
Chapter 5

Trend and Seasonality

Consider a time-series situation:

yt = x′tβ + εt, t = 1, ..., T

εt ∼ iid N(0, σ2).

Note that the disturbance density is assumed Gaussian for simplicity (for

example in calculating density forecasts), but we could of course relax that

assumption just as we did for cross-section forecasts.

5.1 The Forecasting the Right-Hand-Side Variables (FRV)

Problem

In the future period of interest, T + h, it must be true that

yT+h = x′T+hβ + εT+h.

Under quadratic loss the conditional mean forecast is optimal, and we imme-

diately have

E(yT+h|xT+h) = x′T+hβ.

Suppose for the moment that we know the regression parameters. Forming

the conditional expectation still requires knowing xT+h, which we don’t, so it
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112 CHAPTER 5. TREND AND SEASONALITY

seems that we’re stuck.

We call this the “forecasting-the-right-hand-side-variables (FRV)

problem.” It is a problem, but it’s not nearly as damaging as you might

fear.

• We can abandon time series and only work in cross sections, where the

FRV problem doesn’t exist! But of course that’s throwing out the baby

with the bathwater and hardly a useful or serious prescription.

• We can move to scenario forecasts. Time-series scenario forecasts

(also called stress tests, or contingency analyses), help us answer the

“what if” questions that often arise. As with cross-section prediction,

there is no FRV problem, and for precisely the same reason. For any

given “scenario” x∗, we immediately have

E(yT+h|xT+h = x∗) = x∗′T+hβ.

However, notwithstanding the occasional usefulness of scenario analyses,

we generally don’t want to make forecasts of y conditional upon assump-

tions about x; rather, we just simply want the best possible forecast of

y.

• We can work with models involving lagged rather than current x, that is,

models that relate yt to xt−h rather than relating yt to xt. This sounds

ad hoc, but it’s actually not, and we will have much more to say about

it later.

• We can work with models for which we actually do know how to fore-

cast x. In some important cases, the FRV problem doesn’t arise at all,

because the regressors are perfectly deterministic, so we know exactly

what they’ll be at any future time. The trend and seasonality models

that we now discuss are leading examples.
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5.2 Deterministic Trend

Time series fluctuate over time, and we often mentally allocate those fluctu-

ations to unobserved underlying components, such as trends, seasonals, and

cycles. In this section we focus on trends.1 More precisely, in our general

unobserved-components model,

yt = Tt + St + Ct + εt,

we now include only trend and noise,

yt = Tt + εt.

Trend is obviously pervasive. It involves slow, long-run, evolution in the

variables that we want to model and forecast. In business, finance, and

economics, trend is produced by slowly evolving preferences, technologies,

institutions, and demographics.

We will study both deterministic trend, evolving in a perfectly pre-

dictable way, and stochastic trend, evolving in an approximately pre-

dictable way. We treat the deterministic case here, and we treat the stochastic

case later in Chapter 5.3.

5.2.1 Trend Models

Sometimes series increase or decrease like a straight line. That is, sometimes

a simple linear function of time,

Tt = β0 + β1TIMEt,

provides a good description of the trend, in which case we speak of linear

trend. We construct the variable TIME artificially; it is called a “time

1Later we’ll define and study seasonals and cycles. Not all components need be present in all observed
series.
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trend” or “time dummy.” Time equals 1 in the first period of the sample,

2 in the second period, and so on. Thus, for a sample of size T , TIME =

(1, 2, 3, ..., T − 1, T ); put differently, TIMEt = t. β0 is the intercept; it’s

the value of the trend at time t = 0. β1 is the slope; it’s positive if the trend

is increasing and negative if the trend is decreasing. The larger the absolute

value of β1, the steeper the trend’s slope. In business, finance, and economics,

linear trends are typically (but not necessarily) increasing, corresponding to

growth.

Sometimes trend appears nonlinear, or curved, as for example when a vari-

able increases at an increasing or decreasing rate. Ultimately, we don’t require

that trends be linear, only that they be smooth. Quadratic trend models

can potentially capture nonlinearities. Such trends are simply quadratic, as

opposed to linear, functions of time,

Tt = β0 + β1TIMEt + β2TIME2
t .

