
Chapter 3

Predictive Regression: Review and

Interpretation

Ideas that fall under the general heading of “regression analysis” are crucial

for building forecasting models, using them to produce forecasts, and evalu-

ating those forecasts. Here we provide a linear regression refresher. Again,

be warned: this chapter is no substitute for a full-introduction to regression,

which you should have had already.

3.1 Regression as Curve Fitting

3.1.1 Simple Regression

Suppose that we have data on two variables (“simple,” or “bivariate,” re-

gression), y and x, as in Figure 1, and suppose that we want to find the

linear function of x that best fits the data points, in the sense that the sum

of squared vertical distances of the data points from the fitted line is mini-

mized. When we “run a regression,” or “fit a regression line,” that’s what we

do. The estimation strategy is called least squares.

In Figure 2, we illustrate graphically the results of regressing y on x,

which we sometimes denote by y → c, x.1 The best-fitting line slopes upward,

1The “c” denotes inclusion of a constant, or intercept, term.
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reflecting the positive correlation between y and x. Note that the data points

don’t satisfy the fitted linear relationship exactly; rather, they satisfy it on

average.

Let us elaborate on the fitting of regression lines, and the reason for the

name “least squares.” When we run the regression, we use a computer to fit

the line by solving the problem

minβ

T∑
t=1

(yt − β1 − β2xt)
2,

where β is shorthand notation for the set of two parameters, β1 and β2. We

denote the set of estimated, or fitted, parameters by β̂, and its elements by
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β̂1 and β̂2.

The regression fitted values are

ŷt = β̂1 + β̂2xt,

t = 1, ..., T . The regression residuals are simply the difference between

actual and fitted values. We write

et = yt − ŷt,

t = 1, ..., T .

In in all linear regressions (even with multiple RHS variables, to which

we turn shortly), the least-squares estimator has a simple formula. We use a
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computer to evaluate the formula, simply, stably, and instantaneously.

3.1.2 Multiple Regression

Extension to the general multiple linear regression model, with an arbitrary

number of right-hand-side variables (K, including the constant), is imme-

diate. We simply run y → c, x2, ..., xK , again picking the parameters to

minimize the sum of squared residuals, and everything goes through as in

the case of simple regression.

The least squares estimator is

β̂OLS = (X ′X)−1X ′y, (3.1)

where X is a T ×K matrix,

X =


1 x21 x31 . . . xK1

1 x22 x32 . . . xK2
...

1 x2T x3T . . . xKT


and y is a T × 1 vector, y′ = (y1, y2, ..., yT ). The time-t fitted value is

ŷt = x′tβ̂,

where x′t = (x1t, ..., xKt) is the time-t vector of x’s, and the time-t residual is

et = yt − ŷt.

The vector of fitted values is

ŷ = Xβ̂,

and the vector of residuals is

e = y − ŷ.
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3.2 Regression as a Probability Model

We work with the full multiple regression model; simple regression is of course

a special case.

3.2.1 A Population Model and a Sample Estimator

Thus far we have not postulated a probabilistic model that relates yt and xt;

instead, we simply ran a mechanical regression of yt on xt to find the best

fit to yt formed as a linear function of xt. It’s easy, however, to construct

a probabilistic framework that lets us make statistical assessments about

the properties of the fitted line. Assume, for example, that yt is linearly

related to an exogenously-determined xt, with an independent and identically

distributed zero-mean (iid) Gaussian disturbance:

yt = β1 + β2x2t + ...+ βKxKt + εt = x′tβ + εt

εt ∼ iidN(0, σ2),

t = 1, ..., T . The intercept of the line is β1, the slope parameters are the

βi’s, and the variance of the disturbance is σ2.2 Collectively, we call the β’s

the model’s parameters. The index t keeps track of time; the data sample

begins at some time we’ve called “1” and ends at some time we’ve called “T”,

so we write t = 1, ..., T . (Or, in cross sections, we index cross-section units

by i and write i = 1, ..., N .)

In this linear regression model the expected value of yt conditional upon

xt taking a particular value, say x∗t , is

E(yt|xt = x∗t ) = xt
∗′β.

That is, the regression function is the conditional expectation of yt.

