TRƯỜNG ĐẠI HỌC VĂN LANG GHI TÊN ĐƠN VỊ CHỦ QUẢN MÔN HỌC

ĐỀ THI, ĐÁP ÁN/RUBRIC VÀ THANG ĐIỂM THI KẾT THÚC HỌC PHẦN Học kỳ 2, năm học 2024-2025

I. Thông tin chung

Tên học phần:	ARCHITECTURAL PHYSICS 01						
Mã học phần:	Mã học phần: 242_72ARPH40423_01			Số tí		n chỉ:	03
Mã nhóm lớp học phần: 72K28KTRU01							
Hình thức thi: Tự luận			Thời gian làm bài: 60		phút		
☐ Đề thi có sử dụng phần mềm riêng G		GV ghi cụ thể tên phần mềm:					
Thí sinh được tham khảo tài liệu:			□С	Có 🗵 Không		Thông	

Giảng viên nộp đề thi, đáp án bao gồm cả Lần 1 và Lần 2 trước ngày 06/04/2025.

Cách thức nộp bài (Giảng viên ghi rõ yêu cầu):

- SV gõ trực tiếp trên khung trả lời của hệ thống thi;
- SV được dung các biểu đồ trong môn học, KHÔNG được dùng bất cứ tài liệu nào khác ngoài biểu đồ.

1. Format đề thi

- Font: Times New Roman
- Size: 13
- Quy ước đặt tên file đề thi:
- + Mã học phần_Tên học phần_Mã nhóm học phần_TUL_De 1
- + Mã học phần_Tên học phần_Mã nhóm học phần_TUL_De 1_Mã đề (*Nếu sử dụng nhiều mã đề cho 1 lần thi*).

2. Giao nhận đề thi

Sau khi kiểm duyệt đề thi, đáp án/rubric. **Trưởng Khoa/Bộ môn** gửi đề thi, đáp án/rubric về Trung tâm Khảo thí qua email: khaothivanlang@gmail.com bao gồm file word và file pdf (nén lại và đặt mật khẩu file nén) và nhắn tin + họ tên người gửi qua số điện thoại **0918.01.03.09** (Phan Nhất Linh).

II. Các yêu cầu của đề thi nhằm đáp ứng CLO

(Phần này phải phối hợp với thông tin từ đề cương chi tiết của học phần)

						Tán da
Ký hiệu CLO	Nội dung CLO	Hình thức đánh giá	Trọng số CLO trong thành phần đánh giá (%)	Câu hỏi thi số	Điểm số tối đa	Lấy dữ liệu đo lường mức đạt PLO/PI
(1)	(2)	(3)	(4)	(5)	(6)	(7)
CLO 1	Understand the concepts of Ventilation and Climatology, thermal engineering, concepts and physical meanings of quantities in finding design solutions, calculating Natural ventilation and Structural shading	End-of- term exam - essay format	20%	Q1, and Q2	2	
CLO 2	Students understand and apply specialized knowledge about climatic conditions, natural ventilation as well as artificial ventilation into architectural design documents.	End-of- term exam - essay format	20%	Q1, and Q2	2	
CLO 3	Students have skills in calculating, choosing design solutions, shading structures, moisture control and heat insulation for buildings, as well as the most suitable natural	End-of- term exam - essay format	20%	Q1, and Q2	2	

	ventilation and artificial ventilation. Students initially					
CLO 5	develop their interest in the profession, working independently, performing indepth research, improving their expertise and adapting to practical conditions.	End-of- term exam - essay format	30%	Q1, and Q2	3	

III. Nội dung câu hỏi thi

Câu hỏi 1/ Question 01 (06 điểm): Using the ID chart, find the remaining values (of the 05 basic values: I, d, t°C, ϕ and Ph) based on the given values; then determine the parameters of the mixed air state point 'C' according to the accompanying data (given and above).

01. Senario 01: A: I = 18 (Kcal/kg), d = 16 (g/kg), $G_A = 1200$ kg,

B: $\varphi = 75\%$, $t^{\circ}C = 32^{\circ}C$, $G_B = 4800 \text{ kg}$

02. Senario 02: A: $\varphi = 60\%$, I = 20 (Kcal/kg), $G_A = 4000$ kg

B: d = 14 (g/kg), $t^{\circ}C = 25^{\circ}C$, $G_B = 2000$ kg

Câu hỏi 2/ Question 02 (04 điểm):

Propose architectural solutions suitable for promoting natural ventilation in the building and explain your answer?

