
Chapter 16

Multivariate: Vector Autoregression

The regression model is an explicitly multivariate model, in which variables

are explained and forecast on the basis of their own history and the histories

of other, related, variables. Exploiting such cross-variable linkages may lead

to good and intuitive forecasting models, and to better forecasts than those

obtained from univariate models.

Regression models are often called causal, or explanatory, models. For

example, in the linear regression model,

yt = β0 + β1xt + εt

εt ∼ WN(0, σ2),

the presumption is that x helps determine, or cause, y, not the other way

around. For this reason the left-hand-side variable is sometimes called the

“endogenous” variable, and the right-hand side variables are called “exoge-

nous” or “explanatory” variables.

But ultimately regression models, like all statistical models, are models of

correlation, not causation. Except in special cases, all variables are endoge-

nous, and it’s best to admit as much from the outset. In this chapter we’ll

explicitly do so; we’ll work with systems of regression equations called vector

autoregressions (V ARs).
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16.1 Distributed Lag Models

An unconditional forecasting model like

yt = β0 + δxt−1 + εt

can be immediately generalized to the distributed lag model,

yt = β0 +

Nx∑
i=1

δixt−i + εt.

We say that y depends on a distributed lag of past x’s. The coefficients

on the lagged x’s are called lag weights, and their pattern is called the lag

distribution.

One way to estimate a distributed lag model is simply to include all Nx

lags of x in the regression, which can be estimated by least squares in the

usual way. In many situations, however, Nx might be quite a large number, in

which case we’d have to use many degrees of freedom to estimate the model,

violating the parsimony principle. Often we can recover many of those degrees

of freedom without seriously worsening the model’s fit by constraining the lag

weights to lie on a low-order polynomial. Such polynomial distributed lags

promote smoothness in the lag distribution and may lead to sophisticatedly

simple models with improved forecasting performance.

Polynomial distributed lag models are estimated by minimizing the sum

of squared residuals in the usual way, subject to the constraint that the

lag weights follow a low-order polynomial whose degree must be specified.

Suppose, for example, that we constrain the lag weights to follow a second-

degree polynomial. Then we find the parameter estimates by solving the
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problem

min

β0, δi

T∑
t=Nx+1

[
yt − β0 −

Nx∑
i=1

δixt−i

]2

,

subject to

δi = P (i) = a+ bi+ ci2, i = 1, ..., Nx.

This converts the estimation problem from one of estimating 1 +Nx param-

eters, β0, δ1, ..., δNx, to one of estimating four parameters, β0, a, b and c.

Sometimes additional constraints are imposed on the shape of the polyno-

mial, such as P (Nx) = 0, which enforces the idea that the dynamics have

been exhausted by lag Nx.

Polynomial distributed lags produce aesthetically appealing, but basically

ad hoc, lag distributions. After all, why should the lag weights necessarily

follow a low-order polynomial? An alternative and often preferable approach

makes use of the rational distributed lags that we introduced in Chapter

7 in the context of univariate ARMA modeling. Rational distributed lags

promote parsimony, and hence smoothness in the lag distribution, but they

do so in a way that’s potentially much less restrictive than requiring the lag

weights to follow a low-order polynomial. We might, for example, use a model

like

yt =
A(L)

B(L)
xt + εt,

where A(L) and B(L) are low-order polynomials in the lag operator. Equiv-

alently, we can write

B(L)yt = A(L)xt +B(L)εt,

which emphasizes that the rational distributed lag of x actually brings both

lags of x and lags of y into the model. One way or another, it’s crucial to

allow for lags of y, and we now study such models in greater depth.
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16.2 Regressions with Lagged Dependent Variables, and

Regressions with ARMA Disturbances

There’s something missing in distributed lag models of the form

yt = β0 +

Nx∑
i=1

δixt−i + εt.

A multivariate model (in this case, a regression model) should relate the

current value y to its own past and to the past of x. But as presently written,

we’ve left out the past of y! Even in distributed lag models, we always want

to allow for the presence of the usual univariate dynamics. Put differently,

the included regressors may not capture all the dynamics in y, which we need

to model one way or another. Thus, for example, a preferable model includes

lags of the dependent variable,

yt = β0 +

Ny∑
i=1

αiyt−i +

Nx∑
j=1

δjxt−j + εt.

This model, a distributed lag regression model with lagged dependent vari-

ables, is closely related to, but not exactly the same as, the rational dis-

tributed lag model introduced earlier. (Why?) You can think of it as arising

by beginning with a univariate autoregressive model for y, and then intro-

ducing additional explanatory variables. If the lagged y’s don’t play a role, as

assessed with the usual tests, we can always delete them, but we never want

to eliminate from the outset the possibility that lagged dependent variables

play a role. Lagged dependent variables absorb residual serial correlation and

can dramatically enhance forecasting performance.

Alternatively, we can capture own-variable dynamics in distributed-lag re-

gression models by using a distributed-lag regression model with ARMA dis-

turbances. Recall that our ARMA(p, q) models are equivalent to regression
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models, with only a constant regressor, and with ARMA(p, q) disturbances,

yt = β0 + εt

εt =
Θ(L)

Φ(L)
vt

vt ∼ WN(0, σ2).

We want to begin with the univariate model as a baseline, and then generalize

it to allow for multivariate interaction, resulting in models such as

yt = β0 +

Nx∑
i=1

δixt−i + εt

εt =
Θ(L)

Φ(L)
vt

vt ∼ WN(0, σ2).

Regressions with ARMA disturbances make clear that regression (a statis-

tical and econometric tool with a long tradition) and the ARMA model of

time-series dynamics (a more recent innovation) are not at all competitors;

rather, when used appropriately they can be highly complementary.

It turns out that the distributed-lag regression model with autoregressive

disturbances – a great workhorse in econometrics – is a special case of the

more general model with lags of both y and x and white noise disturbances.