Linear trend emerges as a special (and potentially restrictive) case when

β2 = 0.2

A variety of different nonlinear quadratic trend shapes are possible, de-

pending on the signs and sizes of the coefficients. In particular, if β1 > 0 and

β2 > 0, the trend is monotonically, but nonlinearly, increasing, Conversely,

if β1 < 0 and β2 < 0, the trend is monotonically decreasing. If β1 < 0 and

β2 > 0 the trend is U-shaped, and if β1 > 0 and β2 < 0 the trend has an

inverted U shape. See Figure 5.1. Keep in mind that quadratic trends are

used to provide local approximations; one rarely has a U-shaped trend, for

example. Instead, all of the data may lie on one or the other side of the “U.”

Other types of nonlinear trend are sometimes appropriate. Sometimes,

in particular, trend is nonlinear in levels but linear in logarithms. That’s

2Higher-order polynomial trends are sometimes entertained, but it’s important to use low-order polyno-
mials to maintain smoothness.
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Figure 5.1: Various Shapes of Quadratic Trends

called exponential trend, or log-linear trend, and is very common in

business, finance and economics.3 It arises because economic variables often

display roughly constant growth rates (e.g., three percent per year). If trend

is characterized by constant growth at rate β1, then we can write

Tt = β0e
β1TIMEt. (5.1)

The trend is a nonlinear (exponential) function of time in levels, but in log-

arithms we have

ln(Tt) = ln(β0) + β1TIMEt.

Thus, ln(Tt) is a linear function of time. As with quadratic trend, depending

on the signs and sizes of the parameter values, exponential trend can achieve

a variety of patterns, increasing or decreasing at an increasing or decreasing

rate. See Figure 5.2.

3Throughout this book, logarithms are natural (base e) logarithms.
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Figure 5.2: Various Shapes of Exponential Trends

It’s important to note that, although qualitatively similar trend shapes can

be achieved with quadratic and exponential trend, there are subtle differences

between them. The nonlinear trends in some series are well approximated by

quadratic trend, while the trends in other series are better approximated by

exponential trend. Neither is necessarily “better” in general; rather, they’re

simply different, and which is better in any particular situation is ultimately

an empirical matter.

5.2.2 Trend Estimation

Before we can estimate trend models, we need to create and store on the

computer variables such as TIME and its square. Fortunately we don’t have

to type the trend values (1, 2, 3, 4, ...) in by hand; rather, in most software

packages a command exists to create TIME automatically, after which we

can immediately compute derived variables such as TIME2. Because, for
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example, TIME = 1, 2, ..., T , TIME2 = 1, 4, ..., T 2.

For the most part we fit our various trend models to data on a time series

y using ordinary least-squares regression. In the linear and quadratic

trend cases, the regressions are just simple OLS regressions. In an obvious

notation, we run

y → c, T IME

and

y → c, T IME, TIME2,

respectively, where c denotes inclusion of an intercept.

The exponential trend, in contrast, is a bit more nuanced. We can estimate

it in two ways. First, because the nonlinear exponential trend is nevertheless

linear in logs, we can estimate it by regressing ln y on an intercept and TIME,

ln y → c, T IME.

Note that c provides an estimate of ln β0 in equation (5.1) and so must be

exponentiated to obtain an estimate of β0. Similarly the fitted values from

this regression are the fitted values of ln y, so they must be exponentiated to

get the fitted values of y.

Alternatively, we can proceed directly from the exponential representation

and let the computer use numerical algorithms to find4

(β̂0, β̂1) = argmin

β0, β1

T∑
t=1

[
yt − β0e

β1TIMEt
]2
.

This is called nonlinear least squares, or NLS.

NLS can be used to perform least-squares estimation for any model, in-

cluding linear models, but in the linear case it’s more sensible simply to use

4“Argmin” just means “the argument that minimizes.”
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OLS. Some intrinsically nonlinear forecasting models can’t be estimated us-

ing OLS, however, but they can be estimated using nonlinear least squares.

We resort to nonlinear least squares in such cases.5 (We will encounter sev-

eral in this book.) Even for models like exponential trend, which as we have

seen can be transformed to linearity, estimation in levels by NLS is useful,

because statistics like AIC and SIC can then be directly compared to those

of linear and quadratic trend models.

5.2.3 Forecasting Trends

Suppose we’re presently at time T , and we have a sample of historical data,

{y1, y2, ..., yT} We want to use a trend model to forecast the h-step-ahead

value of y. For illustrative purposes, we’ll work with a linear trend, but the

procedures are identical for quadratic and exponential trends.

