
Chapter 12

Model-Based Forecast Combination

In forecast accuracy comparison, we ask which forecast is best with respect

to a particular loss function. Such “horse races” arise constantly in practical

work. Regardless of whether one forecast is significantly better than the

others, however, the question arises as to whether competing forecasts may be

fruitfully combined to produce a composite forecast superior to all the original

forecasts. Thus, forecast combination, although obviously related to forecast

accuracy comparison, is logically distinct and of independent interest. We

start with what one might call “model-based” forecast combination, and then

we proceed to “survey-based” combination and “market-based” combination

(financial markets, prediction markets, ...).

12.1 Forecast Encompassing

Whether there are gains from forecast combination turns out to be funda-

mentally linked to the notion of forecast encompassing, with which we now

begin. We use forecast encompassing tests to determine whether one fore-

cast incorporates (or encompasses) all the relevant information in competing

forecasts. If one forecast incorporates all the relevant information, nothing

can be gained by combining forecasts. For simplicity, let’s focus on the case
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of two forecasts, ya,t+h,t and yb,t+h,t. Consider the regression

yt+h = βaya,t+h,t + βbyb,t+h,t + εt+h,t.

If (βa, βb) = (1, 0), we’ll say that model a forecast-encompasses model b, and

if (βa, βb = (0, 1), we’ll say that model b forecast-encompasses model a. For

other (βa, βb) values, neither model encompasses the other, and both forecasts

contain useful information about yt+h. In covariance stationary environments,

encompassing hypotheses can be tested using standard methods.1 If neither

forecast encompasses the other, forecast combination is potentially desirable.

We envision an ongoing, iterative process of model selection and esti-

mation, forecasting, and forecast evaluation. What is the role of forecast

combination in that paradigm? In a world in which information sets can

be instantaneously and costlessly combined, there is no role; it is always

optimal to combine information sets rather than forecasts. That is, if no

model forecast-encompasses the others, we might hope to eventually figure

out what’s gone wrong, learn from our mistakes, and come up with a model

based on a combined information set that does forecast-encompass the oth-

ers. But in the short run – particularly when deadlines must be met and

timely forecasts produced – pooling of information sets is typically either im-

possible or prohibitively costly. This simple insight motivates the pragmatic

idea of forecast combination, in which forecasts rather than models are the

basic object of analysis, due to an assumed inability to combine information

sets. Thus, forecast combination can be viewed as a key link between the

short-run, real-time forecast production process, and the longer-run, ongoing

process of model development.

1Note that εt+h,t may be serially correlated, particularly if h > 1, and any such serial correlation should
be accounted for.
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12.2 Model-Based Combined Forecasts I:

Variance-Covariance Forecast Combination

In forecast accuracy comparison, we ask which forecast is best with respect

to a particular loss function. Such “horse races” arise constantly in practical

work. Regardless of whether one forecast is significantly better than the

others, however, the question arises as to whether competing forecasts may

be fruitfully combined to produce a composite forecast superior to all the

original forecasts. Thus, forecast combination, although obviously related to

forecast accuracy comparison, is logically distinct and of independent interest.

Failure of each model’s forecasts to encompass other model’s forecasts in-

dicates that both models are misspecified, and that there may be gains from

combining the forecasts. It should come as no surprise that such situations are

typical in practice, because forecasting models are likely to be misspecified –

they are intentional abstractions of a much more complex reality. Many com-

bining methods have been proposed, and they fall roughly into two groups,

”variance-covariance” methods and “regression” methods. As we’ll see, the

variance-covariance forecast combination method is in fact a special case of

the regression-based forecast combination method, so there’s really only one

method. However, for historical reasons – and more importantly, to build

valuable intuition – it’s important to understand the variance-covariance fore-

cast combination, so let’s begin with it.

12.2.1 Bivariate Case

Suppose we have two unbiased forecasts. First assume that the errors in ya

and yb are uncorrelated. Consider the convex combination

yC = λ ya + (1− λ) yb,



400 CHAPTER 12. MODEL-BASED FORECAST COMBINATION

where λ ∈ [0, 1].2 Then the associated errors follow the same weighting,

eC = λea + (1− λ)eb,

where eC = y− yC , ea = y− ya and eb = y− yb. Assume that both ya and yb

are unbiased for y, in which case yC is also unbiased, because the combining

weights sum to unity.