2We speak of the regression intercept and the regression slope.
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We assume that the the linear model sketched is true in population; that

is, it is the data-generating process (DGP). But in practice, of course, we

don’t know the values of the model’s parameters, β1, β2, ..., βK and σ2. Our

job is to estimate them using a sample of data from the population. We esti-

mate the β’s precesiely as before, using the computer to solve minβ
∑T

t=1 ε
2
t .

3.2.2 Notation, Assumptions and Results: The Full Ideal Condi-

tions

The discussion thus far was intentionally a bit loose, focusing on motivation

and intuition. Let us now be more precise about what we assume and what

results obtain.

A Bit of Matrix Notation

One reason that vector-matrix notation is useful is because the probabilistic

regression model can be written very compactly using it. We have written

the model as

yt = β1 + β2x2t + ...+ βKxKt + εt, t = 1, ..., T.

εt ∼ iidN(0, σ2)

Now stack εt, t = 1, ..., T , into the vector ε, where ε′ = (ε1, ε2, ..., εT ). Then

we can write the complete model over all observations as

y = Xβ + ε (3.2)

ε ∼ N(0, σ2I). (3.3)

This concise representation is very convenient.

Indeed representation (3.2)-(3.3) is crucially important, not simply be-

cause it is concise, but because the various assumptions that we need to
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make to get various statistical results are most naturally and simply stated

on X and ε in equation (3.2).

The most restrictive set of assumptions is known as the “full ideal con-

ditions” (FIC), which are so strict as to be nearly preposterous in economic

contexts, and most of econometrics is devoted to confronting various failures

of the FIC. But before we worry about FIC failures, it’s useful first to recall

what happens when they hold.

Assumptions: The Full Ideal Conditions (FIC)

1. The DGP is (3.2)-(3.3), and the fitted model matches the DGP exactly.

2. X is fixed in repeated samples.

3. X is of full column rank (K).

FIC 1 has many important sub-conditions embedded. For example:

1. Linear relationship, E(y) = Xβ

2. Fixed coefficients, β

3. ε ∼ N

4. ε has constant variance σ2

5. The ε’s are uncorrelated.

FIC 2 says that re-running the world to generate a new sample y∗ would

entail simply generating new shocks ε∗ and running them through equation

(3.2):

y∗ = Xβ + ε∗.

That is, X would stay fixed across replications.
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FIC 3 just says “no multicollinearity” – i.e., no redundancy among the

variables contained in X (more precisely, no regressor is a perfect linear

combination of the others).

Results Under the FIC

The least squares estimator remains

β̂OLS = (X ′X)−1X ′y,

but in a probabilistic interpretation under the FIC, we can say a great

deal about its statistical properties. Among other things, it is miniumum-

variance unbiased (MVUE) and normally distributed with covariance matrix

σ2(X ′X)−1. We write

β̂OLS ∼ N
(
β, σ2(X ′X)−1

)
.

We estimate the covariance matrix σ2(X ′X)−1 using s2(X ′X)−1, where

s2 =

∑T
t=1 e

2
t

T −K
.

3.3 A Typical Regression Analysis

Consider a typical regression output, which we show in Table 1. We do so

dozens of times in this book, and the output format and interpretation are

always the same, so it’s important to get comfortable with it quickly. The

output is in Eviews format. Other software will produce more-or-less the

same information, which is fundamental and standard.

The results begin by reminding us that we’re running a least-squares (LS)

regression, and that the left-hand-side variable is y. It then shows us the

sample range of the historical data, which happens to be 1960 to 2007, for a

total of 48 observations.
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Next comes a table listing each right-hand-side variable together with four

statistics. The right-hand-side variables x and z need no explanation, but the

variable c does. c is notation for the earlier-mentioned constant variable. The

c variable always equals one, so the estimated coefficient on c is the estimated

intercept of the regression line.3

3.3.1 Coefficient Estimates, Standard Errors, t Statistics and p-

Values

The four statistics associated with each right-hand-side variable are the es-

timated coefficient (“Coefficient”), its standard error (“Std. Error”), a t

statistic, and a corresponding probability value (“Prob.”).

The “coefficients” are simply the regression coefficient estimates. Per the

OLS formula that we introduced earlier in equation (3.1), they are the ele-

ments of the (K × 1) vector, (X ′X)−1X ′y.