First consider point forecasts. The linear trend model, which holds for any

time t, is

yt = β0 + β1TIMEt + εt.

In particular, at time T + h, the future time of interest,

yT+h = β0 + β1TIMET+h + εT+h.

Two future values of series appear on the right side of the equation, TIMET+h

and εT+h. If TIMET+h and εT+h were known at time T , we could immediately

crank out the forecast. In fact, TIMET+h is known at time T , because

the artificially-constructed time variable is perfectly predictable; specifically,

TIMET+h = T + h. Unfortunately εT+h is not known at time T , so we replace

it with an optimal forecast of εT+h constructed using information only up

5When we estimate by NLS, we use a computer to find the minimum of the sum of squared residual
function directly, using numerical methods, by literally trying many (perhaps hundreds or even thousands)
of different (β0, β1) values until those that minimize the sum of squared residuals are found. This is not
only more laborious (and hence slow), but also less numerically reliable, as, for example, one may arrive at
a minimum that is local but not global.
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to time T .6 Under the assumption that ε is simply independent zero-mean

random noise, the optimal forecast of εT+h for any future period is 0, yielding

the point forecast,7

yT+h,T = β0 + β1TIMET+h.

The subscript “T + h, T” on the forecast reminds us that the forecast is for

time T + h and is made at time T . Note that the point forecast formula at

which we arrived is not of practical use, because it assumes known values

of the trend parameters β0 and β1. But it’s a simple matter to make it

operational – we just replace unknown parameters with their least squares

estimates, yielding

ŷT+h,T = β̂0 + β̂1TIMET+h.

Now consider density forecasts under normality and ignoring parameter es-

timation uncertainty We immediately have the density forecast , N(yT+h,T , σ
2),

where σ is the standard deviation of the disturbance in the trend regression.

To make this operational, we use the density forecast N(ŷT+h,T , σ̂
2), where σ̂2

is the square of the standard error of the regression. Armed with the density

forecast, we can construct any desired interval forecast. For example, the 95%

interval forecast ignoring parameter estimation uncertainty is yT+h,T ±1.96σ,

where σ is the standard deviation of the disturbance in the trend regression.

To make this operational, we use ŷT+h,T ± 1.96σ̂, where σ̂ is the standard

error of the regression.

We can use the simulation-based methods of Chapter 4 to dispense with

the normality assumption and/or account for parameter-estimation uncer-

tainty.

6More formally, we say that we’re “projecting εT+h on the time-T information set.”
7“Independent zero-mean random noise” is just a fancy way of saying that the regression disturbances

satisfy the usual assumptions – they are identically and independently distributed.
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Figure 5.3: Retail Sales

5.2.4 Forecasting Retail Sales

We’ll illustrate trend modeling with an application to forecasting U.S. current-

dollar retail sales. The data are monthly from 1955.01 through 1994.12 and

have been seasonally adjusted.8 We’ll use the period 1955.01-1993.12 to es-

timate our forecasting models, and we’ll use the “holdout sample” 1994.01-

1994.12 to examine their out-of-sample forecasting performance.

In Figure 5.3 we provide a time series plot of the retail sales data, which

display a clear nonlinear trend and not much else. Cycles are probably present

but are not easily visible, because they account for a comparatively minor

share of the series’ variation.

In Table 5.4a we show the results of fitting a linear trend model by re-

gressing retail sales on a constant and a linear time trend. The trend appears

highly significant as judged by the p-value of the t statistic on the time trend,

and the regression’s R2 is high. Moreover, the Durbin-Watson statistic in-

dicates that the disturbances are positively serially correlated, so that the

disturbance at any time t is positively correlated with the disturbance at

time t − 1. In later chapters we’ll show how to model such residual serial

8When we say that the data have been “seasonally adjusted,” we simply mean that they have been
smoothed in a way that eliminates seasonal variation. We’ll discuss seasonality in detail in Section 5.3.
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(a) Retail Sales: Linear Trend Regression