Given the unbiasedness assumption, the minimum-MSE combining weights

are just the minimum-variance weights. Immediately, using the assumed zero

correlation between the errors,

σ2
C = λ2σ2

a + (1− λ)2σ2
b , (12.1)

where σ2
C = var(eC), σ2

a = var(ea) and σ2
b = var(eb). Minimization with

respect to λ yields the optimal combining weight,

λ∗ =
σ2
b

σ2
b + σ2

a

=
1

1 + φ2
, (12.2)

where φ = σa/σb.

As σ2
a approaches 0, forecast a becomes progressively more accurate. The

formula for λ∗ indicates that as σ2
a approaches 0, λ∗ approaches 1, so that all

weight is put on forecast a, which is desirable. Similarly, as σ2
b approaches

0, forecast b becomes progressively more accurate. The formula for λ∗ indi-

cates that as σ2
b approaches 0, λ∗ approaches 0, so that all weight is put on

forecast b, which is also desirable. In general, the forecast with the smaller

error variance receives the higher weight, with the precise size of the weight

depending on the disparity between variances.

Now consider the more general and empirically-relevant case of correlated

2Strictly speaking, we need not even impose λ ∈ [0, 1], but λ /∈ [0, 1] would be highly nonstandard for two
valuable and sophisticated y estimates such as ya and yb.
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errors. Under the same conditions as earlier,

σ2
C = λ2σ2

a + (1− λ)2σ2
b + 2λ(1− λ)σab, (12.3)

so

λ∗ =
σ2
b − σab

σ2
b + σ2

a − 2σab

=
1− φρ

1 + φ2 − 2φρ
,

where σab = cov(ea, eb) and ρ = corr(ea, eb).

The optimal combining weight is a simple function of the variances and

covariances of the underlying forecast errors. The forecast error variance as-

sociated with the optimally combined forecast is less than or equal to the

smaller of σ2
a and σ2

b ; thus, in population, we have nothing to lose by com-

bining forecasts, and potentially much to gain. In practical applications,

the unknown variances and covariances that underlie the optimal combining

weights are unknown, so we replace them with consistent estimates; that is,

we estimate λ∗ by replacing unknown error variances and covariances with

estimates, yielding

λ̂∗ =
σ̂2
b − σ̂2

ab

σ̂2
b + σ̂2

a − 2σ̂2
ab

.

The full formula for the optimal combining weight indicates that the vari-

ances and the covariance are relevant, but the basic intuition remains valid.

Effectively, we’re forming a portfolio of forecasts, and as we know from stan-

dard results in finance, the optimal shares in a portfolio depend on the vari-

ances and covariances of the underlying assets.
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12.2.2 General Case

The optimal combining weight solves the following problem:

min
λ

λ′Σtλ

s.t. λ′ι = 1.
(12.4)

where Σ is the N × N covariance matrix of forecast errors and ι is a N × 1

vector of ones. The solution is

λ∗ =
(
ι′Σ−1

t ι
)−1

Σ−1
t ι.

12.3 Model-Based Combined Forecasts II:

Regression-Based Forecast Combination

Now consider the regression method of forecast combination. The form of

forecast-encompassing regressions immediately suggests combining forecasts

by simply regressing realizations on forecasts. This intuition proves accu-

rate, and in fact the optimal variance-covariance combining weights have a

regression interpretation as the coefficients of a linear projection of yt+h onto

the forecasts, subject to two constraints: the weights sum to unity, and the

intercept is excluded.

In practice, of course, population linear projection is impossible, so we sim-

ply run the regression on the available data. Moreover, it’s usually preferable

not to force the weights to add to unity, or to exclude an intercept. Inclu-

sion of an intercept, for example, facilitates bias correction and allows biased

forecasts to be combined. Typically, then, we simply estimate the regression,

yt+h = β0 + βaya,t+h,t + βbyb,t+h,t + εt+h,t.

Extension to the fully general case of more than two forecasts is immediate.
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In general, the regression method is simple and flexible. There are many

variations and extensions, because any regression tool is potentially appli-

cable. The key is to use generalizations with sound motivation. We’ll give

four examples in an attempt to build an intuitive feel for the sorts of exten-

sions that are possible: time-varying combining weights, dynamic combining

regressions, shrinkage of combining weights toward equality, and nonlinear

combining regressions.

12.3.1 Time-Varying Combining Weights

Relative accuracies of different forecasts may change, and if they do, we

naturally want to weight the improving forecasts progressively more heavily

and the worsening forecasts less heavily. Relative accuracies can change for a

number of reasons. For example, the design of a particular forecasting model

may make it likely to perform well in some situations, but poorly in others.