3Sometimes the population coefficient on c is called the constant term, and the regression estimate is
called the estimated constant term.
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The standard errors of the estimated coefficients indicate their sampling

variability, and hence their reliability. In line with result (??) above, the ith

standard error is

s
√

(X ′X)−1
ii ,

where (X ′X)−1
ii denotes the ith diagonal element of (X ′X)−1, and s is an

estimate (defined below) of σ.

The estimated coefficient plus or minus one standard error is approxi-

mately a 68% confidence interval for the true but unknown population pa-

rameter (contribution to the conditional expectation), and the estimated co-

efficient plus or minus two standard errors is approximately a 95% confidence

interval, assuming that the estimated coefficient is approximately normally

distributed.4 Thus large coefficient standard errors translate into wide confi-

dence intervals.

Each t statistic provides a test of the hypothesis of variable irrelevance:

that the true but unknown population parameter (contribution to the con-

ditional expectation) is zero, so that the corresponding variable contributes

nothing to the conditional expectation and can therefore be dropped. One

way to test this variable irrelevance, with, say, a 5% probability of incorrect

rejection, is to check whether zero is outside the 95% confidence interval for

the parameter. If so, we reject irrelevance. The t statistic is just the ratio

of the estimated coefficient to its standard error, so if zero is outside the

95% confidence interval, then the t statistic must be bigger than two in abso-

lute value. Thus we can quickly test irrelevance at the 5% level by checking

whether the t statistic is greater than two in absolute value.5

Finally, associated with each t statistic is a probability value, which

is the probability of getting a value of the t statistic at least as large in

4Coefficients will be approximately normally distributed in large samples quite generally, and exactly
normally distributed in samples of any size if the regression disturbance is normally distributed.

5In large samples the t statistic is distributed N(0, 1) quite generally. In samples of any size the t statistic
follows a t distribution if the regression disturbances are Gaussian.
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absolute value as the one actually obtained, assuming that the irrelevance

hypothesis is true. Hence if a t statistic were two, the corresponding proba-

bility value would be approximately .05 (asstuming large T and/or Gaussian

disturbances). The smaller the probability value, the stronger the evidence

against irrelevance. There’s no magic cutoff, but typically probability values

less than 0.1 are viewed as strong evidence against irrelevance, and probabil-

ity values below 0.05 are viewed as very strong evidence against irrelevance.

Probability values are useful because they eliminate the need for consulting

tables of the t or z distributions. Effectively the computer does it for us

and tells us the significance level at which the irrelevance hypothesis is just

rejected.

Now let’s interpret the actual estimated coefficients, standard errors, t

statistics, and probability values. The estimated intercept is approximately

10, so that conditional on x and z both being zero, we expect y to be 10.

Moreover, the intercept is very precisely estimated, as evidenced by the small

standard error relative to the estimated coefficient. An approximate 95%

confidence interval for the true but unknown population intercept is 10 ±
2(.19) , or [9.62, 10.38]. Zero is far outside that interval, so the corresponding

t statistic is huge, with a probability value that’s zero to four decimal places.

The estimated coefficient on x is 1.07, and the standard error is again small

in relation to the size of the estimated coefficient, so the t statistic is large

and its probability value small. Hence at conventional levels we reject the hy-

pothesis that x contributes nothing to the conditional expectation E(y|x, z).
The estimated coefficient is positive, so that x contributes positively to the

conditional expectation; that is, E(y|x, z) is larger for larger x, other things

equal.

The estimated coefficient on z is -.64. Its standard error is larger relative

to the estimated parameter; hence its t statistic is smaller than those of the

other coefficients. The standard error is nevertheless small, and the absolute
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value of the t statistic is still well above 2, with a small probability value of

.06%. Hence at conventional levels we reject the hypothesis that z contributes

nothing to the conditional expectation E(y|x, z). The estimated coefficient

is negative, so that z contributes negatively to the conditional expectation;

that is, E(y|x, z) is smaller for larger z, other things equal.