(b) Retail Sales: Linear Trend Residual Plot

Figure 5.4: Retail Sales: Linear Trend

correlation and exploit it for forecasting purposes, but for now we’ll ignore it

and focus only on the trend.9

The residual plot in Figure 5.4b makes clear what’s happening. The linear

trend is simply inadequate, because the actual trend is nonlinear. That’s

one key reason why the residuals are so highly serially correlated – first the

data are all above the linear trend, then below, and then above. Along with

the residuals, we plot plus-or-minus one standard error of the regression, for

visual reference.
9Such residual serial correlation may, however, render the standard errors of estimated coefficients (and

the associated t statistics) untrustworthy, and robust standard errors (e.g., Newey-West) can be used. In
addition, AIC and SIC remain valid.
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(a) Retail Sales: Quadratic Trend Regression

(b) Retail Sales: Quadratic Trend Residual Plot

Figure 5.5: Retail Sales: Quadratic Trend

Table 5.5a presents the results of fitting a quadratic trend model. Both

the linear and quadratic terms appear highly significant. R2 is now almost

1. Figure 5.5b shows the residual plot, which now looks very nice, as the

fitted nonlinear trend tracks the evolution of retail sales well. The residuals

still display persistent dynamics (indicated as well by the still-low Durbin-

Watson statistic) but there’s little scope for explaining such dynamics with

trend, because they’re related to the business cycle, not the growth trend.

Now let’s estimate a different type of nonlinear trend model, the exponen-

tial trend. First we’ll do it by OLS regression of the log of retail sales on a

constant and linear time trend variable. We show the estimation results and
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(a) Retail Sales: Log Linear Trend Regression

(b) Retail Sales: Log Linear Trend Residual Plot

Figure 5.6: Retail Sales: Log Linear Trend

residual plot in Table 5.6a and Figure 5.6b. As with the quadratic nonlinear

trend, the exponential nonlinear trend model seems to fit well, apart from

the low Durbin-Watson statistic.

In sharp contrast to the results of fitting a linear trend to retail sales,

which were poor, the results of fitting a linear trend to the log of retail sales

seem much improved. But it’s hard to compare the log-linear trend model

to the linear and quadratic models because they’re in levels, not logs, which

renders diagnostic statistics like R2 and the standard error of the regression

incomparable. One way around this problem is to estimate the exponential

trend model directly in levels, using nonlinear least squares. In Table 5.7a
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(a) Retail Sales: Exponential Trend Regression - Nonlinear Least Squares

(b) Retail Sales: Exponential Trend Residual Plot

Figure 5.7: Retail Sales: Exponential Trend

and Figure 5.7b we show the nonlinear least squares estimation results and

residual plot for the exponential trend model. The diagnostic statistics and

residual plot indicate that the exponential trend fits better than the linear

but worse than the quadratic.

Thus far we’ve been informal in our comparison of the linear, quadratic and

exponential trend models for retail sales. We’ve noticed, for example, that the

quadratic trend seems to fit the best. The quadratic trend model, however,

contains one more parameter than the other two, so it’s not surprising that

it fits a little better, and there’s no guarantee that its better fit on historical

data will translate into better out-of-sample forecasting performance. (Recall
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Figure 5.8: Model Selection Criteria: Linear, Quadratic, and Exponential Trend Models

the parsimony principle.) To settle upon a final model, we examine the AIC

or SIC, which we summarize in Table 5.8 for the three trend models.10 Both

the AIC and SIC indicate that nonlinearity is important in the trend, as

both rank the linear trend last. Both, moreover, favor the quadratic trend

model. So let’s use the quadratic trend model.

Figure 5.9 shows the history of retail sales, 1990.01-1993.12, together

with out-of-sample point and 95% interval extrapolation forecasts, 1994.01-

1994.12. The point forecasts look reasonable. The interval forecasts are

computed under the (incorrect) assumption that the deviation of retail sales

from trend is random noise, which is why they’re of equal width throughout.

Nevertheless, they look reasonable.

In Figure 5.10 we show the history of retail sales through 1993, the quadratic

trend forecast for 1994, and the realization for 1994. The forecast is quite

good, as the realization hugs the forecasted trend line quite closely. All of

the realizations, moreover, fall inside the 95% forecast interval.

For comparison, we examine the forecasting performance of a simple linear

trend model. Figure 5.11 presents the history of retail sales and the out-of-

sample point and 95% interval extrapolation forecasts for 1994. The point

forecasts look very strange. The huge drop forecasted relative to the historical

sample path occurs because the linear trend is far below the sample path by

the end of the sample. The confidence intervals are very wide, reflecting the

large standard error of the linear trend regression relative to the quadratic

trend regression.

