an extreme view as Figure 13.4 they allow the threshold above which returns are observed to vary over time and depend on company or property-level characteristics. The model of risk is sometimes extended to multifactor models (p. 425) rather than just using the market portfolio as the sole risk factor.
The effect of selection bias can be enormous. Cochrane (2005) estimates an alpha for venture capital log returns of over 90% not taking into account selection bias, which reduces to −7% correcting for the bias. Korteweg and Sorensen (2005) estimate that expected returns for the same asset class are reduced downwards by 2% to 5% per month (arithmetic returns) taking into account selection bias. The effect of selection bias in real estate is smaller, perhaps because the underlying volatility of real estate returns is lower than private equity. Fisher et al. (2003) implement selection bias corrections for real estate. They estimate that average real estate returns reduce from 1.7% to 0.3% and standard deviation estimates increase by a factor of 1.5. The small means of real estate returns are due to their sample period of 1984 to 2001, which includes the real estate downturn (p. 426) in the early 1990s and in the early 2000s. They miss the bull market in real estate during the mid-2000s.

3.5. Summary

Treat reported illiquid asset returns very carefully. Survivors having above-average returns and infrequent observations, and the tendency of illiquid asset returns to be reported only when underlying valuations are high, will produce return estimates that are overly optimistic and risk estimates that are biased downward. Put simply, reported returns of illiquid assets are too good to be true.

4. Illiquidity Risk Premiums

Illiquidity risk premiums compensate investors for the inability to access capital immediately. They also compensate investors for the withdrawal of liquidity during illiquidity crises.

Harvesting Illiquidity Risk Premiums

There are four ways an asset owner can capture illiquidity premiums:

1. By setting a passive allocation to illiquid asset classes, like real estate;
2. By choosing securities within an asset class that are more illiquid, that is by engaging in liquidity security selection;
3. By acting as a market maker at the individual security level; and
4. By engaging in *dynamic strategies* at the aggregate portfolio level.

Economic theory states that there should be a premium for bearing illiquidity risk, although it can be small. In models where illiquidity risk has small or no effect on prices, illiquidity washes out across individuals. A particular individual may be affected by illiquidity—illiquidity can crimp his consumption or affect his asset holdings (as in the asset allocation model with illiquidity risk that I present below)—but other agents will not be constrained, or they trade at different times. Different agents share risk among themselves, which mutes the impact of illiquidity. Thus in equilibrium the effects of illiquidity can be negligible.

Whether the illiquidity risk premium is large or small is an empirical question.

4.1. Illiquidity Risk Premiums across Asset Classes

Figure 13.5 is from Antti Ilmanen’s (2011) wonderful book, *Expected Returns*, and plots average returns on illiquidity estimates. The average returns are computed from (reported) data over 1990 to 2009. The illiquidity estimates represent Ilmanen’s opinions. Some private equity investments are more liquid than certain hedge funds, and some infrastructure investments are much less liquid than private equity, so it is hard to pigeon-hole these asset classes in terms of illiquidity. Nevertheless, Figure 13.5 seems to suggest a positive relation between how illiquid an asset class is and its expected return. Figure 13.5 represents “conventional” views among most market participants that there is a reward to bearing illiquidity across asset classes.

This conventional view is flawed for the following reasons:

1. **Illiquidity biases.**

![Asset Class Returns vs Illiquidity](image)

Figure 13.5
As Section 3 shows, reported data on illiquid assets cannot be trusted. The various illiquidity biases—survivorship, sampling at infrequent intervals, and selection bias—result in the expected returns of illiquid asset classes being overstated using raw data.

2. Ignores risk.
Illiquid asset classes contain far more than just illiquidity risk. Adjusting for these risks makes illiquid asset classes far less compelling. Chapter 10 showed that the NCREIF real estate index (despite the artificial rosiness of its raw returns) is beaten by a standard 60% equity and 40% bond portfolio. Chapters 17 and 18 will show that the average hedge fund and private equity fund, respectively, provide zero expected excess returns. In particular, after adjusting for risk, most investors are better off investing in the S&P 500 than in a portfolio of private equity funds.

(p.428) 3. There is no “market index” for illiquid asset classes.
No investor receives the returns on illiquid indexes. An asset owner never receives the NCREIF return on a real estate portfolio, for example. The same is true for most hedge fund indexes and private equity indexes. In liquid public markets, large investors can receive index market returns and pay close to zero in fees. In contrast, NCREIF is not investable as it is impossible to buy all the underlying properties in that index. Since all asset owners own considerably fewer properties than the thousands included in NCREIF, they face far more idiosyncratic risk. While this large amount of idiosyncratic risk can boost returns in some cases, it can also lead to the opposite result. Returns to illiquid asset investing can be far below a reported index.