3.3.2 Residual Plot

After running a time-series regression, it’s usually a good idea to assess the

adequacy of the model by plotting over time and examining the actual data

(yt’s), the fitted values (ŷt’s), and the residuals (et’s). Often we’ll refer to

such plots, shown together in a single graph, as a residual plot.6 In Figure

4 we show the residual plot for the regression of y → c, x, z. The actual

(short dash) and fitted (long dash) values appear at the top of the graph;

their scale is on the right. The fitted values track the actual values fairly

well. The residuals appear at the bottom of the graph (solid line); their scale

is on the left. It’s important to note that the scales differ; the et’s are in fact

substantially smaller and less variable than either the yt’s or the ŷt’s. We

draw the zero line through the residuals for visual comparison. There are no

obvious patterns in the residuals.

Residual plots are obviously useful in time-series perspective, and not use-

ful in cross sections, for which there is no natural ordering of the data. In

cross sections, however, we often examine residual scatterplots, that is,

scatterplots of y vs. ŷ for all observations in the cross section, with special

attention paid to the general pattern of deviations from the forty-five degree

line.

A variety of diagnostic statistics follow; they help us to evaluate the ade-

quacy of the regression. Here we review them very briefly.

6Sometimes, however, we’ll use “residual plot” to refer to a plot of the residuals alone. The intended
meaning will be clear from context.
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3.3.3 Mean dependent var

The sample mean of the dependent variable is

ȳ =
1

T

T∑
t=1

yt

It measures the central tendency, or location, of y.

3.3.4 S.D. dependent var

The sample standard deviation of the dependent variable is

SD =

√∑T
t=1(yt − ȳ)2

T − 1
.

It measures the dispersion, or scale, of y.
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3.3.5 Sum squared resid

Minimizing the sum of squared residuals is the objective of least squares

estimation. It’s natural, then, to record the minimized value of the sum of

squared residuals. In isolation it’s not of much value, but it serves as an

input to other diagnostics that we’ll discuss shortly. Moreover, it’s useful for

comparing models and testing hypotheses. The formula is

SSR =
T∑
t=1

e2
t .

3.3.6 F−statistic

We use the F statistic to test the hypothesis that the coefficients of all

variables in the regression except the intercept are jointly zero.7 That is,

we test whether, taken jointly as a set, the variables included in the model

contribute nothing to the expectation of y conditional on the variables. This

contrasts with the t statistics, which we use to examine the contributions of

the variables one at a time.8 If no variables contribute, then if the regression

disturbances are Gaussian the F statistic follows an F distribution with K−1

and T −K degrees of freedom. The formula is

F =
(SSRres − SSR)/(K − 1)

SSR/(T −K)
,

where SSRres is the sum of squared residuals from a restricted regression that

contains only an intercept. Thus the test proceeds by examining how much

SSR increases when all the variables except the constant are dropped. If it

increases by a great deal, there’s evidence that at least one of the variables

7We don’t want to restrict the intercept to be zero, because under the hypothesis that all the other
coefficients are zero, the intercept would equal the mean of y, which in general is not zero.

8In the case of only one right-hand-side variable, the t and F statistics contain exactly the same infor-
mation, and one can show that F = t2. When there are two or more right-hand-side variables, however, the
hypotheses tested differ, and F 6= t2.



3.3. A TYPICAL REGRESSION ANALYSIS 63

contributes to the conditional expectation.

3.3.7 Prob(F−statistic)

The probability value for the F statistic gives the significance level at which

we can just reject the hypothesis that the set of right-hand-side variables

makes no contribution to the conditional expectation. Here the value is

indistinguishable from zero, so we reject the hypothesis overwhelmingly.

3.3.8 S.E. of regression

We’d like an estimate of σ2, because σ2 tells us whether the regression “fit”

is good. The observed residuals, the et’s , are effectively estimates of the

unobserved population disturbances, the εt’s. Thus the sample variance of

the e’s, which we denote s2 (read “s-squared”), is a natural estimator of σ2:

s2 =

∑T
t=1 e

2
t

T −K
.

s2 is an estimate of the dispersion of the regression disturbance and hence is

used to assess goodness of fit. The larger is s2, the worse the model’s fit. s2

involves a degrees-of-freedom correction (division by T −K rather than by T

or T − 1), which, but whether one divides by T ot T −K is of no asymptotic

consequence.

The standard error of the regression (SER) conveys the same infor-

mation; it’s an estimator of σ rather than σ2, so we simply use s rather than

s2. The formula is

SER = s =
√
s2 =

√∑T
t=1 e

2
t

T −K
.