10It’s important that the exponential trend model be estimated in levels, in order to maintain comparability
of the exponential trend model AIC and SIC with those of the other trend models.
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Figure 5.9: Retail Sales: Quadratic Trend Forecast

Figure 5.10: Retail Sales: Quadratic Trend Forecast and Realization

Finally, Figure 5.12 shows the history, the linear trend forecast for 1994,

and the realization. The forecast is terrible – far below the realization. Even

the very wide interval forecasts fail to contain the realizations. The reason

for the failure of the linear trend forecast is that the forecasts (point and

interval) are computed under the assumption that the linear trend model is

actually the true DGP, whereas in fact the linear trend model is a very poor

approximation to the trend in retail sales.
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Figure 5.11: Retail Sales: Linear Trend Forecast

Figure 5.12: Retail Sales: Linear Trend Forecast and Realization

5.3 Deterministic Seasonality

Time series fluctuate over time, and we often mentally allocate those fluctu-

ations to unobserved underlying components, such as trends, seasonals, and

cycles. In this section we focus on seasonals.11 More precisely, in our general

unobserved-components model,

yt = Tt + St + Ct + εt,

11Later we’ll define and study cycles. Not all components need be present in all observed series.
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we now include only the seasonal and noise components,

yt = St + εt.

Seasonality involves patterns that repeat every year.12 Seasonality is pro-

duced by aspects of technologies, preferences and institutions that are linked

to the calendar, such as holidays that occur at the same time each year.

You might imagine that, although certain series are seasonal for obvious

reasons, seasonality is nevertheless uncommon. On the contrary, and perhaps

surprisingly, seasonality is pervasive in business and economics. Any technol-

ogy that involves the weather, such as production of agricultural commodities,

is likely to be seasonal. Preferences may also be linked to the calendar. For

example, people want to do more vacation travel in the summer, which tends

to increase both the price and quantity of summertime gasoline sales. Fi-

nally, social institutions that are linked to the calendar, such as holidays, are

responsible for seasonal variation in many series. Purchases of retail goods

skyrocket, for example, every Christmas season.

We will introduce both deterministic seasonality and stochastic sea-

sonality. We treat the deterministic case here, and we treat the stochastic

case later in Chapter .

5.3.1 Seasonal Models

A key technique for modeling seasonality is regression on seasonal dum-

mies. Let s be the number of seasons in a year. Normally we’d think of four

seasons in a year, but that notion is too restrictive for our purposes. Instead,

think of s as the number of observations on a series in each year. Thus s = 4

if we have quarterly data, s = 12 if we have monthly data, s = 52 if we have

weekly data, and so forth.

12Note therefore that seasonality is impossible, and therefore not an issue, in data recorded once per year,
or less often than once per year.
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Now let’s construct seasonal dummy variables, which indicate which

season we’re in. If, for example, there are four seasons (s = 4), we create D1 =

(1, 0, 0, 0, ...), D2 = (0, 1, 0, 0, ...), D3 = (0, 0, 1, 0, ...) and D4 = (0, 0, 0, 1, ...).

D1 indicates whether we’re in the first quarter (it’s 1 in the first quarter and

zero otherwise), D2 indicates whether we’re in the second quarter (it’s 1 in

the second quarter and zero otherwise), and so on. At any given time, we can

be in only one of the four quarters, so only one seasonal dummy is nonzero.

The deterministic seasonal component is

St =
s∑
i=1

γiDit.

It is an intercept that varies in a deterministic manner over throughout the

seasons within each year. Those different intercepts, the γi’s, are called the

seasonal factors; they summarize the seasonal pattern over the year.

In the absence of seasonality, the γi’s are all the same, so we drop all the

seasonal dummies and instead include an intercept in the usual way.

Crucially, note that the deterministic seasonal variation is perfectly pre-

dictable, just as with our earlier-studied deterministic trend variation.

5.3.2 Seasonal Estimation

Before we can estimate seasonal models we need to create and store on the

computer the seasonal dummies Di, i = 1, ..., s. Most software packages have

a command to do it instantly.

We fit our seasonal models to data on a time series y using ordinary

least-squares regression. We simply run

y → D1, ..., Ds.

We can also blend models to capture trend and seasonality simultaneously.
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For example, we capture quadratic trend plus seasonality by running

y → TIME, TIME2, D1, ..., Ds.