To see this, let’s take the simple example of an unconditional (1-step-ahead)

regression forecasting model with AR(1) disturbances:

yt = β0 + β1xt−1 + εt

εt = φεt−1 + vt

vt ∼ WN(0, σ2).
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In lag operator notation, we write the AR(1) regression disturbance as

(1− φL)εt = vt,

or

εt =
1

(1− φL)
vt.

Thus we can rewrite the regression model as

yt = β0 + β1xt−1 +
1

(1− φL)
vt.

Now multiply both sides by (1− φL) to get

(1− φL)yt = (1− φ)β0 + β1(1− φL)xt−1 + vt,

or

yt = φyt−1 + (1− φ)β0 + β1xt−1 − φβ1xt−2 + vt.

Thus a model with one lag of x on the right and AR(1) disturbances is equiv-

alent to a model with yt−1, xt−1, and xt−2 on the right-hand side and white

noise errors, subject to the restriction that the coefficient on the second lag of

xt−2 is the negative of the product of the coefficients on yt−1 and xt−1. Thus,

distributed lag regressions with lagged dependent variables are more general

than distributed lag regressions with dynamic disturbances. In practice, the

important thing is to allow for own-variable dynamics somehow , in order to

account for dynamics in y not explained by the right-hand-side variables.

Whether we do so by including lagged dependent variables or by allowing

for ARMA disturbances can occasionally be important, but usually it’s a

comparatively minor issue.



16.3. VECTOR AUTOREGRESSIONS 467

16.3 Vector Autoregressions

A univariate autoregression involves one variable. In a univariate autore-

gression of order p, we regress a variable on p lags of itself. In contrast,

a multivariate autoregression – that is, a vector autoregression, or V AR –

involves N variables. In an N -variable vector autoregression of order p, or

V AR(p), we estimate N different equations. In each equation, we regress the

relevant left-hand-side variable on p lags of itself, and p lags of every other

variable.1 Thus the right-hand-side variables are the same in every equation

– p lags of every variable.

The key point is that, in contrast to the univariate case, vector autore-

gressions allow for cross-variable dynamics. Each variable is related not only

to its own past, but also to the past of all the other variables in the system.

In a two-variable V AR(1), for example, we have two equations, one for each

variable (y1 and y2) . We write

y1,t = φ11y1,t−1 + φ12y2,t−1 + ε1,t

y2,t = φ21y1,t−1 + φ22y2,t−1 + ε2,t.

Each variable depends on one lag of the other variable in addition to one lag

of itself; that’s one obvious source of multivariate interaction captured by the

V AR that may be useful for forecasting. In addition, the disturbances may

be correlated, so that when one equation is shocked, the other will typically

be shocked as well, which is another type of multivariate interaction that

univariate models miss. We summarize the disturbance variance-covariance

structure as

ε1,t ∼ WN(0, σ2
1)

ε2,t ∼ WN(0, σ2
2)

1Trends, seasonals, and other exogenous variables may also be included, as long as they’re all included in
every equation.
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cov(ε1,t, ε2,t) = σ12.

The innovations could be uncorrelated, which occurs when σ12 = 0, but they

needn’t be.

You might guess that V ARs would be hard to estimate. After all, they’re

fairly complicated models, with potentially many equations and many right-

hand-side variables in each equation. In fact, precisely the opposite is true.

V ARs are very easy to estimate, because we need only run N linear re-

gressions. That’s one reason why V ARs are so popular – OLS estimation

of autoregressive models is simple and stable, in contrast to the numerical

estimation required for models with moving-average components.2 Equation-

by-equation OLS estimation also turns out to have very good statistical prop-

erties when each equation has the same regressors, as is the case in standard

V ARs. Otherwise, a more complicated estimation procedure called seem-

ingly unrelated regression, which explicitly accounts for correlation across

equation disturbances, would be required to obtain estimates with good sta-

tistical properties.3

When fitting V ARs to data, we use the Schwarz and Akaike criteria, just

as in the univariate case. The formulas differ, however, because we’re now

working with a multivariate system of equations rather than a single equation.

To get an AIC or SIC value for a V AR system, we could add up the equation-

by-equation AICs or SICs, but unfortunately, doing so is appropriate only

if the innovations are uncorrelated across equations, which is a very special

and unusual situation. Instead, explicitly multivariate versions of the AIC

and SIC – and more advanced formulas – are required that account for cross-

equation innovation correlation. It’s beyond the scope of this book to derive

and present those formulas, because they involve unavoidable use of matrix

2Estimation of MA and ARMA models is stable enough in the univariate case but rapidly becomes
unwieldy in multivariate situations. Hence multivariate ARMA models are used infrequently in practice, in
spite of the potential they hold for providing parsimonious approximations to the Wold representation.

3For an exposition of seemingly unrelated regression, see Pindyck and Rubinfeld (1997).
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algebra, but fortunately we don’t need to. They’re pre-programmed in many

computer packages, and we interpret the AIC and SIC values computed for

V ARs of various orders in exactly the same way as in the univariate case: we

select that order p such that the AIC or SIC is minimized.

We construct V AR forecasts in a way that precisely parallels the univari-

ate case. We can construct 1-step-ahead point forecasts immediately, because

all variables on the right-hand side are lagged by one period. Armed with

the 1-step-ahead forecasts, we can construct the 2-step-ahead forecasts, from

which we can construct the 3-step-ahead forecasts, and so on in the usual way,

following the chain rule of forecasting. We construct interval and density fore-

casts in ways that also parallel the univariate case. The multivariate nature

of V ARs makes the derivations more tedious, however, so we bypass them.

As always, to construct practical forecasts we replace unknown parameters

by estimates.

16.4 Predictive Causality

There’s an important statistical notion of causality that’s intimately related

to forecasting and naturally introduced in the context of V ARs. It is based

on two key principles: first, cause should occur before effect, and second,

a causal series should contain information useful for forecasting that is not

available in the other series (including the past history of the variable being

forecast). In the unrestricted V ARs that we’ve studied thus far, everything

causes everything else, because lags of every variable appear on the right of

every equation. Cause precedes effect because the right-hand-side variables

are lagged, and each variable is useful in forecasting every other variable.