The standard error of the regression is easier to interpret than s2, because

its units are the same as those of the e’s, whereas the units of s2 are not. If
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the e’s are in dollars, then the squared e’s are in dollars squared, so s2 is in

dollars squared. By taking the square root at the end of it all, SER converts

the units back to dollars.

3.3.9 R-squared

If an intercept is included in the regression, as is almost always the case,

R-squared must be between zero and one. In that case, R-squared, usually

written R2, is the percentage of the variance of y explained by the variables

included in the regression. R2 is widely used as an easily-interpreted check

of goodness of fit. Here the R2 is about 55% – good but not great.

The formula is for R2 is

R2 = 1−
∑T

t=1 e
2
t∑T

t=1(yt − ȳ)2
.

The key is the ratio on the right of the formula. First, note that the ratio

must be positive (it exclusively involves sums of squares) and less than one

(if the regression includes an intercept). Hence R2, which is one minus the

ratio, must be in [0, 1]. Second, note what the ratio involves. The numerator

is SSR from a regression on all variables, and the denominator is the is SSR

from a regression on an intercept alone. Hence the ratio is the fraction of

variation in y not explained by the included x’s, so that R2 – which, again,

is one minus the ratio – is the fraction of variation in y that is explained by

the included x’s.

We can write R2 in a more roundabout way as

R2 = 1−
1
T

∑T
t=1 e

2
t

1
T

∑T
t=1(yt − ȳ)2

.

This proves useful for moving to adjusted R2, to which we now turn.
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3.3.10 Adjusted R−squared

The interpretation is the same as that of R2, but the formula is a bit different.

Adjusted R2 incorporates adjustments for the K degrees of freedom used in

fitting the full model to y (numerator of the ratio), and for the 1 degree of

freedom used in fitting the a mean to y (denominator of the ratio). As long as

there is more than one right-hand-side variable in the model fitted, adjusted

R̄2 is smaller than R2; here, however, the two are typically very close (in this

case, 53% vs. 55%). The formula for R̄2 is

R̄2 = 1−
1

T−K
∑T

t=1 e
2
t

1
T−1

∑T
t=1(yt − ȳ)2

,

where K is the number of right-hand-side variables, including the constant

term. The numerator in the large fraction is precisely s2
e, and the denominator

is precisely s2
y.

3.3.11 Durbin-Watson stat

We’re always interested in examining whether there are patterns in residuals;

if there are, the model somehow missed something systematic in the y data.

The Durbin-Watson statistic tests for a certain kind of pattern, correlation

over time, called serial correlation.

The Durbin-Watson test works within the context of the model

yt = β1 + β2xt + β3zt + εt

εt = φεt−1 + vt

vt

iid

∼ N(0, σ2).

The regression disturbance is serially correlated when φ 6= 0. The hypothesis
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of interest is φ = 0. When φ 6= 0, the disturbance is serially correlated. More

specifically, when φ 6= 0, we say that εt follows an autoregressive process of

order one, or AR(1) for short.9 If φ > 0 the disturbance is positively serially

correlated, and if φ < 0 the disturbance is negatively serially correlated. Pos-

itive serial correlation is typically the relevant alternative in the economic

and financial applications that will concern us.

The formula for the Durbin-Watson (DW) statistic is

DW =

∑T
t=2(et − et−1)

2∑T
t=1 e

2
t

.

DW takes values in the interval [0, 4], and if all is well, DW should be

around 2. If DW is substantially less than 2, there is evidence of positive

serial correlation. As a rough rule of thumb, if DW is less than 1.5, there

may be cause for alarm, and we should consult the tables of the DW statistic,

available in many statistics and econometrics texts. Here DW is very close

to 1.5. A look at the tables of the DW statistic reveals, however, that we

would not reject the null hypothesis at the five percent level. (Why Eviews

neglects to print a p-value is something of a mystery.)

Note well that DW and its good properties involve several strict assump-

tions. Gaussian disturbances are required, and the AR(1) alternative is the

only one explicitly entertained, whereas in reality much richer forms of serial

correlation may arise, and disturbances may of course be non-Gaussian. Sub-

sequently we will introduce much more flexible approaches to testing/assess-

ing residual serial correlation.