ĐÁP ÁP VÀ THANG ĐIỂM

Phần câu hỏi	Nội dung đáp án	Thang điểm	Ghi chú
I. Tự luận			
Câu 1/		6.0	
Question 1			
Scenario 1	A: I = 18 (Kcal/kg), d = 16 (g/kg), G _A = 1200 kg => t°C= 34 °C φ = 47 % Ph = 18 mmHg B: φ = 75%, t°C = 32°C, G _B = 4800 kg	3.0	1.0 for finding A's remaining values
	=> I = 21.3 (Kcal/kg) d = 22 (g/kg) Ph = 25 (mmHg) G _B /G _A = n = 4800/1200 = 4 => n+1 = 4+1 = 5. So on the line segment AB divided equally		1.0 for finding B's remaining values

	into 5 equal parts, point C is 1 unit away from B. => Ic = 20.6 (Kcal/kg), dc = 21 (g/kg) t°C = 32 °C φ = 70 % Ph = 24 mmHg		1.0 for finding C and its parameters
Scenario 2	A: $\varphi = 60\%$, $I = 20$ (Kcal/kg), $G_A = 4000$ kg => $t^{\circ}C = 33.5 ^{\circ}C$ d = 19.7 g/kg Ph = 22.5 mmHg B: $d = 14$ (g/kg), $t^{\circ}C = 25^{\circ}C$, $G_B = 2000$ kg => $I = 14.5$ (Kcal/kg) $\varphi = 70 \%$ Ph = 16 (mmHg) $G_A/G_B = n = 4000/2000 = 2 => n+1 = 2+1 = 3$. So on the line segment AB divided equally into 3 equal parts, point C is 1 unit away from A. => $I_C = 16.5$ (Kcal/kg), $I_C = 16.5$ (Kcal/kg), $I_C = 16.5$ (Kcal/kg), $I_C = 16.5$ (Kcal/kg)	3.0	1.0 for finding A's remaining values 1.0 for finding B's remaining values 1.0 for finding C and its parameters
Câu 2/ Question 2		4.0	
	Some suitable architectural solutions to optimize natural ventilation for buildings: 1. Designing doors and windows appropriately: - Arranging doors opposite each other to create cross-ventilation. - Utilizing the size, opening direction, and degree of door/window to create pressure differentials, thereby generating airflow into the indoor. 2. Using skylights, courtyards, and atriums: - Designing skylights to induce natural ventilation, especially in large or multi-story buildings. - Using atriums to create a "chimney effect," helping to draw hot air upward and bring cool air inside. - Designing courtyards (atrium) or open spaces between building blocks to create convective airflow. 3. Creating open and flexible spaces:	4.0	1.0 for correctly pointing out the answers 3.0 for providing a deeper explanation of that answers.

- Minimizing mixed solid partitions, instead		
using flexible partitions or open spaces to		
facilitate airflow.		
4. Leveraging the prevailing wind direction:		
- Analyzing the main wind direction of the		
area and design the building to maximize		
natural airflow.		
5. Solutions for layout, morphology, and		
material use:		
- Using sloped roofs or ventilated roofs with		
gaps to create air convection, helping to expel		
hot air and draw in cool air.		
- Selecting materials with good insulation		
properties to reduce indoor temperatures and		
enhance natural ventilation efficiency.		
- Corridors and walkways: Design wide		
corridors and walkways with windows and		
doors to create natural airflow.		
- Rooftops and balconies: Utilize rooftops		
and balconies as open spaces to optimize		
natural ventilation and create air circulation.		
- Using sunshades to direct airflow into the		
building while reducing heat radiation from		
the sun.		
6. Planting greenery, creating landscapes,		
and incorporating water features around the		
building:		
- Arranging greenery around the building		
to cool the air and create natural airflow.		
- Making landscape and creating water		
bodies can be strategically used to cool the air		
before having it enters the interior		
D.2 .2	10.0	
Điểm tổng	10.0	

Người duyệt đề

TP. Hồ Chí Minh, ngày 20 tháng 03. năm 2025 **Giảng viên ra đề**

ThS.KTS. TRỊNH MẠNH QUYỀN