We stress from the outset that the notion of predictive causality contains

little if any information about causality in the philosophical sense. Rather,

the statement “yi causes yj” is just shorthand for the more precise, but long-
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winded, statement, “ yi contains useful information for predicting yj (in the

linear least squares sense), over and above the past histories of the other

variables in the system.” To save space, we simply say that yi causes yj.

To understand what predictive causality means in the context of a V AR(p),

consider the j-th equation of the N -equation system, which has yj on the left

and p lags of each of the N variables on the right. If yi causes yj, then at

least one of the lags of yi that appear on the right side of the yj equation

must have a nonzero coefficient.

It’s also useful to consider the opposite situation, in which yi does not

cause yj. In that case, all of the lags of that yi that appear on the right

side of the yj equation must have zero coefficients.4 Statistical causality tests

are based on this formulation of non-causality. We use an F -test to assess

whether all coefficients on lags of yi are jointly zero.

Note that we’ve defined non-causality in terms of 1-step-ahead prediction

errors. In the bivariate V AR, this implies non-causality in terms of h-step-

ahead prediction errors, for all h. (Why?) In higher dimensional cases, things

are trickier; 1-step-ahead noncausality does not necessarily imply noncausal-

ity at other horizons. For example, variable i may 1-step cause variable j,

and variable j may 1-step cause variable k. Thus, variable i 2-step causes

variable k, but does not 1-step cause variable k.

Causality tests are often used when building and assessing forecasting

models, because they can inform us about those parts of the workings of

complicated multivariate models that are particularly relevant for forecasting.

Just staring at the coefficients of an estimated V AR (and in complicated

systems there are many coefficients) rarely yields insights into its workings.

Thus we need tools that help us to see through to the practical forecasting

properties of the model that concern us. And we often have keen interest

in the answers to questions such as “Does yi contribute toward improving

4Note that in such a situation the error variance in forecasting yj using lags of all variables in the system
will be the same as the error variance in forecasting yj using lags of all variables in the system except yi.



16.4. PREDICTIVE CAUSALITY 471

forecasts of yj?,” and “Does yj contribute toward improving forecasts of yi?”

If the results violate intuition or theory, then we might scrutinize the model

more closely. In a situation in which we can’t reject a certain noncausality

hypothesis, and neither intuition nor theory makes us uncomfortable with it,

we might want to impose it, by omitting certain lags of certain variables from

certain equations.

Various types of causality hypotheses are sometimes entertained. In any

equation (the j-th, say), we’ve already discussed testing the simple noncausal-

ity hypothesis that:

(a) No lags of variable i aid in one-step-ahead prediction of variable j.

We can broaden the idea, however. Sometimes we test stronger noncausal-

ity hypotheses such as:

(b) No lags of a set of other variables aid in one-step-ahead prediction of

variable j.

(b) No lags of any other variables aid in one-step-ahead prediction of variable

j.

All of hypotheses (a), (b) and (c) amount to assertions that various co-

efficients are zero. Finally, sometimes we test noncausality hypotheses

that involve more than one equation, such as:

(b) No variable in a set A causes any variable in a set B, in which case we

say that the variables in A are block non-causal for those in B.

This particular noncausality hypothesis corresponds to exclusion restric-

tions that hold simultaneously in a number of equations. Again, however,

standard test procedures are applicable.
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16.5 Impulse-Response Functions

The impulse-response function is another device that helps us to learn about

the dynamic properties of vector autoregressions of interest to forecasters.

We’ll introduce it first in the univariate context, and then we’ll move to

V ARs. The question of interest is simple and direct: How does a unit inno-

vation to a series affect it, now and in the future? To answer the question,

we simply read off the coefficients in the moving average representation of

the process.

We’re used to normalizing the coefficient on εt to unity in moving-average

representations, but we don’t have to do so; more generally, we can write

yt = b0εt + b1εt−1 + b2εt−2 + ...

εt ∼ WN(0, σ2).

The additional generality introduces ambiguity, however, because we can

always multiply and divide every εt by an arbitrary constant m, yielding an

equivalent model but with different parameters and innovations,

yt = (b0m)

(
1

m
εt

)
+ (b1m)

(
1

m
εt−1

)
+ (b2m)

(
1

m
εt−2

)
+ ...

εt ∼ WN(0, σ2)

or

yt = b′0ε
′
t + b′1ε

′
t−1 + b′2ε

′
t−2 + ...

ε′t ∼ WN(0,
σ2

m2
),

where b′i = bim and ε′t = εt
m .

To remove the ambiguity, we must set a value of m. Typically we set

m = 1, which yields the standard form of the moving average representation.

For impulse-response analysis, however, a different normalization turns out
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to be particularly convenient; we choose m = σ, which yields

yt = (b0σ)

(
1

σ
εt

)
+ (b1σ)

(
1

σ
εt−1

)
+ (b2σ)

(
1

σ
εt−2

)
+ ...

εt ∼ WN(0, σ2),

or

yt = b′0ε
′
t + b′1ε

′
t−1 + b′2ε

′
t−2 + ...

ε′t ∼ WN(0, 1),

where b′i = biσ and ε′t = εt
σ . Taking m = σ converts shocks to “standard de-

viation units,” because a unit shock to ε′t corresponds to a one standard

deviation shock to εt.

To make matters concrete, consider the univariate AR(1) process,

yt = φyt−1 + εt

εt ∼ WN(0, σ2).

The standard moving average form is

yt = εt + φεt−1 + φ2εt−2 + ...

εt ∼ WN(0, σ2),

and the equivalent representation in standard deviation units is

yt = b0ε
′
t + b1ε

′
t−1 + b2ε

′
t−2 + ...

ε′t ∼ WN(0, 1)

where bi = φiσ and ε′t = εt
σ . The impulse-response function is { b0, b1, ...