3.3.12 Akaike info criterion and Schwarz criterion

The Akaike and Schwarz criteria are used for model selection, and in cer-

tain contexts they have provable optimality properties in that regard. The

9The Durbin-Watson test is designed to be very good at detecting serial correlation of the AR(1) type.
Many other types of serial correlation are possible; we’ll discuss them extensively later.
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formulas are:

AIC = e(
2K
T )
∑T

t=1 e
2
t

T

and

SIC = T (KT )
∑T

t=1 e
2
t

T
.

Both are penalized versions of the mean-squared residual, where the penalties

are functions of the degrees of freedom used in fitting the model. For both

AIC and SIC, “smaller is better.” We will have much more to say about

them in section ?? below.

3.3.13 Log Likelihood

The likelihood function is tremendously important in statistics, as it sum-

marizes all the information contained in the data. It is simply the joint

density function of the data, viewed as a function of the model parameters.

The number reported is the maximized value of the log of the likelihood

function under the assumption of Gaussian disturbances.10 Like the sum of

squared residuals, SIC and AIC, it’s not of much use alone, but it’s useful

for comparing models and testing hypotheses. We will sometimes use the

maximized log likelihood function directly, although we’ll often focus on the

minimized sum of squared residuals.

3.4 Regression From a Forecasting Perspective

3.4.1 The Key to Everything (or at Least Many Things)

Linear least squares regression, by construction, is consistent under very gen-

eral conditions for “the linear function of xt that gives the best approximation

10Throughout, “log” refers to a natural (base e) logarithm.



68 CHAPTER 3. PREDICTIVE REGRESSION: REVIEW AND INTERPRETATION

to yt under squared-error loss,” which is the linear projection,

P (yt|xt) = x′tβ.

If the conditional expectation E(yt|xt) is linear in xt, then the linear projec-

tion and the conditional expectation coincide, and OLS is consistent the for

conditional expectation E(yt|xt).
Hence to forecast yt for any given value of xt, we can use the fitted line to

find the value of yt that corresponds to the given value of xt. In large samples

that “linear least squares forecast” of yt will either be the conditional mean

E(yt|xt), which as we mentioned earlier in Chapter 2 is is the optimal forecast

under quadratic loss, or the best linear approximation to it, P (yt|xt).
One leading case in which the linear projection and conditional mean

coincide (that is, E(yt|xt) is linear in xt) is joint normality. In particular,

suppose that (
y

x

)
∼ N

(
µ,Σ

)
where

µ =

(
µy

µx

)
Σ =

(
Σyy Σyx

Σxy Σxx

)
.

Then it can be shown that:

y|x ∼ N
(
µy|x , Σy|x

)
where

µy|x = µy + Σyx Σ−1
xx (x − µx)

Σy|x = Σyy − Σyx Σ−1
xx Σxy

In what follows we’ll often casually speak of linear regression as estimat-

ing the conditional expectation function. You can think of a Gaussian situa-

tion, or your can just mentally replace “conditional expectation” with “linear
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projection.” We’ll also implicitly assume quadratic loss, which is why we’re

interested in the conditional mean in the first place.

3.4.2 Why Take a Probabilistic Approach to Regression,

as Opposed to Pure Curve Fitting?

We want conditional mean point forecasts, and the conditional mean is a

probabilistic concept. We also may want to test hypotheses regarding which

variables actually enter in the determination of the conditional mean. Last

and not at all least, we also want to quantify the uncertainty associated with

our forecasts – that is, we want interval and density forecasts – and doing so

requires probabilistic modeling.

3.4.3 Regression For Estimating Conditional Means is Regression

for Forecasting

We already introduced this, but we repeat for emphasis: In our regression

model, the expected value of yt conditional on xt is

E(yt|xt) = x′tβ.

That is, the regression function is the conditional expectation of yt

given xt.

This is crucial for forecasting, because the expectation of future y con-

ditional upon available information is a particularly good forecast. In fact,

under quadradic loss, it is the best possible forecast (i.e., it minimizes ex-

pected loss). The intimate connection between regression and optimal fore-

casts makes regression an important tool for forecasting.
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3.4.4 LS and Quadratic Loss

Quadratic loss is routinely invoked for prediction, in which case the con-

ditional mean is the optimal forecast, as mentioned above. OLS optimizes

quadratic loss in estimation, and it’s good to have the model estimation cri-

terion match the predictive criterion.