Note that whenever we include a full set of seasonal dummies, we drop the

intercept, to avoid perfect multicollinearity. 13

5.3.3 Forecasting Seasonals

Consider constructing an h-step-ahead point forecast, yT+h,T at time T . As

with the pure trend model, there’s no problem of forecasting the right-hand

side variables, due to the special (perfectly predictable) nature of seasonal

dummies, so point forecasts are easy to generate. The model is

yt =
s∑
i=1

γiDit + εt,

so that at time T + h,

yT+h =
s∑
i=1

γiDi,T+h + εT+h.

As with the trend model discussed earlier, we project the right side of the

equation on what’s known at time T (that is, the time-T information set,

ΩT ) to obtain the forecast

yT+h,T =
s∑
i=1

γiDi,T+h.

There is no FRV problem, because Di,T+h is known with certainty, for all

i and h. As always, we make the point forecast operational by replacing

13See also EPC ??.
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unknown parameters with estimates,

ŷT+h,T =
s∑
i=1

γ̂iDi,T+h.

To form density forecasts we again proceed precisely as in the trend model.

If we assume that the regression disturbance is normally distributed, then the

density forecast ignoring parameter estimation uncertainty is N(yT+h,T , σ
2),

where σ is the standard deviation of the regression disturbance. The op-

erational density forecast is then N(ŷT+h,T , σ̂
2), and the corresponding 95%

interval forecast is ŷT+h,T ± 1.96σ̂.

We can use simulation-based methods from Chapter 4 to dispense with

the normality assumption or account for parameter-estimation uncertainty.

5.3.4 Forecasting Housing Starts

We’ll use the seasonal modeling techniques that we’ve developed in this chap-

ter to build a forecasting model for housing starts. Housing starts are seasonal

because it’s usually preferable to start houses in the spring, so that they’re

completed before winter arrives. We have monthly data on U.S. housing

starts; we’ll use the 1946.01-1993.12 period for estimation and the 1994.01-

1994.11 period for out-of-sample forecasting. We show the entire series in

Figure 5.13, and we zoom in on the 1990.01-1994.11 period in Figure 5.14 in

order to reveal the seasonal pattern in better detail.
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Figure 5.13: Housing Starts, 1946-1994

Figure 5.14: Housing Starts, 1946-1994 - Zoom on 1990-1994
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The figures reveal that there is no trend, so we’ll work with the pure

seasonal model,

yt =
s∑
i=1

γiDit + εt.

Table 5.15a shows the estimation results. The twelve seasonal dummies

account for more than a third of the variation in housing starts, as R2 = .38.

At least some of the remaining variation is cyclical, which the model is not

designed to capture. (Note the very low Durbin-Watson statistic.)

The residual plot in Figure 5.15b makes clear the strengths and limitations

of the model. First compare the actual and fitted values. The fitted values go

through the same seasonal pattern every year – there’s nothing in the model

other than deterministic seasonal dummies – but that rigid seasonal pattern

picks up a lot of the variation in housing starts. It doesn’t pick up all of the

variation, however, as evidenced by the serial correlation that’s apparent in

the residuals. Note the dips in the residuals, for example, in recessions (e.g.,

1990, 1982, 1980, and 1975), and the peaks in booms.

The estimated seasonal factors are just the twelve estimated coefficients

on the seasonal dummies; we graph them in Figure 5.16. The seasonal effects

are very low in January and February, and then rise quickly and peak in May,

after which they decline, at first slowly and then abruptly in November and

December.

In Figure 5.17 we see the history of housing starts through 1993, together

with the out-of-sample point and 95% interval extrapolation forecasts for the

first eleven months of 1994. The forecasts look reasonable, as the model has

evidently done a good job of capturing the seasonal pattern. The forecast

intervals are quite wide, however, reflecting the fact that the seasonal effects

captured by the forecasting model are responsible for only about a third of

the variation in the variable being forecast.
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In Figure 5.18, we include the 1994 realization. The forecast appears

highly accurate, as the realization and forecast are quite close throughout.