}. The parameter b0 is the contemporaneous effect of a unit shock to ε′t,

or equivalently a one standard deviation shock to εt; as must be the case,
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then, b0 = σ. Note well that b0 gives the immediate effect of the shock at

time t, when it hits. The parameter b1, which multiplies ε′t−1, gives the effect

of the shock one period later, and so on. The full set of impulse-response

coefficients, {b0, b1, ...}, tracks the complete dynamic response of y to the

shock.

Now we consider the multivariate case. The idea is the same, but there

are more shocks to track. The key question is, “How does a unit shock to εi

affect yj, now and in the future, for all the various combinations of i and j?”

Consider, for example, the bivariate V AR(1),

y1t = φ11y1,t−1 + φ12y2,t−1 + ε1t

y2t = φ21y1,t−1 + φ22y2,t−1 + ε2t

ε1,t ∼ WN(0, σ2
1)

ε2,t ∼ WN(0, σ2
2)

cov(ε1, ε2) = σ12.

The standard moving average representation, obtained by back substitution,

is

y1t = ε1t + φ11ε1,t−1 + φ12ε2,t−1 + ...

y2t = ε2t + φ21ε1,t−1 + φ22ε2,t−1 + ...

ε1,t ∼ WN(0, σ2
1)

ε2,t ∼ WN(0, σ2
2)

cov(ε1, ε2) = σ12.

Just as in the univariate case, it proves fruitful to adopt a different nor-

malization of the moving average representation for impulse-response analy-

sis. The multivariate analog of our univariate normalization by σ is called
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normalization by the Cholesky factor.5 The resulting VAR moving average

representation has a number of useful properties that parallel the univari-

ate case precisely. First, the innovations of the transformed system are in

standard deviation units. Second, although the current innovations in the

standard representation have unit coefficients, the current innovations in the

normalized representation have non-unit coefficients. In fact, the first equa-

tion has only one current innovation, ε1t. (The other has a zero coefficient.)

The second equation has both current innovations. Thus, the ordering of the

variables can matter.6

If y1 is ordered first, the normalized representation is

y1,t = b0
11ε
′
1,t + b1

11ε
′
1,t−1 + b1

12ε
′
2,t−1 + ...

y2,t = b0
21ε
′
1,t + b0

22ε
′
2,t + b1

21ε
′
1,t−1 + b1

22ε
′
2,t−1 + ...

ε′1,t ∼ WN(0, 1)

ε′2,t ∼ WN(0, 1)

cov(ε′1, ε
′
2) = 0.

Alternatively, if y2 ordered first, the normalized representation is

y2,t = b0
22ε
′
2,t + b1

21ε
′
1,t−1 + b1

22ε
′
2,t−1 + ...

y1,t = b0
11ε
′
1,t + b0

12ε2,t + b1
11ε1,t−1 + b1

12ε2,t−1 + ...

ε′1,t ∼ WN(0, 1)

ε′2,t ∼ WN(0, 1)

cov(ε′1, ε
′
2) = 0.

5For detailed discussion and derivation of this advanced topic, see Hamilton (1994).
6In higher-dimensional V AR’s, the equation that’s first in the ordering has only one current innovation,

ε′1t. The equation that’s second has only current innovations ε′1t and ε′2t, the equation that’s third has only
current innovations ε′1t, ε

′
2t and ε′3t, and so on.
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Finally, the normalization adopted yields a zero covariance between the

disturbances of the transformed system. This is crucial, because it lets us

perform the experiment of interest – shocking one variable in isolation of the

others, which we can do if the innovations are uncorrelated but can’t do if

they’re correlated, as in the original unnormalized representation.

After normalizing the system, for a given ordering, say y1 first, we compute

four sets of impulse-response functions for the bivariate model: response of

y1 to a unit normalized innovation to y1, { b0
11, b

1
11, b

2
11, ... }, response of y1 to

a unit normalized innovation to y2, { b1
12, b

2
12, ... }, response of y2 to a unit

normalized innovation to y2, { b0
22, b

1
22, b

2
22, ... }, and response of y2 to a unit

normalized innovation to y1, { b0
21, b

1
21, b

2
21, ... }. Typically we examine the set

of impulse-response functions graphically. Often it turns out that impulse-

response functions aren’t sensitive to ordering, but the only way to be sure

is to check.7

In practical applications of impulse-response analysis, we simply replace

unknown parameters by estimates, which immediately yields point estimates

of the impulse-response functions. Getting confidence intervals for impulse-

response functions is trickier, however, and adequate procedures are still un-

der development.

16.6 Variance Decompositions

Another way of characterizing the dynamics associated with V ARs, closely

related to impulse-response functions, is the variance decomposition. Vari-

ance decompositions have an immediate link to forecasting – they answer the

question, “How much of the h-step-ahead forecast error variance of variable

i is explained by innovations to variable j, for h = 1, 2, ...” As with impulse-

response functions, we typically make a separate graph for every (i, j) pair.

7Note well that the issues of normalization and ordering only affect impulse-response analysis; for fore-
casting we only need the unnormalized model.
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Figure 16.1: Housing Starts and Completions, 1968 - 1996

Impulse-response functions and the variance decompositions present the same

information (although they do so in different ways). For that reason it’s not

strictly necessary to present both, and impulse-response analysis has gained

greater popularity. Hence we offer only this brief discussion of variance

decomposition. In the application to housing starts and completions that

follows, however, we examine both impulse-response functions and variance

decompositions. The two are highly complementary, as with information cri-

teria and correlograms for model selection, and the variance decompositions

have a nice forecasting motivation.

16.7 Application: Housing Starts and Completions

We estimate a bivariate V AR for U.S. seasonally-adjusted housing starts and

completions, two widely-watched business cycle indicators, 1968.01-1996.06.

We use the V AR to produce point extrapolation forecasts. We show housing

starts and completions in Figure 16.1. Both are highly cyclical, increasing

during business-cycle expansions and decreasing during contractions. More-

over, completions tend to lag behind starts, which makes sense because a

house takes time to complete.
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Figure 16.2: Housing Starts Correlogram

We split the data into an estimation sample, 1968.01-1991.12, and a hold-

out sample, 1992.01-1996.06 for forecasting. We therefore perform all model

specification analysis and estimation, to which we now turn, on the 1968.01-

1991.12 data. We show the starts correlogram in Table 16.2 and Figure 16.3.