3.4.5 Estimated Coefficient Signs and Sizes

The “best fit” that OLS delivers is effectively a best (in-sample) forecast.

Each estimated coefficient gives the weight put on the corresponding x vari-

able in forming the best linear in-sample forecast of y.

3.4.6 Standard Errors, t Statistics, p-values, F Statistic, Log Like-

lihood, etc.

These let us do formal statistical inference as to which regressors are relevant

for forecasting y.

3.4.7 Fitted Values and Residuals

The fitted values are effectively in-sample forecasts:

ŷt = x′tβ̂,

t = 1, ..., T . The in-sample forecast is automatically unbiased if an intercept

is included, because the residuals must then sum to 0 (see EPC 2).

The residuals are effectively in-sample forecast errors:

et = yt − ŷt,

t = 1, ..., T .
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Forecasters are keenly interested in studying the properties of their forecast

errors. Systematic patterns in forecast errors indicate that the forecasting

model is inadequate – as we will show and explore later in great depth,

forecast errors from a good forecasting model must be unforecastable! And

again, residuals are in-sample forecast errors.

3.4.8 Mean and Variance of Dependent Variable

An obvious benchmark forecast is the sample, or historical, mean of y, an

estimate of the unconditional mean of y. It’s obtained by regressing y on an

intercept alone – no conditioning on other regressors!

The sample standard deviation of y is a measure of the (in-sample) accu-

racy of the unconditional mean forecast under quadratic loss.

It’s natural to compare the accuracy of our conditional-mean forecasts to

naive unconditional-mean forecasts. R2 and R̄2, to which we now turn, do

precisely that.

3.4.9 R2 and R̄2

Hopefully conditional-mean forecasts that condition on regressors other than

just an intercept are better than naive unconditional-mean forecasts. R2

and R̄2 effectively compare the in-sample accuracy of conditional-mean and

unconditional-mean forecasts.

R2 = 1−
1
T

∑T
t=1 e

2
t

1
T

∑T
t=1(yt − ȳ)2

.

R̄2 = 1−
1

T−K
∑T

t=1 e
2
t

1
T−1

∑T
t=1(yt − ȳ)2

,
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3.4.10 SSR (or MSE), SER (or Residual s2), AIC and SIC

Each attempts an estimate of out-of-sample forecast accuracy (which is what

we really care about) on the basis of in-sample forecast accuracy, with an eye

toward selecting forecasting models. (That is, we’d like to select a forecast-

ing model that will perform well for out-of-sample forecasting, quite apart

from its in-sample fit.) Everything proceeds by inflating the in-sample mean-

squared error (MSE), in various attempts to offset the deflation from regres-

sion fitting, to obtain a good estimate of out-of-sample mean-squared error.

We have:

MSE =

∑T
t=1 e

2
t

T

s2 =

(
T

T −K

)
MSE

AIC =
(
e(

2K
T )
)
MSE

SIC =
(
T (KT )

)
MSE.

We will have much more to say about AIC and SIC in section ?? below.

3.4.11 Durbin-Watson

We mentioned earlier that we’re interested in examining whether there are

patterns in our forecast errors, because errors from a good forecasting model

should be unforecastable. The Durbin−Watson statistic tests for a partic-

ular and important such pattern, serial correlation. If the errors made by

a forecasting model are serially correlated, then they are forecastable, and

we could improve the forecasts by forecasting the forecast errors! We will

subsequently discuss such issues at great length.
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3.4.12 Residual Plots

Residual plots are useful for visually flagging neglected things that impact

forecasting. Residual serial correlation indicates that point forecasts could

be improved. Residual volatility clustering indicates that interval forecasts

and density could be improved. (Why?) Evidence of structural change in

residuals indicates that everything could be improved.

3.5 Exercises, Problems and Complements

1. Regression, regression diagnostics, and regression graphics in action.

At the end of each quarter, you forecast a series y for the next quarter.

You do this using a regression model that relates the current value of y

to the lagged value of a single predictor x. That is, you regress

yt → c, xt−1.

(In your computer workfile, yt is called Y, and xt−1 is called XLAG1. So

you run

Y → c,XLAG1.