4. You cannot separate factor risk from manager skill.
Tradeable and cheap index funds in bond and stock markets allow investors to separate systematic returns (or factor returns; see chapter 7) from management prowess. In illiquid markets, no such separation is possible: investing in illiquid markets is always a bet on management talent. The agency issues in illiquid asset markets are first-order problems, and I discuss them in Part III of this book. Agency problems can, and often
do, overwhelm any advantages that an illiquidity risk premium may bring.

Taking into account data biases, the evidence for higher average returns as asset classes become more illiquid is decidedly mixed, as Ang, Goetzmann, and Schaefer (2011) detail. But while there do not seem to be significant illiquidity risk premiums across classes, there are large illiquidity risk premiums within asset classes.

4.2. Illiquidity Risk Premiums within Asset Classes

Within all the major asset classes, securities that are more illiquid have higher returns, on average, than their more liquid counterparts. These illiquidity premiums can be accessed by dynamic factor strategies which take long positions in illiquid assets and short positions in liquid ones. As illiquid assets become more liquid, or vice versa, the investor rebalances. (Chapter 14 discusses how to allocate to these and other factors.)

U.S. Treasuries

A well-known liquidity phenomenon in the U.S. Treasury market is the on-the-run/off-the-run bond spread. Newly auctioned Treasuries (which are “on the run”) are more liquid and have higher prices, and hence lower yields, than seasoned (p.429) Treasuries (which are “off the run”). The spread between these two types of bonds varies over time reflecting liquidity conditions in Treasury markets. (For more details, see chapter 9.)

There were pronounced illiquidity effects in Treasuries during the 2008 to 2009 financial crisis. Treasury bonds and notes are identical, except that the U.S. Treasury issues bonds with original maturities of twenty to thirty years and notes originally carry maturities of one to ten years. But after ten years, a Treasury bond originally carrying a twenty-year maturity is the same as a Treasury note. If the maturities are the same, whether this particular security is bond or a note should make no difference. During the financial crisis Treasury bond prices with the same maturity as Treasury notes had prices that were more than 5% lower—these are large illiquidity effects in one of the world’s most important and liquid markets.

Corporate Bonds
Corporate bonds that trade less frequently or have larger bid-ask spreads have higher returns. Chen, Lesmond, and Wei (2007) find that illiquidity risk explains 7% of the variation across yields of investment-grade bonds. Illiquidity accounts for 22% of the variation in junk bond yields; for these bonds, a one basis point rise in bid-ask spreads increases yield spreads by more than two basis points.26

Equities

A large literature finds that many illiquidity variables predict returns in equity markets, with less liquid stocks having higher returns.27 These variables include bid-ask spreads, volume, volume signed by whether trades are buyer or seller initiated, turnover, the ratio of absolute returns to dollar volume (commonly called the “Amihud measure” based on his paper of 2002), the price impact of large trades, informed trading measures (which gauge adverse, informed trading; see below), quote size and depth, the frequency of trades, how often there are “zero” returns (in more liquid markets returns will bounce up and down), and return autocorrelations (which are a measure of stale prices).28 These are all illiquidity characteristics, which are properties unique to an individual stock. There are (p.430) also illiquidity risk betas. These are covariances of stock returns with illiquidity measures, like market illiquidity or signed volume.

Estimates of illiquidity risk premiums in the literature range between 1% and 8% depending on which measure of illiquidity is used. However, Ben-Rephael, Kadan, and Wohl (2008) report that these equity illiquidity premiums have diminished considerably—for some illiquidity measures the risk premiums are now zero! In pink sheet stock markets, which are over-the-counter equity markets, Ang, Shtauber, and Tetlock (2013) find an illiquidity risk premium of almost 20% compared to about 1% for comparable listed equities.

There are higher returns to hedge funds that are more illiquid, in the sense that they place more restrictions on the withdrawal of capital (called lockups, see chapter 17) or for hedge funds whose returns fall when liquidity dries up.29 Franzoni, Nowak, and Phalippou (2012) report that there are significant illiquidity premiums in private equity funds—typically 3% (for further details, see chapter 18). In real estate, Liu and Qian (2012) construct illiquidity measures of
Illiquid Assets

price impact and search costs for U.S. office buildings. They find a 10% increase in these illiquidity measures leads to a 4% increase in expected returns.

Why Illiquidity Risk Premiums Manifest within but Not across Asset Classes

To my knowledge, we have yet to develop formal equilibrium models explaining the large illiquidity risk premiums within asset classes but not across asset classes.

Perhaps the reason is limited integration across asset classes. There are significant impediments to switching capital and investment strategies seamlessly even across liquid stock and bond markets. Investors put asset classes into different silos and rarely treat them consistently as a whole. This happens on both the sell-side, where fixed income, equity desks, and other divisions rarely talk with each other, and on the buy-side, where each asset class is managed by separate divisions. (Canada Pension Plan’s factor investing strategy is a notable exception to this, as I discuss in chapter 14.) The potential mispricing of illiquidity across asset classes could reflect institutional constraints, slow-moving capital, and limits to arbitrage.