The sample autocorrelation function decays slowly, whereas the sample par-

tial autocorrelation function appears to cut off at displacement 2. The pat-

terns in the sample autocorrelations and partial autocorrelations are highly

statistically significant, as evidenced by both the Bartlett standard errors

and the Ljung-Box Q-statistics. The completions correlogram, in Table 16.4

and Figure 16.5, behaves similarly.

We’ve not yet introduced the cross correlation function. There’s been no

need, because it’s not relevant for univariate modeling. It provides important

information, however, in the multivariate environments that now concern us.

Recall that the autocorrelation function is the correlation between a variable

and lags of itself. The cross-correlation function is a natural multivariate

analog; it’s simply the correlation between a variable and lags of another
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Figure 16.3: Housing Starts Autocorrelations and Partial Autocorrelations

variable. We estimate those correlations using the usual estimator and graph

them as a function of displacement along with the Bartlett two- standard-

error bands, which apply just as in the univariate case.

The cross-correlation function (Figure 16.6) for housing starts and com-

pletions is very revealing. Starts and completions are highly correlated at all

displacements, and a clear pattern emerges as well: although the contempo-

raneous correlation is high (.78), completions are maximally correlated with

starts lagged by roughly 6-12 months (around .90). Again, this makes good

sense in light of the time it takes to build a house.

Now we proceed to model starts and completions. We need to select the

order, p, of our V AR(p). Based on exploration using multivariate versions of

SIC and AIC, we adopt a V AR(4).
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Figure 16.4: Housing Completions Correlogram

First consider the starts equation (Table 16.7a), residual plot (Figure

16.7b), and residual correlogram (Table 16.8, Figure 16.9). The explana-

tory power of the model is good, as judged by the R2 as well as the plots

of actual and fitted values, and the residuals appear white, as judged by

the residual sample autocorrelations, partial autocorrelations, and Ljung-Box

statistics. Note as well that no lag of completions has a significant effect on

starts, which makes sense – we obviously expect starts to cause completions,

but not conversely. The completions equation (Table 16.10a), residual plot

(Figure 16.10b), and residual correlogram (Table 16.11, Figure 16.12) appear

similarly good. Lagged starts, moreover, most definitely have a significant

effect on completions.

Table 16.13 shows the results of formal causality tests. The hypothesis

that starts don’t cause completions is simply that the coefficients on the four

lags of starts in the completions equation are all zero. The F -statistic is

overwhelmingly significant, which is not surprising in light of the previously-
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Figure 16.5: Housing Completions Autocorrelations and Partial Autocorrelations

Figure 16.6: Housing Starts and Completions Sample Cross Correlations
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(a) VAR Starts Equation

(b) VAR Starts Equation - Residual Plot

Figure 16.7: VAR Starts Model

noticed highly-significant t-statistics. Thus we reject noncausality from starts

to completions at any reasonable level. Perhaps more surprising, we also

reject noncausality from completions to starts at roughly the 5% level. Thus

the causality appears bi-directional, in which case we say there is feedback.
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Figure 16.8: VAR Starts Residual Correlogram
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Figure 16.9: VAR Starts Equation - Sample Autocorrelation and Partial Autocorrelation
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(a) VAR Completions Equation

(b) VAR Completions Equation - Residual Plot

Figure 16.10: VAR Completions Model
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Figure 16.11: VAR Completions Residual Correlogram
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Figure 16.12: VAR Completions Equation - Sample Autocorrelation and Partial Autocorre-
lation
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Figure 16.13: Housing Starts and Completions - Causality Tests

In order to get a feel for the dynamics of the estimated V AR before pro-

ducing forecasts, we compute impulse-response functions and variance de-

compositions. We present results for starts first in the ordering, so that a

current innovation to starts affects only current starts, but the results are

robust to reversal of the ordering.

In Figure 16.14, we display the impulse-response functions. First let’s

consider the own-variable impulse responses, that is, the effects of a starts

innovation on subsequent starts or a completions innovation on subsequent

completions; the effects are similar. In each case, the impulse response is

large and decays in a slow, approximately monotonic fashion. In contrast, the

cross-variable impulse responses are very different. An innovation to starts

produces no movement in completions at first, but the effect gradually builds

and becomes large, peaking at about fourteen months. (It takes time to build

houses.) An innovation to completions, however, produces little movement

in starts at any time. Figure 16.15 shows the variance decompositions. The

fraction of the error variance in forecasting starts due to innovations in starts

is close to 100 percent at all horizons. In contrast, the fraction of the error

variance in forecasting completions due to innovations in starts is near zero at

short horizons, but it rises steadily and is near 100 percent at long horizons,

again reflecting time-to-build effects.

Finally, we construct forecasts for the out-of-sample period, 1992.01-1996.06.

The starts forecast appears in Figure 16.16. Starts begin their recovery before

1992.01, and the V AR projects continuation of the recovery. The V AR fore-
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Figure 16.14: Housing Starts and Completions - VAR Impulse Response Functions. Response
is to 1 SD innovation.

casts captures the general pattern quite well, but it forecasts quicker mean

reversion than actually occurs, as is clear when comparing the forecast and

realization in Figure 16.17. The figure also makes clear that the recovery

of housing starts from the recession of 1990 was slower than the previous

recoveries in the sample, which naturally makes for difficult forecasting. The

completions forecast suffers the same fate, as shown in Figures 16.18 and

16.19. Interestingly, however, completions had not yet turned by 1991.12,

but the forecast nevertheless correctly predicts the turning point. (Why?)
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Figure 16.15: Housing Starts and Completions - VAR Variance Decompositions
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Figure 16.16: Housing Starts Forecast

Figure 16.17: Housing Starts Forecast and Realization
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Figure 16.18: Housing Completions Forecast

Figure 16.19: Housing Completions Forecast and Realization
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16.8 Exercises, Problems and Complements

1. Housing starts and completions, continued.

Our VAR analysis of housing starts and completions, as always, involved

many judgment calls. Using the starts and completions data, assess the

adequacy of our models and forecasts. Among other things, you may

want to consider the following questions:

a. Should we allow for a trend in the forecasting model?

b. How do the results change if, in light of the results of the causality

tests, we exclude lags of completions from the starts equation, re-

estimate by seemingly-unrelated regression, and forecast?

c. Are the VAR forecasts of starts and completions more accurate than

univariate forecasts?