(a) Why might include a lagged, rather then current, right-hand-side

variable?

(b) Graph Y vs. XLAG1 and discuss.

(c) Regress Y on XLAG1 and discuss (including related regression di-

agnostics that you deem relevant).

(d) Consider as many variations as you deem relevant on the general

theme. At a minimum, you will want to consider the following:

i. Does it appear necessary to include an intercept in the regres-

sion?
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ii. Does the functional form appear adequate? Might the relation-

ship be nonlinear?

iii. Do the regression residuals seem completely random, and if not,

do they appear serially correlated, heteroskedastic, or something

else?

iv. Are there any outliers? If so, does the estimated model appear

robust to their presence?

v. Do the regression disturbances appear normally distributed?

vi. How might you assess whether the estimated model is struc-

turally stable?

2. Least-squares regression residuals have zero mean.

Prove that least-squares regression residuals must sum to zero, and hence

must have zero mean, if an intercept is included in the regression. Hence

in-sample regression “forecasts” are unbiased.

3. Conditional mean and variance

Consider the regression model,

yt = β1 + β2 xt + β3x
2
t + β4zt + εt

εt

iid

∼ (0, σ2).

(a) Find the mean of yt conditional upon xt = x∗t and zt = z∗t . Does the

conditional mean vary with the conditioning information (x∗t , z
∗
t )?

Discuss.

(b) Find the variance of yt conditional upon xt = x∗t and zt = z∗t . Does

the conditional variance vary with the conditioning information (x∗t , z
∗
t )?

Discuss.
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4. Conditional means vs. linear projections.

Consider a scalar y and a vector x, with joint density f(y, x).

(a) The conditional mean E(y|x) is not necessarily linear in x. Give an

example of a non-linear conditional mean function.

(b) Consider such a non-linear conditional mean situation. You assume

(incorrectly) that a linear regression model holds. You estimate the

model by OLS. We say that you are estimating “linear projection

weights.” Linear projection weights are best linear approximations

(under quadratic loss) to conditional expectations.

(c) Consider again such a non-linear conditional mean situation. In

large samples and under quadratic loss, what can be said about

the comparative merits of conditional-mean vs. linear-projection

forecasts?

(d) What factors influence whether your prediction will actually perform

well?

5. Squared residual plots for time series.

Consider a time-series plot of squared residuals rather than “raw” resid-

uals. Why might that be useful?

6. HAC Standard Errors

Recall that OLS linear regression is consistent for the linear projection

under great generality. Also recall, however, that if regression distur-

bances are autocorrelated and/or heteroskedastic, then OLS standard

errors are biased and inconsistent. This is an issue if we want to do

inference as to which predictors (x variables) are of relevance. HAC

methods (short for “heteroskedasticity and autocorrelation consistent”)

provide a quick and sometimes-useful fix. The variance of the OLS esti-
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mator is:

Σ = (X ′X)−1E(X ′εε′X)(X ′X)−1.

For iid εt this collapses to the usual σ2(X ′X)−1, but otherwise we need

the full formula. Write it as:

Σ = (X ′X)−1E(X ′ΩX)(X ′X)−1.

The question is what estimator to use for E(X ′ΩX). In the case of pure

heteroskedasticty (Ω diagonal but not scalar), we can use the White

estimator,

̂E(X ′ΩX) = X ′diag(e2
1, ..., e

2
T )X =

T∑
t=1

e2
tx
′
txt.

In the case of heteroskedasticity and autocorrelation, we can use the

Newey-West estimator,

̂E(X ′ΩX) =
T∑
t=1

e2
tx
′
txt +

m∑
l=1

(
1− l

m+ 1

) T∑
t=l+1

etet−l(x
′
txt−l + x′t−lxt),

where the so-called “truncation lag” m is chosen by the user. The first

Newey-West term is the White estimator, and the second Newey-West

term is an additional adjustment for autocorrelation.

There is a strong case against HAC estimators in forecasting contexts:

They achieve robust inference for predictor relevance, but they don’t

exploit any heteroskedasticity present (to improve interval forecasts) or

serial correlation present (to improve point forecasts). Nevertheless we

introduce them here because (1) they are often produced by regression

software, and (2) they can be of use, as we will see, in exploratory

modeling en route to arriving at a complete forecasting model.