On the other hand, perhaps asset class illiquidity risk premiums might be small because investors overpay for illiquid asset classes; they chase the illusion of higher returns and bid up the prices of these illiquid assets until the illiquidity premiums to go away. Lack of integrated asset class markets cause investors to make ill-informed decisions for illiquid asset classes. In contrast, within asset classes—especially the more liquid stock and bond markets—illiquidity-shy investors are willing to pay for the privilege to trade as soon as they desire. As investors compete within an asset class, they covet and pay up for liquidity.

4.3. Market Making

A market maker supplies liquidity by acting as an intermediary between buyers and sellers. Liquidity provision is costly. Market makers need capital to withstand a potential onslaught of buy or sell orders, and at any time they can be transacting with investors who have superior information. In compensation for these costs, market makers buy at low prices
and sell at prices around “fair value.” Investors transacting with the market maker pay the *bid–ask spread*.

In liquid stock and bond markets, market making is now synonymous with high frequency trading by investors who build massive computer infrastructure to submit buy and sell orders within fractions of a second. More than 70% of dollar trading volume on U.S. equity exchanges is believed due to high frequency traders. Many successful hedge funds specialize in high frequency trading (see chapter 17).

Many asset owners cannot collect illiquidity risk premiums by building high-frequency trading systems, nor would they wish to enter this business (directly or indirectly). But there is a way large asset owners can do a low-frequency version of market making.

Dimensional Funds Advisors (DFA) is a funds management company that started in 1981 by specializing in small-cap equities. DFA's strategies have deep roots in academic factor models, and its founders, David Booth and Rex Sinquefield, roped in the big guns of the finance literature, Fama, French, and others, in building the company. From the start, DFA positioned itself as a liquidity provider of small stocks, and market making was an integral part of its investment strategy. When other investors seek to urgently offload large amounts of small stocks, DFA takes the other side and buys at a discount. Similarly, DFA offers small-cap equities at a premium to investors who demand immediate liquidity.

Large asset owners, like sovereign wealth funds and large pension funds, are in a position to act as liquidity providers, especially in more illiquid markets. They can accept large blocks of bonds, shares, or even portfolios of property at discount and sell these large blocks at premiums. They can do this by calculating limits within their (benchmark tracking error) constraints on how much they are willing to transact. That is, they can provide liquidity in different securities up to a certain amount so that they do not stray too far from their benchmarks. Buyers and sellers will come to them as they develop reputations for providing liquidity.

(p.432) Secondary Markets for Private Equity and Hedge Funds
Exchanges for secondary transactions in hedge funds and private equity have sprung up, but these markets are still very thin. Many transactions do not take place on organized secondary market platforms.

There are two forms of secondary markets in private equity. First, in secondary (and tertiary) market buyout markets, private equity firms trade private companies with each other. These markets have blossomed: in 2005, secondary buyouts represented around 15% of all private equity buy-out deals. From the perspective of asset owners (limited partners [LPs]), this market provides no exit opportunities from the underlying private equity funds and is at worst a merry-go-round of private equity firms swapping companies in circular fashion. At best, more transactions at market prices (assuming there is no finagling between the transacting funds) allow asset owners to better value their illiquid investments. The LPs are still stuck in the fund, but they might receive some cash when a company in their fund’s portfolio is sold to another private equity firm.

Secondary markets for LPs, which allow them to exit from private equity funds, are much smaller and more opaque. Even industry participants acknowledge this market “still remains relatively immature ... and still represents a very small percentage of the primary market.” Bid-ask spreads in these transactions are enormous. As Cannon (2007) notes, the secondary market for LPs was dominated in the 1990s by distressed sellers. Specialized firms on the other side of these deals got discounts of 30% to 50%; there was a reason these firms were called “vultures.” In the 2000s, discounts fell to below 20% but shot up during the financial crisis. Harvard University found this out when it tried to disinvest in private equity funds during 2008 and faced discounts of 50%.

Discounts for hedge funds are much smaller than private equity. This reflects the fact that hedge funds investors can, in most cases, access capital at predetermined dates after lockups have expired and notice requirements have been satisfied (unless the hedge fund imposes gates). Reflecting this greater underlying liquidity, hedge fund discounts in secondary markets in 2007 and 2008 were around 6% to 8%. (A few hedge funds that are closed to new investors actually trade at premiums.)
The nascent secondary markets for private equity and hedge funds are tremendous opportunities for large asset owners to supply liquidity. Secondary private equity is like second-hand cars that are still brand new. When you drive a new car off the lot, it immediately depreciates by a quarter, even though it is exactly the same as a car sitting in the dealer’s inventory. Secondary private equity is still private equity, and you can get it a lot cheaper than direct from the dealer.