Alternatively, people’s decision rules and firms’ strategies may change over

time, and certain forecasting techniques may be relatively more vulnerable

to such change.

We allow for time-varying combining weights in the regression framework

by using weighted or rolling estimation of combining regressions, or by al-

lowing for explicitly time-varying parameters. If, for example, we suspect

that the combining weights are evolving over time in a trend-like fashion, we

might use the combining regression

yt+h = (β0
0 + β1

0TIME) + (β0
a + β1

aTIME)ya,t+h,t

+(β0
b + β1

bTIME)yb,t+h,t + εt+h,t,

which we estimate by regressing the realization on an intercept, time, each of

the two forecasts, the product of time and the first forecast, and the product

of time and the second forecast. We assess the importance of time variation
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by examining the size and statistical significance of the estimates of β1
0 , β1

a

, and β1
b .

12.3.2 Serial Correlation

It’s a good idea to allow for serial correlation in combining regressions, for

two reasons. First, as always, even in the best of conditions we need to allow

for the usual serial correlation induced by overlap when forecasts are more

than 1-step-ahead. This suggests that instead of treating the disturbance in

the combining regression as white noise, we should allow for MA(h−1) serial

correlation,

yt+h = β0 + βaya,t+h,t + βbyb,t+h,t + εt+h,t

εt+h,t ∼MA(h− 1).

Second, and very importantly, the MA(h − 1) error structure is associated

with forecasts that are optimal with respect to their information sets, of

which there’s no guarantee. That is, although the primary forecasts were

designed to capture the dynamics in y, there’s no guarantee that they do so.

Thus, just as in standard regressions, it’s important in combining regressions

that we allow either for serially correlated disturbances or lagged dependent

variables, to capture any dynamics in y not captured by the various forecasts.

A combining regression with ARMA(p, q) disturbances,

yt+h = β0 + βaya,t+h,t + βbyb,t+h,t + εt+h,t

εt+h,t ∼ ARMA(p, q),

with p and q selected using information criteria in conjunction with other

diagnostics, is usually adequate.
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12.3.3 Shrinkage of Combining Weights Toward Equality

Simple arithmetic averages of forecasts – that is, combinations in which the

weights are constrained to be equal – sometimes perform very well in out-

of-sample forecast competitions, even relative to “optimal” combinations.

The equal-weights constraint eliminates sampling variation in the combining

weights at the cost of possibly introducing bias. Sometimes the benefits of

imposing equal weights exceed the cost, so that the MSE of the combined

forecast is reduced.

The equal-weights constraint associated with the arithmetic average is

an example of extreme shrinkage; regardless of the information contained

in the data, the weights are forced into equality. We’ve seen before that

shrinkage can produce forecast improvements, but typically we want to coax

estimates in a particular direction, rather than to force them. In that way

we guide our parameter estimates toward reasonable values when the data

are uninformative, while nevertheless paying a great deal of attention to the

data when they are informative.

Thus, instead of imposing a deterministic equal-weights constraint, we

might like to impose a stochastic constraint. With this in mind, we some-

times coax the combining weights toward equality without forcing equality.

A simple way to do so is to take a weighted average of the simple average

combination and the least-squares combination. Let the shrinkage parameter

γ be the weight put on the simple average combination, and let (1-γ) be the

weight put on the least-squares combination, where γ is chosen by the user.

The larger is γ, the more the combining weights are shrunken toward equal-

ity. Thus the combining weights are coaxed toward the arithmetic mean, but

the data are still allowed to speak, when they have something important to

say.
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12.3.4 Nonlinear Combining Regressions

There is no reason to force linearity of combining regressions, and various

of the nonlinear techniques that we’ve already introduced may be used.

We might, for example, regress realizations not only on forecasts, but also

on squares and cross products of the various forecasts, in order to capture

quadratic deviations from linearity,

yt+h = β0 + βaya,t+h,t + βbyb,t+h,t

+βaa(ya,t+h,t)
2 + βbb(yb,t+h,t)

2 + βabya,t+h,tyb,t+h,t + εt+h,t.

We assess the importance of nonlinearity by examining the size and statistical

significance of estimates of βaa, βbb, and βab; if the linear combining regression

is adequate, those estimates should differ significantly from zero. If, on the

other hand, the nonlinear terms are found to be important, then the full

nonlinear combining regression should be used.

12.3.5 Regularized Regression for Combining Large Numbers of

Forecasts

Another, related, approach, involving both shrinkage and selection, is lasso

and other “regularization” methods. Lasso can be used to shrink and select,

and it’s a simple matter to make the shrinkage/selection direction “equal

weights” rather than the standard lasso “zero weights.”