2. Forecasting crop yields.

Consider the following dilemma in agricultural crop yield forecasting:

The possibility of forecasting crop yields several years in advance would,

of course, be of great value in the planning of agricultural production.

However, the success of long-range crop forecasts is contingent not only

on our knowledge of the weather factors determining yield, but also on

our ability to predict the weather. Despite an abundant literature in

this field, no firm basis for reliable long-range weather forecasts has yet

been found. (Sanderson, 1953, p. 3)

a. How is the situation related to our concerns in this chapter, and

specifically, to the issue of conditional vs. unconditional forecasting?

b. What variables other than weather might be useful for predicting crop

yield?

c. How would you suggest that the forecaster should proceed?
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3. Econometrics, time series analysis, and forecasting.

As recently as the early 1970s, time series analysis was mostly univari-

ate and made little use of economic theory. Econometrics, in contrast,

stressed the cross-variable dynamics associated with economic theory,

with equations estimated using multiple regression. Econometrics, more-

over, made use of simultaneous systems of such equations, requiring

complicated estimation methods. Thus the econometric and time series

approaches to forecasting were very different.8

As Klein (1981) notes, however, the complicated econometric system

estimation methods had little payoff for practical forecasting and were

therefore largely abandoned, whereas the rational distributed lag pat-

terns associated with time-series models led to large improvements in

practical forecast accuracy.9 Thus, in more recent times, the distinction

between econometrics and time series analysis has largely vanished, with

the union incorporating the best of both. In many respects the V AR is

a modern embodiment of both econometric and time-series traditions.

V ARs use economic considerations to determine which variables to in-

clude and which (if any) restrictions should be imposed, allow for rich

multivariate dynamics, typically require only simple estimation tech-

niques, and are explicit forecasting models.

4. Business cycle analysis and forecasting: expansions, contractions, turn-

ing points, and leading indicators10.

The use of anticipatory data is linked to business cycle analysis in gen-

eral, and leading indicators in particular. During the first half of this

8Klein and Young (1980) and Klein (1983) provide good discussions of the traditional econometric si-
multaneous equations paradigm, as well as the link between structural simultaneous equations models and
reduced-form time series models. Wallis (1995) provides a good summary of modern large-scale macroecono-
metric modeling and forecasting, and Pagan and Robertson (2002) provide an intriguing discussion of the
variety of macroeconomic forecasting approaches currently employed in central banks around the world.

9For an acerbic assessment circa the mid-1970s, see Jenkins (1979).
10This complement draws in part upon Diebold and Rudebusch (1996).
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century, much research was devoted to obtaining an empirical character-

ization of the business cycle. The most prominent example of this work

was Burns and Mitchell (1946), whose summary empirical definition was:

Business cycles are a type of fluctuation found in the aggregate eco-

nomic activity of nations that organize their work mainly in business

enterprises: a cycle consists of expansions occurring at about the same

time in many economic activities, followed by similarly general reces-

sions, contractions, and revivals which merge into the expansion phase

of the next cycle. (p. 3)

The comovement among individual economic variables was a key fea-

ture of Burns and Mitchell’s definition of business cycles. Indeed, the

comovement among series, taking into account possible leads and lags

in timing, was the centerpiece of Burns and Mitchell’s methodology. In

their analysis, Burns and Mitchell considered the historical concordance

of hundreds of series, including those measuring commodity output, in-

come, prices, interest rates, banking transactions, and transportation

services, and they classified series as leading, lagging or coincident. One

way to define a leading indicator is to say that a series x is a leading indi-

cator for a series y if x causes y in the predictive sense. According to that

definition, for example, our analysis of housing starts and completions

indicates that starts are a leading indicator for completions.

Leading indicators have the potential to be used in forecasting equa-

tions in the same way as anticipatory variables. Inclusion of a lead-

ing indicator, appropriately lagged, can improve forecasts. Zellner and

Hong (1989) and Zellner, Hong and Min (1991), for example, make good

use of that idea in their ARLI (autoregressive leading-indicator) mod-

els for forecasting aggregate output growth. In those models, Zellner

et al . build forecasting models by regressing output on lagged output

and lagged leading indicators; they also use shrinkage techniques to coax
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the forecasted growth rates toward the international average, which im-

proves forecast performance.

Burns and Mitchell used the clusters of turning points in individual se-

ries to determine the monthly dates of the turning points in the overall

business cycle, and to construct composite indexes of leading, coincident,

and lagging indicators. Such indexes have been produced by the National

Bureau of Economic Research (a think tank in Cambridge, Mass.), the

Department of Commerce (a U.S. government agency in Washington,

DC), and the Conference Board (a business membership organization

based in New York).11 Composite indexes of leading indicators are often

used to gauge likely future economic developments, but their usefulness

is by no means uncontroversial and remains the subject of ongoing re-

search. For example, leading indexes apparently cause aggregate output

in analyses of ex post historical data (Auerbach, 1982), but they ap-

pear much less useful in real-time forecasting, which is what’s relevant

(Diebold and Rudebusch, 1991).