(p.433) Adverse Selection
A market maker faces a risk that a buyer has nonpublic information, and the stock is selling at a price that is too high or too low relative to true, fundamental value. A buyer knowing that the stock will increase in value will continue to buy and increase the price. In this case, the market maker has sold too early and too low. This is adverse selection. Glosten and Milgrom (1985) and Kyle (1985)—the papers that started the market-making microstructure literature—developed theories of how the bid–ask spread should be set to incorporate the effects of adverse selection. DFA provides some examples of how to counter adverse selection. To avoid being exploited, DFA trades with counterparties that fully disclose their information on stocks. At the same time, DFA itself operates in a trustworthy way by not front running or manipulating prices.39

4.4. Rebalancing
The last way an asset owner can supply liquidity is through dynamic portfolio strategies. This has a far larger impact on the asset owner’s total portfolio than liquidity security selection or market making because it is a top-down asset allocation decision (see chapter 14 for factor attribution).

Rebalancing is the simplest way to provide liquidity, as well as the foundation of all long-horizon strategies (see chapter 4). Rebalancing forces asset owners to buy at low prices when others want to sell. Conversely, rebalancing automatically sheds assets at high prices, transferring them to investors who want to buy at elevated levels. Since rebalancing is counter-cyclical, it supplies liquidity. Dynamic portfolio rules, especially those anchored by simple valuation rules (see chapters 4 and 14), extend this further—as long as they buy when others want to sell and vice versa. It is especially
important to rebalance illiquid asset holdings too, when given the chance (see also below).

Purists will argue that rebalancing is not strictly liquidity provision; rebalancing is an asset management strategy. Rebalancing, in fact, can only occur in the context of liquid markets. But prices exhibit large declines often because of blowouts in asymmetric information, or because funding costs rapidly increase so that many investors are forced to offload securities—some of the key elements giving rise to illiquidity listed at the start of Section 2. Brunnermeier (2009) argues that these effects played key roles in the meltdown during the financial crisis. In the opposite case, rebalancing makes available risky assets to new investors, potentially with lower risk aversions than existing clientele or those who chase past high returns, or to investors who load up on risky assets when prices are high because they have abundant access to leverage and they perceive asymmetric information is low. In this general framework, rebalancing provides liquidity.

(p.434) Large asset owners give up illiquidity premiums by sheepishly tracking standard indexes. When indexes change their constituents, asset owners demand liquidity as they are forced to follow these changes. Index inclusion and exclusion induce price effects of 3% to 5%, and these effects have become stronger in more recent data. Large asset owners should be collecting index reconstitution premiums instead of paying them. They can do this by using their own proprietary benchmarks. Candidate indexes could emphasize illiquidity security characteristics but more generally would be built around harvesting factor risk premiums (see chapter 14). Even an index without illiquidity tilts allows asset owners to harvest a liquidity premium collected from all the other investors forced to track standard indexes.

4.5. Summary

Of all the four ways to collect an illiquidity premium: (i) holding passive allocations to illiquid asset classes, (ii) holding less liquid securities within asset classes, (iii) market making at the individual security level, and (iv) dynamic rebalancing at the aggregate level; the last of these is simplest to implement and has the greatest impact on portfolio returns.

5. Portfolio Choice with Illiquid Assets
In deciding on how much of their portfolios to devote to illiquid assets, investors face many considerations specific to their own circumstances. Investors have different horizons. Illiquid markets don’t have tradeable indices, so investors have to find talented active portfolio managers. Then they face agency issues and evaluating and monitoring portfolio managers requires skill. Thus the premium for bearing illiquidity risk might be individual-specific. Computing these illiquidity premiums requires asset allocation models with liquid and illiquid assets. These models also prescribe an optimal amount of illiquid assets to hold.

Practitioners generally use one-period investment models—usually the restrictive Markowitz (1952) mean-variance model with ad hoc adjustments (yes, most of the industry is still using models from the 1950s; see chapter 3)—which are inappropriate for illiquid asset investing. The fact that you cannot trade an illiquid asset now but will do so in the future makes illiquid asset investing a dynamic, long-horizon problem. There are two important aspects of illiquidity—large transaction costs and long times between trading—that have been captured in portfolio choice models with illiquid assets.41

5.1. Asset Allocation with Transactions Costs

George Constantinides (1986) was the first to develop an asset allocation model where the investor had to pay transaction costs. Selling $100 of equities, for example, results in a final position of $90 with 10% transactions costs. Not surprisingly, the investor trades infrequently—to save on transactions costs. Constantinides proved that the optimal strategy is to trade whenever risky asset positions hit upper or lower bounds. Within these bounds is an interval of no trading. The no-trading band straddles the optimal asset allocation from a model that assumes you can continuously trade without frictions (the Merton 1971 model; see chapter 4).42

The no-trade interval is a function of the size of the transactions costs and the volatility of the risky asset. Constantinides estimates that for transactions costs of 10%, there are no-trade intervals greater than 25% around an optimal holding of 25% for a risky asset with a 35% volatility. (I bet Harvard wished it could have received just a 10% discount when it tried to sell its private equity investments in 2008.) That is, the asset owner would not trade between (0%,
50%)—indeed, very large fluctuations in the illiquid asset position. Illiquid asset investors should expect to rebalance very infrequently.