12.4 Application: OverSea Shipping Volume Revisited

Now let’s combine the forecasts. Both failed Mincer-Zarnowitz tests, which

suggests that there may be scope for combining. The correlation between

the two forecast errors is .54, positive but not too high. In Table 9 we

show the results of estimating the unrestricted combining regression with
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MA(1) errors (equivalently, a forecast encompassing test). Neither forecast

encompasses the other; both combining weights, as well as the intercept,

are highly statistically significantly different from zero. Interestingly, the

judgmental forecast actually gets more weight than the quantitative forecast

in the combination, in spite of the fact that its RMSE was higher. That’s

because, after correcting for bias, the judgmental forecast appears a bit more

accurate.
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12.5 On the Optimality of Equal Weights

12.5.1 Under Quadratic Loss

In Figure 12.1 we graph λ∗ as a function of φ, for φ ∈ [.75, 1.45]. λ∗ is

of course decreasing in φ, but interestingly, it is only mildly sensitive to φ.

Indeed, for our range of φ values, the optimal combining weight remains close

to 0.5, varying from roughly 0.65 to 0.30. At the midpoint φ = 1.10, we have

λ∗ = 0.45.

It is instructive to compare the error variance of combined y, σ2
C , to σ2

a for

a range of λ values (including λ = λ∗, λ = 0, and λ = 1).3 From (12.1) we

have:
σ2
C

σ2
a

= λ2 +
(1− λ)2

φ2
.

In Figure 12.2 we graph σ2
C/σ

2
a for λ ∈ [0, 1] with φ = 1.1. Obviously the max-

3We choose to examine σ2
C relative to σ2

a, rather than to σ2
b , because ya is the “standard” y estimate used

in practice almost universally. A graph of σ2
C/σ

2
b would be qualitatively identical, but the drop below 1.0

would be less extreme.
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Figure 12.1: λ∗ vs. φ. λ∗ constructed assuming uncorrelated errors. The horizontal line for visual
reference is at λ∗ = .5. See text for details.

imum variance reduction is obtained using λ∗ = 0.45, but even for nonoptimal

λ, such as simple equal-weight combination (λ = 0.5), we achieve substantial

variance reduction relative to using ya alone. Indeed, a key result is that for

all λ (except those very close to 1, of course) we achieve substantial variance

reduction.

In Figure 12.3 we show λ∗ as a function of φ for ρ = 0, 0.3, 0.45 and 0.6;

in Figure 12.4 we show λ∗ as a function of ρ for φ = 0.95, 1.05, 1.15 and 1.25;

and in Figure 12.5 we show λ∗ as a bivariate function of φ and ρ. For φ = 1

the optimal weight is 0.5 for all ρ, but for φ 6= 1 the optimal weight differs

from 0.5 and is more sensitive to φ as ρ grows. The crucial observation

remains, however, that under a wide range of conditions it is optimal to put

significant weight on both ya and yb, with the optimal weights not differing

radically from equality. Moreover, for all φ values greater than one, so that

less weight is optimally placed on ya under a zero-correlation assumption,

allowance for positive correlation further decreases the optimal weight placed

on ya. For a benchmark calibration of φ = 1.1 and ρ = 0.45, λ∗ ≈ 0.41.

Let us again compare σ2
C to σ2

a for a range of λ values (including λ = λ∗,
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Figure 12.2: σ2
C/σ

2
a for λ ∈ [0, 1]. We assume φ = 1.1 and uncorrelated errors. See text for details.

λ = 0, and λ = 1). From (12.3) we have:

σ2
C

σ2
a

= λ2 +
(1− λ)2

φ2
+ 2λ(1− λ)

ρ

φ
.

In Figure 12.6 we graph σ2
C/σ

2
a for λ ∈ [0, 1] with φ = 1.1 and ρ = 0.45.

Obviously the maximum variance reduction is obtained using λ∗ = 0.41, but

even for nonoptimal λ, such as simple equal-weight combination (λ = 0.5),

we achieve substantial variance reduction relative to using ya alone.

The “equal weights puzzle.” It is clear from our analysis above that in re-

alistic situations (similar variances, small or moderate correlations) the gains

from optimally combining can be massive, and that the loss from combin-

ing with equal weights relative to optimal weights is small. That is, optimal

weights are not generally equal, but combining with equal weights is often not

far from the optimum, and much better than any primary forecast. Equal

weights are fully optimal, moreover, in the equi-correlation case, or more gen-

erally, in the Elliott case. Also, from an estimation perspective, equal weights

may be slightly biased, but they have no variance! So the equal weight puzzle

is perhaps not such a puzzle.
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Figure 12.3: λ∗ vs. φ for Various ρ Values. The horizontal line for visual reference is at λ∗ = .5. See
text for details.