5. Spurious regression.

Consider two variables y and x, both of which are highly serially corre-

lated, as are most series in business, finance and economics. Suppose in

addition that y and x are completely unrelated, but that we don’t know

they’re unrelated, and we regress y on x using ordinary least squares.

a. If the usual regression diagnostics (e.g., R2, t-statistics, F -statistic)

were reliable, we’d expect to see small values of all of them. Why?

b. In fact the opposite occurs; we tend to see large R2, t-, and F -

statistics, and a very low Durbin-Watson statistic. Why the low

11The indexes build on very early work, such as the Harvard “Index of General Business Conditions.” For
a fascinating discussion of the early work, see Hardy (1923), Chapter 7.
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Durbin-Watson? Why, given the low Durbin-Watson, might you ex-

pect misleading R2, t-, and F -statistics?

c. This situation, in which highly persistent series that are in fact unre-

lated nevertheless appear highly related, is called spurious regression.

Study of the phenomenon dates to the early twentieth century, and

a key study by Granger and Newbold (1974) drove home the preva-

lence and potential severity of the problem. How might you insure

yourself against the spurious regression problem? (Hint: Consider al-

lowing for lagged dependent variables, or dynamics in the regression

disturbances, as we’ve advocated repeatedly.)

6. Comparative forecasting performance of V ARs and univariate models.

Using the housing starts and completions data on the book’s website,

compare the forecasting performance of the VAR used in this chapter

to that of the obvious competitor: univariate autoregressions. Use the

same in-sample and out-of-sample periods as in the chapter. Why might

the forecasting performance of the V AR and univariate methods differ?

Why might you expect the V AR completions forecast to outperform

the univariate autoregression, but the V AR starts forecast to be no

better than the univariate autoregression? Do your results support your

conjectures?

7. V ARs as Reduced Forms of Simultaneous Equations Models.

V ARs look restrictive in that only lagged values appear on the right.

That is, the LHS variables are not contemporaneously affected by other

variables – instead they are contemporaneously affected only by shocks.

That appearance is deceptive, however, as simultaneous equations sys-

tems have V AR reduced forms. Consider, for example, the simultaneous

system

(A0 + A1L+ ...+ ApL
p)yt = vt
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vt ∼ iid(0,Ω).

Mutiplying through by A−1
0 yields

(I + A−1
0 A1L+ ...+ A−1

0 ApL
p)yt = εt

εt ∼ iid(0, A−1
0 ΩA−1

0
′
)

or

(I + Φ1L+ ...+ ΦpL
p)yt = εt

εt ∼ iid(0,Σ)

Σ = A−1
0 ΩA−1

0
′
,

which is a standard V AR. The V AR structure, moreover, is needed for

forecasting, as everything on the RHS is lagged by at least one period,

making Wold’s chain rule immediately applicable.

8. Transfer Function Models.

We saw that distributed lag regressions with lagged dependent variables

are more general than distributed lag regressions with dynamic distur-

bances. Transfer function models are more general still, and include

both as special cases.12 The basic idea is to exploit the power and par-

simony of rational distributed lags in modeling both own-variable and

cross-variable dynamics. Imagine beginning with a univariate ARMA

model,

yt =
C(L)

D(L)
εt,

which captures own-variable dynamics using a rational distributed lag.

Now extend the model to capture cross-variable dynamics using a ratio-

nal distributed lag of the other variable, which yields the general transfer

12Table 1 displays a variety of important forecasting models, all of which are special cases of the transfer
function model.
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function model,

yt =
A(L)

B(L)
xt +

C(L)

D(L)
εt.

Distributed lag regression with lagged dependent variables is a poten-

tially restrictive special case, which emerges when C(L) = 1 and B(L) =

D(L). (Verify this for yourself.) Distributed lag regression with ARMA

disturbances is also a special case, which emerges when B(L) = 1. (Ver-

ify this too.) In practice, the important thing is to allow for own-variable

dynamics somehow , in order to account for dynamics in y not explained

by the RHS variables. Whether we do so by including lagged dependent

variables, or by allowing for ARMA disturbances, or by estimating gen-

eral transfer function models, can occasionally be important, but usually

it’s a comparatively minor issue.

9. Cholesky-Factor Identified V ARs in Matrix Notation.

10. Inflation Forecasting via “Structural” Phillps-Curve Models vs. Time-

Series Models.

The literature started with Atkinson and Ohanian ****. The basic re-

sult is that Phillips curve information doesn’t improve on univariate time

series, which is interesting. Also interesting is thinking about why. For

example, the univariate time series used is often IMA(0, 1, 1) (i.e., ex-

ponential smoothing, or local level), which Hendry, Clements and others

have argued is robust to shifts. Maybe that’s why exponential smoothing

is still so powerful after all these years.

11. Multivariate point forecast evaluation.

All univariate absolute standards continue to hold, appropriately inter-

preted.

– Zero-mean error vector.

– 1-step-ahead errors are vector white noise.
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– h-step-ahead errors are at most vector MA(h− 1).

– h-step-ahead error covariance matrices are non-decreasing in h. That

is, Σh − Σh−1 is p.s.d. for all h > 1.

– The error vector is orthogonal to all available information.

Relative standards, however, need more thinking, as per Christoffersen

and Diebold (1998) and Primiceri, Giannone and Lenza (2014). trace(MSE),

e′Ie is not necessarily adequate, and neither is e′De for diagonal d;

rather, we generally want e′Σe , so as to reflect preferences regarding

multivariate interactions.

12. Multivariate density forecast evaluation

The principle that governs the univariate techniques in this paper ex-

tends to the multivariate case, as shown in Diebold, Hahn and Tay

(1998). Suppose that the variable of interest y is now an (N ×1) vector,

and that we have on hand m multivariate forecasts and their corre-

sponding multivariate realizations. Further suppose that we are able to

decompose each period’s forecasts into their conditionals, i.e., for each

period’s forecasts we can write

p(y1t, y2t, ..., yNt|Φt−1) = p(yNt|yN−1,t, ..., y1t,Φt−1)...p(y2t|y1t,Φt−1)p(y1t|Φt−1),

where Φt−1 now refers to the past history of (y1t, y2t, ..., yNt). Then for

each period we can transform each element of the multivariate observa-

tion (y1t, y2t, ..., yNt) by its corresponding conditional distribution. This

procedure will produce a set of N z series that will be iid U(0, 1) in-

dividually, and also when taken as a whole, if the multivariate density

forecasts are correct. Note that we will have N ! sets of z series, de-

pending on how the joint density forecasts are decomposed, giving us a

wealth of information with which to evaluate the forecasts. In addition,

the univariate formula for the adjustment of forecasts, discussed above,
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can be applied to each individual conditional, yielding

f(y1t, y2t, ..., yNt|Φt−1) =
∏N

i=1[p(yit|yi−1,t, ..., y1t,Φt−1)q(P (yit|yi−1,t, ..., y1t,Φt−1))]

= p(y1t, y2t, ..., yNt|Φt−1)q(z1t, z2t, ..., zNt|Φt−1) .