Constantinides’ model can be used to compute an illiquidity risk premium, defined as the expected return of an illiquid asset required to bring the investor to the same level of utility as in a frictionless setting. This is the risk premium the investor demands to bear the transactions costs and is a certainty equivalent calculation (see chapter 2). For transaction costs of 15% or more, the required risk premium exceeds 5%. Compare this value with (the close to) zero additional excess returns, on average, of the illiquid asset classes in data.

A major shortcoming of the transaction costs models is that they assume trade is always possible by paying a cost. This is not true for private equity, real estate, timber, or infrastructure. Over a short horizon, there may be no opportunity to find a buyer. Even if a counterparty can be found, you need to wait for due diligence and legal transfer to be completed and then the counterparty can get cold feet. Many liquid assets also experienced liquidity freezes during the financial crisis where no trading—at any price—was possible because no buyers could be found.

5.2. Asset Allocation with Infrequent Trading

In Ang, Papanikolaou, and Westerfield (2013), I develop an asset allocation model in which the investor can transact illiquid assets only at randomly occurring liquidity events. This notion of illiquidity is that usually illiquid assets are just that—illiquid and cannot be traded. But when the liquidity event arrives, investors can trade.

I model the arrival of liquidity events by a Poisson arrival process with intensity λ. The interval between liquidity events is 1/λ. For real estate or private equity, intervals between trading would occur every ten years or so, so λ = 1/10. As λ increases to infinity, the opportunities to rebalance become more and more frequent and in the limit approach the standard Merton (1981) model where trading occurs continuously. Thus λ indexes a range of illiquidity outcomes.
Poisson arrival events have been used to model search-based frictions since Peter Diamond (1982), who won his Nobel Prize in 2010. The following year, he was nominated to serve on the Federal Reserve Board of Governors, but Republican opposition blocked his confirmation.

Illiquidity risk causes the investor to behave in a more risk-averse fashion toward both liquid and illiquid assets. Illiquidity risk induces time-varying, endogenous risk aversion. Harvard discovered in 2008 that although it is wealthy, it cannot “eat” illiquid assets. Illiquid wealth and liquid wealth are not the same; agents can only consume liquid wealth. Thus the solvency ratio of illiquid to liquid wealth affects investors’ portfolio decisions and payout rules—it becomes a state variable that drives investors’ effective risk aversion.

The takeaways from the Ang, Papanikolaou and Westerfield model are:

Illiquidity Markedly Reduces Optimal Holdings

Start with the bottom line in Panel A of Table 13.6, which reports a baseline calibration where the investor holds 59% in a risky asset that can always be traded. This weight is close to the standard 60% equity allocation held by many institutions. As we go up the rows, the asset becomes more illiquid. If the risky asset can be traded on average every six months, which is the second to last line, the optimal holding of the illiquid asset contingent on the arrival of the liquidity event is 44%. When the average interval between trades is five years, the optimal allocation is 11%. For ten years, this reduces to 5%. Illiquidity risk has a huge effect on portfolio choice.

Table 13.6

<table>
<thead>
<tr>
<th>Panel A</th>
<th>Optimal Rebalance Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Time Between Liquidity Events (or Average Turnover)</td>
<td></td>
</tr>
<tr>
<td>10 Years</td>
<td>0.05</td>
</tr>
<tr>
<td>5 Years</td>
<td>0.11</td>
</tr>
<tr>
<td>2 Years</td>
<td>0.24</td>
</tr>
<tr>
<td>1 Year</td>
<td>0.37</td>
</tr>
<tr>
<td>½ Year</td>
<td>0.44</td>
</tr>
</tbody>
</table>
Panel A

<table>
<thead>
<tr>
<th>Average Time Between Liquidity Events (or Average Turnover)</th>
<th>Optimal Rebalance Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Trading</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Panel B

<table>
<thead>
<tr>
<th>Average Time Between Liquidity Events (or Average Turnover)</th>
<th>Illiquidity Risk Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Years</td>
<td>6.0%</td>
</tr>
<tr>
<td>5 Years</td>
<td>4.3%</td>
</tr>
<tr>
<td>2 Years</td>
<td>2.0%</td>
</tr>
<tr>
<td>1 Year</td>
<td>0.9%</td>
</tr>
<tr>
<td>½ Year</td>
<td>0.7%</td>
</tr>
<tr>
<td>Continuous Trading</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Rebalance Illiquid Assets to Positions Below the Long-Run Average Holding

In the presence of infrequent trading, illiquid asset wealth can vary substantially and is right-skewed. Suppose the optimal holding of illiquid assets is 0.2 when the liquidity event arrives. The investor could easily expect illiquid holdings to vary from 0.1 to 0.35, say, during nonrebalancing periods. Because of the right-skew, the average holding of the illiquid asset is 0.25, say, and is greater than the optimal rebalanced holding. The optimal trading point of illiquid assets is lower than the long-run average holding.