Moreover, the realization is everywhere well within the 95% interval.
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(a) Housing Starts: Seasonal Dummy Variables

(b) Housing Starts: Seasonal Dummy Variables, Residual Plot

Figure 5.15: Housing Starts: Seasonal Dummy Model
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Figure 5.16: Housing Starts: Estimated Seasonal Factors

Figure 5.17: Housing Starts: Seasonal Model Forecast

Figure 5.18: Housing Starts: Seasonal Model Forecast and Realization
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5.4 Exercises, Problems and Complements

1. Calculating forecasts from trend models.

You work for the International Monetary Fund in Washington DC, mon-

itoring Singapore’s real consumption expenditures. Using a sample of

quarterly real consumption data (measured in billions of 2005 Singapore

dollars), yt, t = 1990.1, ..., 2006.4, you estimate the linear consumption

trend model, yt = β0 + β1TIMEt + εt, where εt ∼ iidN(0, σ2), obtain-

ing the estimates β̂0 = 0.51, β̂1 = 2.30, and σ̂2 = 16. Based upon your

estimated trend model, construct feasible point, interval and density

forecasts for 2010.1.

2. Calendar span vs. observation count in trend estimation.

Suppose it’s the last day of the year. You are using a trend model to

produce a 1-year-ahead (end-of-year) forecast of a stock (as opposed

to flow) variable observed daily. Would you prefer to estimate your

forecasting model using the most recent 500 daily observations (and

then forecast 365 steps ahead) or 50 annual end-of-year observations

(and then forecast 1 step ahead)? Discuss. In particular, if you prefer

to use the 50 annual observations, why is that? Isn’t 500 a much larger

sample size than 50, so shouldn’t you prefer to use it?

3. Mechanics of trend estimation and forecasting.

Obtain from the web an upward-trending monthly series that interests

you. Choose your series such that it spans at least ten years, and such

that it ends at the end of a year (i.e., in December).

a. What is the series and why does it interest you? Produce a time series

plot of it. Discuss.

b. Fit linear, quadratic and exponential trend models to your series.

Discuss the associated diagnostic statistics and residual plots.
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c. Select a trend model using the AIC and using the SIC. Do the selected

models agree? If not, which do you prefer?

d. Use your preferred model to forecast each of the twelve months of the

next year. Discuss.

e. The residuals from your fitted model are effectively a detrended ver-

sion of your original series. Why? Plot them and discuss.

4. Properties of polynomial trends.

Consider a tenth-order deterministic polynomial trend:

Tt = β0 + β1TIMEt + β2TIME2
t + ...+ β10TIME10

t .

a. How many local maxima or minima may such a trend display?

b. Plot the trend for various values of the parameters to reveal some of

the different possible trend shapes.

c. Is this an attractive trend model in general? Why or why not?

d. How do you expect this trend to fit in-sample?

e. How do you expect this trend to forecast out-of-sample?

5. Seasonal adjustment.

One way to deal with seasonality in a series is simply to remove it, and

then to model and forecast the seasonally adjusted series.14 This

strategy is perhaps appropriate in certain situations, such as when in-

terest centers explicitly on forecasting nonseasonal fluctuations, as

is often the case in macroeconomics. Seasonal adjustment is often inap-

propriate in business forecasting situations, however, precisely because

interest typically centers on forecasting all the variation in a series, not

just the nonseasonal part. If seasonality is responsible for a large part

14Removal of seasonality is called seasonal adjustment.
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of the variation in a series of interest, the last thing a forecaster wants

to do is discard it and pretend it isn’t there.

a. Discuss in detail how you’d use dummy variable regression methods

to seasonally adjust a series. (Hint: the seasonally adjusted series

is closely related to the residual from the seasonal dummy variable

regression.)

b. Search the Web (or the library) for information on the latest U.S.

Census Bureau seasonal adjustment procedure, and report what you

learned.

6. Fourier seasonality.

Thus far we have used seasonal dummies. We can also take a Fourier

series approach, the benefits of which are two-fold. First, it produces

a smooth seasonal pattern, which accords with the basic intuition that

the progression through different seasons is gradual rather than discon-

tinuous. Second, it promotes parsimony, which not only respects the

parsimony principle but also enhances numerical stability in estimation.

The Fourier approach may be especially useful with high-frequency data.

Consider, for example, seasonal daily data. For a variety of reasons,

regression on more than three hundred daily dummies may not be ap-

pealing! So instead of using

St =
365∑
s=1

γiDit,

we can use

St =
P∑
p=1

(
δc,p cos

(
2πp

dt
365

)
+ δs,p sin

(
2πp

dt
365

))
,
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where dt is a repeating step function that cycles through 1, ..., 365. We

can choose P using the usual model selection criteria. (Note that for

simplicity we have dropped February 29 in leap years.)

5.5 Notes