16.9 Notes

Some software, such as Eviews, automatically accounts for parameter uncer-

tainty when forming conditional regression forecast intervals by using variants

of the techniques we introduced in Section ***. Similar but advanced tech-

niques are sometimes used to produce unconditional forecast intervals for

dynamic models, such as autoregressions (see Lütkepohl, 1991), but boot-

strap simulation techniques are becoming increasingly popular (Efron and

Tibshirani, 1993).

Chatfield (1993) argues that innovation uncertainty and parameter esti-

mation uncertainty are likely of minor importance compared to specification

uncertainty. We rarely acknowledge specification uncertainty, because we

don’t know how to quantify “what we don’t know we don’t know.” Quan-

tifying it is a major challenge for future research, and useful recent work in

that direction includes Chatfield (1995).

The idea that regression models with serially correlated disturbances are

more restrictive than other sorts of transfer function models has a long history

in econometrics and engineering and is highlighted in a memorably-titled

paper, ”Serial Correlation as a Convenient Simplification, not a Nuisance,”

by Hendry and Mizon (1978). Engineers have scolded econometricians for not

using more general transfer function models, as for example in Jenkins (1979).

But the fact is, as we’ve seen repeatedly, that generality for generality’s sake

in business and economic forecasting is not necessarily helpful, and can be

positively harmful. The shrinkage principle asserts that the imposition of
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restrictions – even false restrictions – can be helpful in forecasting.

Sims (1980) is an influential paper arguing the virtues of V ARs. The

idea of predictive causality and associated tests in V ARs is due to Granger

(1969) and Sims (1972), who build on earlier work by the mathematician

Norbert Weiner. Lütkepohl (1991) is a good reference on V AR analysis and

forecasting.

Gershenfeld and Weigend (1993) provide a perspective on time series

forecasting from the computer-science/engineering/nonlinear/neural-net per-

spective, and Swanson and White (1995) compare and contrast a variety of

linear and nonlinear forecasting methods.
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Some slides that might be usefully incorporated:

Univariate AR(p):

yt = φ1yt−1 + ...+ φpyt−p + εt

yt = φ1Lyt + ...+ φpL
pyt + εt

(I − φ1L− ...− φpLp)yt = εt

φ(L)yt = εt

εt ∼ iid(0, σ2)

But what if we have more than 1 “y” variable?

Cross-variable interactions? Leads? Lags? Causality?

N -Variable V AR(p)

y1t = φ1
11y1,t−1 + ...+ φ1

1NyN,t−1 + ...+ φp11y1,t−p + ...+ φp1NyN,t−p + ε1t

...

yNt = φ1
N1y1,t−1 + ...+ φ1

NNyN,t−1 + ...+ φpN1y1,t−p + ...+ φpNNyN,t−p + εNt


y1t
...

yNt

 =


φ1

11 ... φ1
1N

...
...

φ1
N1 ... φ1

NN



y1,t−1

...

yN,t−1

+...+


φp11 ... φp1N
...

...

φpN1 ... φpNN



y1,t−p

...

yN,t−p

+


ε1t
...

εNt


yt = Φ1yt−1 + ...+ Φpyt−p + εt

yt = Φ1Lyt + ...+ ΦpL
pyt + εt

(I − Φ1L− ...− ΦpL
p)yt = εt
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Φ(L)yt = εt

εt ∼ iid(0,Σ)

Estimation and Selection

Estimation: Equation-by-equation OLS

Selection: AIC, SIC

AIC =
−2lnL

T
+

2K

T

SIC =
−2lnL

T
+
KlnT

T

The Cross-Correlation Function

Recall the univariate autocorrelation function:

ρy(τ) = corr(yt, yt−τ)

In multivariate environments we also have

the cross-correlation function:

ρyx(τ) = corr(yt, xt−τ)

Granger-Sims Causality

Bivariate case:

yi Granger-Sims causes yj if

yi has predictive content for yj,

over and above the past history of yj.

Testing:

Are lags of yi significant in the yj equation?
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Impulse-Response Functions in AR(1) Case

yt = φyt−1 + εt, εt ∼ iid(0, σ2)

=⇒ yt = B(L)εt = εt + b1εt−1 + b2εt−2 + ...

= εt + φεt−1 + φ2εt−2 + ...

IRF is {1, φ, φ2, ...} “dynamic response to a unit shock in ε”

Alternatively write εt = σvt, vt ∼ iid(0, 1)

=⇒ yt = σvt + (φσ)vt−1 + (φ2σ)vt−2 + ...

IRF is {σ, φσ, φ2σ, ...} “dynamic response to a one-σ shock in ε”

Impulse-Response Functions in V AR(p)Case

yt = Φyt−1 + εt, εt ∼ iid(0,Σ)

=⇒ yt = B(L)εt = εt +B1εt−1 +B2εt−2 + ...

= εt + Φεt−1 + Φ2εt−2 + ...

But we need orthogonal shocks. Why?

So write εt = Pvt, vt ∼ iid(0, I), where P is Cholesky factor of Σ

=⇒ yt = Pvt + (ΦP )vt−1 + (Φ2P )vt−2 + ...

ij’th IRF is the sequence of ij’th elements of {P, ΦP Φ2P, ...} “Dynamic

response of yi to a one-σ shock in εj”
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