Consume Less with Illiquid Assets

Payouts, or consumption rates, are lower in the presence of illiquid assets than when only comparable liquid assets are held by the investor. The investor cannot offset the risk of illiquid assets declining when these assets cannot be traded. This is an *unhedgeable* source of risk. The investor offsets that risk by eating less.
There Are No Illiquidity “Arbitrages”
In a mean-variance model, two assets with different Sharpe ratios and perfect correlations produce positions of plus or minus infinity. This is a well-known bane of mean-variance models, and professionals employ lots of ad hoc fixes, and arbitrary constraints, to prevent this from happening. This does not happen when one asset is illiquid—there is no arbitrage. Investors do not load up on illiquid assets because these assets have illiquidity risk and cannot be continuously traded to construct an “arbitrage.”

Investors Must Demand High Illiquidity Hurdle Rates
How much does an investor need to be compensated for illiquidity? In Panel B of Table 13.6, I compute premiums on an illiquid asset required by an investor to bear illiquidity risk. Let’s define the illiquidity premium, or hurdle rate, as a certainty equivalent (see chapter 2). Suppose an investor holds two liquid assets and replaces one asset with another that is identical except for being illiquid. The illiquidity premium is the increase in the expected return of the illiquid asset so that the investor has the same utility as the case when all assets are liquid.

When liquidity events arrive every six months, on average, an investor should demand an extra 70 basis points. (Some hedge funds have lockups around this horizon.) When the illiquid asset can be traded once a year, on average, the illiquidity premium is approximately 1%. When you need to wait ten years, on average, to exit an investment, you should demand a 6% illiquidity premium. That is, investors should insist that private equity funds generate returns 6% greater than public markets to compensate for illiquidity. As Section 3 discusses, most illiquid assets are not generating excess returns above these hurdle rates (see also chapter 11).

The Ang, Papanikolaou, and Westerfield (2013) model is highly stylized. Given the other issues the model misses, like agency conflicts of interest (see chapter 15), cash flow management issues of capital calls and distributions, and asset–liability mismatches, the true illiquidity hurdle rates are even higher than those reported in Table 13.6.

5.3. Summary
Portfolio choice models with illiquid assets recommend holding only modest amounts of illiquid assets. Investors should demand high illiquidity risk premiums.

6. Liquidating Harvard Redux

6.1. The Case for Illiquid Asset Investing

Large, long-term investors often cite their large amounts of capital and their long horizons as rationales for investing in illiquid assets. Size and patience are necessary but not sufficient conditions for illiquid asset investing; these conditions simply aren’t adequate justifications in themselves. Since illiquid asset classes do not offer high risk-adjusted returns, the case for passively them is not compelling. Illiquid investing also poses huge agency problems; asset owners, for example, find it tough to monitor external managers. Many institutions face “fiefdom risk” as illiquid assets are run as separate empires within an organization, detrimentally affecting how the aggregate portfolio is allocated.

In addition, investors in illiquid markets face high idiosyncratic risk because there is no “market” portfolio. It is exactly this large idiosyncratic risk, however, that is the most compelling reason for investing in illiquid assets.

Suppose you are a skilled investor (assume you have true alpha; see chapter 10) and have a choice between investing in (i) a market where prices quickly reflect new information, almost everyone sees the same information, and news gets spread around very quickly, or (ii) a market where information is hard to analyze and even harder to procure, only a select few have good information, and news takes a long time to reach everyone. Obviously you pick (ii). This, in a nutshell, is the Swensen (2009) justification for choosing illiquid assets. The argument is not that illiquid asset classes have higher risk-adjusted returns. Empirical evidence suggests they don’t.

Investing in illiquid assets allows an investor to transfer idiosyncratic risk from liquid equity and bond markets, which are largely efficient, to markets where there are large information asymmetries, transactions costs are punishing, and the cross-sections of alpha opportunities are extremely disperse. These are the markets, in other words, where you can make a killing!
The Swensen case crucially relies on one word: “skilled.” Whereas skilled investors can find, evaluate, and monitor these illiquid investment opportunities, assuming they have the resources to take advantage of them, unskilled investors get taken to the cleaners. If you are unskilled, you lose. Harvard, Yale, Stanford, MIT, and a few other select endowments have the ability to select superior managers in illiquid markets because of their size, their relationships, and their commitment to support these managers through long investment cycles. What about the others? An endowment specialist says, “It’s a horror show. [Performance has] been flat to even negative. The strong get stronger and the weak get stuck with non-top quartile managers and mediocre returns and high fees.”44
6.2. Investment Advice for Endowments

Thomas Gilbert and Christopher Hrdlicka at the University of Washington are probably the world’s only endowment management theorists. In a 2012 paper, they provocatively argue that the optimal allocation policy for successful universities is to hold large amounts of fixed income, not risky assets, and by extension not illiquid risky assets.

Gilbert and Hrdlicka model universities as creators of “social dividends,” which are research and teaching. Universities can invest internally, in research and teaching projects, or they can invest externally through the endowment. If the endowment is taking on external risk—via equities, for example—this signals that the university does not have enough good internal risky projects generating social dividends. If the endowment is invested in safe assets, through bonds, the university takes on risk through internal research and teaching projects. Gilbert and Hrdlicka argue that a university endowment’s large investment in risky assets is a sign that it does not have enough fruitful research and teaching assignments!

Harvard, with its large endowment heavily invested in risky illiquid assets, would take issue with Gilbert and Hrdlicka. An endowment allows a university to be more independent, rather than depend entirely on grants from government or private foundations. As Dershowitz argues, the endowment could be used as a rainy day account to be tapped precisely during times like 2008. Harvard’s endowment has historically yielded a predictable stream of cash for operating budgets, but 2008 blew this predictability away. Harvard claims its endowment allows for future generations to share in its riches, saying, “Although their specific uses vary, endowment funds have a common purpose: to support activities not just for one year, or even one generation, but in perpetuity.”45 The price of education, however, has been rising in real terms (see chapter 11), and if education is costlier in the future than in the present, being stingy on research and teaching now makes no sense because it substitutes a more expensive good in the future for a cheaper one today.46

Henry Hansmann, a professor at Yale Law School, describes large private universities as “institutions whose business is to run large pools of investment assets. . . . They run educational institutions on the side, that can expand and contract to act as
buffers for investment pools." He contends that a large part of why universities like large endowments is prestige, pursued as its own objective. Journalist Kevin Carey puts it another way, echoing the cadences of the Book of Common Prayer when he says that large endowments per se are "aspiration without limit, accumulation without end."

6.3. Liquidate Harvard?
Did Harvard generate excess returns, or an illiquidity risk premium, from its large investments in illiquid, alternative assets? Yes. Harvard could extract value from illiquid asset investing not because illiquid asset classes have a large risk premium but because it is a skillful investor. And it is one of the few investors able to do so.

(p.441) But this didn’t help Harvard solve its cash crunch. The worst failing of Harvard was in basic asset-liability management. Even without using the asset allocation models with illiquidity risk or the advice given by Gilbert and Hrdlicka, Harvard should have recognized that its assets did not match its liabilities. In technical terms the duration of its liabilities was shorter than the duration of its assets.

Harvard faced five choices:

1. Liquidate a portion of the endowment.
 But a lot of the endowment is illiquid and cannot be sold.
2. Cut expenses.
 Universities are like government bureaucracies: big, bloated, and inefficient. You can hardly fire anyone. So there is a limit to how much can be cut.
3. Increase donations.
 It’s embarrassing to ask for funds to replace those lost as a result of mismanagement.
4. Increase other revenue.
 Harvard could rescind its need-blind financial-aid policy. But it turns out this doesn’t save much money.
5. Borrow.

Harvard did (5). It issued $2.5 billion in bonds and more than doubled its leverage ratio between 2008 and 2009. It did try to cut expenses and deferred its Allston campus expansion. Was the endowment a rainy day fund Joseph could use to save his family and all of Egypt, as suggested by Dershowitz? No.
Harvard actually *reduced* its payout ratio in 2009, preferring to keep as much of the endowment intact as it could.\(^4\)\(^9\) Maybe Hansmann is right in suggesting that prestige maximization is the driving motivation in endowment management. After all, everyone likes to be well-endowed.

Notes:

\(^1\) This is based on “Liquidating Harvard,” Columbia CaseWorks ID #100312.

\(^5\) The lemons market was first described by George Akerlof (1970), who was awarded the Nobel Prize in 2001.

\(^6\) See Ang, Papanikolaou, and Westerfield (2013) for additional references behind the numbers in Table 13.1 and other references in this section.

\(^8\) See Global Pension Asset Study, Towers Watson, 2011.

\(^9\) Jorion and Goetzmann (1999) argue that survivorship bias partly explains the high equity premium (see chapter 8): Countries where we have long histories of equity returns are, by definition, those countries where equity investments have prospered.

\(^10\) See Ang, Rhodes-Kropf and Zhao (2008).

\(^11\) See Geltner (1993) and Graff and Young (1996) for infrequent observation bias on the effect of betas and correlations, respectively. Geltner estimates that betas are understated by a factor of 0.5 for real estate returns. This is not a “small sample” problem, which goes away when our
sample becomes very large; it is a “population” problem as the next section explains.

(12) Technically taking means of both the right and left sides in equation 13.2 results in the same means in large samples.

(13) This literature includes both repeat-sales methodologies (see Goetzmann (1992)) and constructing indexes using only transactions (see Gatzlaff and Geltner (1998) and Fisher, Geltner, and Pollakowski (2007)). Some of these methods adjust for the different characteristics of individual homes in creating these indices, like whether an apartment or a house is for sale, whether it is close to the water or far, or whether the house has two stories or one. These are called hedonic adjustments. These methods have been applied to create indexes in other illiquid markets, like art (Goetzmann (1993) and Moses and Mei (2002)), stamps (Dimson and Spænjers (2011)), and wine (Krasker (1979) and Masset and Weisskopf (2010)). The aggregation process in constructing indexes of illiquid asset returns induces further smoothing. Indexes combine many individual indications of value, either market transactions or appraised values, and typically the values are appraised at different points throughout the year. Note that if $\phi = 0$, then equations (2) and (3) coincide and unsmoothed returns are exactly the same as reported returns. Figure 13.2, which shows the effects of infrequent observations, is produced with a year-on-year autocorrelation of 0.4.

(14) When the true returns are autocorrelated, the horizon matters in stating volatilities, correlations, and Sharpe ratios. From point 1, the means are unaffected. See Lo (2002) for formulas to convert the risk measures for different horizons.

(16) This is noted in the seminal Geltner (1991) and Ross and Zisler (1991) papers.

(17) We want an ARMA(p, q) model, which captures the effect of p lagged autocorrelated terms (the “AR” effect for p lags) and where innovations to those returns in past periods continue to have an effect on present returns. The latter are referred to as moving average terms (the “MA” effects for q lags). Both Geltner (1991) and Ross and Zisler (1991) consider...

(18) Unsmoothing corrections produce similar effects in other illiquid markets. Campbell (2008), for example, estimates that unsmoothing increases the volatility of art market returns from 6.5% to 11.5%.

(19) See also Cochrane (2005) for selection bias models applied to venture capital and Fisher et al. (2003) for real estate. Korteweg, Kräussl, and Verwijmeren (2012) find that correcting for selection bias decreases the Sharpe ratio of art from 0.4 to 0.1.

(20) This large literature begins with a seminal contribution by Demsetz (1968). See summary articles by Hasbrouck (2007) and Vayanos and Wang (2012).

(21) For models of this kind, see Constantinides (1986), Vayanos (1998), Gârleanu (2009), and Buss, Uppal, and Vilkov (2012). In contrast, Lo, Mamaysky, and Wang (2004) and Longstaff (2009), among others, argue that the illiquidity premium should be large.

(22) Nevertheless, there are common components in illiquidity conditions across asset classes: when U.S. Treasury bond markets are illiquid, for example, many hedge funds tend to do poorly. See, for example, Hu, Pan, and Wang (2012).

(23) The on-the-run bonds are more expensive because they can be used as collateral for borrowing funds in the repo market. This is called “specialness.” See Duffie (1996).

(27) See the summary article by Amihud, Mendelson, and Pedersen (2005).
(28) Sorting stocks on all these variables results in spreads in average returns. But some of these illiquidity measures produce spreads in expected returns opposite to an illiquidity risk premium. Stocks with higher than average (normalized) volume, for example, tend to have lower future returns as shown by Gervais, Kaniel, and Mingelgrin (2001).

(29) See Aragon (2007) and Sadka (2010), respectively.

(31) See Merton (1987), Duffie (2010), and Shleifer and Vishny (1997), respectively.

(33) See Zhang (2010).

(35) An academic study of this market is Kleymenova, Talmor, and Vasvari (2012).

(36) Report of the Committee on Capital Markets Regulation, 2006,

(37) From the introduction to Luytens (2008) written by Andrew Sealey and Campbell Luytens.

(38) See Ramadorai (2012).

(40) See chapter 15 and the literature on index reconstitution effects summarized by Ang, Goetzmann, and Schaeffer (2011).

(41) Parts of this are based on Ang (2011) and Ang and Sorensen (2012).

(42) Chapter 4 discusses extensions of Constantinides (1986) to double bands, contingent bands, and rebalancing to the edge or center of the bands.
For some illiquid assets, investors may not be even willing to transact immediately for one cent; some investments do not have liability limited at zero. For example, on June 30, 2008, a real estate investment by CalPERS was valued at negative $300 million! See Corkery, M., C. Karmin, R. L. Rundle, and J. S. Lublin, “Risky, Ill-Timed Land Deals Hit CalPERS,” *Wall Street Journal*, Dec. 17, 2008.

Brown et al. (2013) show that most universities do the same thing: they hoard endowments when bad times come.