12.5.2 Under Minimax Loss

Here we take a more conservative perspective on forecast combination, solv-

ing a different but potentially important optimization problem. We utilize

the minimax framework of ?, which is the main decision-theoretic approach

for imposing conservatism and therefore of intrinsic interest. We solve a

game between a benevolent scholar (the Econometrician) and a malevolent

opponent (Nature). In that game the Econometrician chooses the combining

weights, and Nature selects the stochastic properties of the forecast errors.

The minimax solution yields the combining weights that deliver the smallest

chance of the worst outcome for the Econometrician. Under the minimax

approach knowledge or calibration of objects like φ and ρ is unnecessary,

enabling us to dispense with judgment, for better or worse.

We obtain the minimax weights by solving for the Nash equilibrium in

a two-player zero-sum game. Nature chooses the properties of the forecast

errors and the Econometrician chooses the combining weights λ. For exposi-
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Figure 12.4: λ∗ vs. ρ for Various φ Values. The horizontal line for visual reference is at λ∗ = .5. See
text for details.

tional purposes, we begin with the case of uncorrelated errors, constraining

Nature to choose ρ = 0. To impose some constraints on the magnitude of

forecast errors that Nature can choose, it is useful to re-parameterize the

vector (σb, σa)
′ in terms of polar coordinates; that is, we let σb = ψ cosϕ and

σa = ψ sinϕ. We restrict ψ to the interval [0, ψ̄] and let ϕ ∈ [0, π/2]. Because

cos2 ϕ + sin2 ϕ = 1, the sum of the forecast error variances associated with

ya and yb is constrained to be less than or equal to ψ̄2. The error associated

with the combined forecast is given by

σ2
C(ψ, ϕ, λ) = ψ2

[
λ2 sin2 ϕ+ (1− λ)2 cos2 ϕ

]
. (12.5)

so that the minimax problem is

max
ψ∈[0,ψ̄], ϕ∈[0,π/2]

min
λ∈[0,1]

σ2
C(ψ, ϕ, λ). (12.6)

The best response of the Econometrician was derived in (12.2) and can

be expressed in terms of polar coordinates as λ∗ = cos2 ϕ. In turn, Nature’s
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problem simplifies to

max
ψ∈[0,ψ̄], ϕ∈[0,π/2]

ψ2(1− sin2 ϕ) sin2 ϕ,

which leads to the solution

ϕ∗ = arc sin
√

1/2, ψ∗ = ψ̄, λ∗ = 1/2. (12.7)

Nature’s optimal choice implies a unit forecast error variance ratio, φ =

σa/σb = 1, and hence that the optimal combining weight is 1/2. If, instead,

Nature set ϕ = 0 or ϕ = π/2, that is φ = 0 or φ = ∞, then either ya or yb

is perfect and the Econometrician could choose λ = 0 or λ = 1 to achieve a

perfect forecast leading to a suboptimal outcome for Nature.

Now we consider the case in which Nature can choose a nonzero correlation

between the forecast errors of ya and yb. The loss of the combined forecast
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a for λ ∈ [0, 1]. We assume φ = 1.1 and ρ = 0.45. See text for details.

can be expressed as

σ2
C(ψ, ρ, ϕ, λ) = ψ2

[
λ2 sin2 ϕ+ (1− λ)2 cos2 ϕ+ 2λ(1− λ)ρ sinϕ cosϕ

]
.

(12.8)

It is apparent from (12.8) that as long as λ lies in the unit interval the

most devious choice of ρ is ρ∗ = 1. We will now verify that conditional on

ρ∗ = 1 the solution in (12.7) remains a Nash Equilibrium. Suppose that the

Econometrician chooses equal weights, λ∗ = 1/2. In this case

σ2
C(ψ, ρ∗, ϕ, λ∗) = ψ2

[
1

4
+

1

2
sinϕ cosϕ

]
.

We can deduce immediately that ψ∗ = ψ̄. Moreover, first-order conditions

for the maximization with respect to ϕ imply that cos2 ϕ∗ = sin2 ϕ∗ which in

turn leads to ϕ∗ = arc sin
√

1/2. Conditional on Nature choosing ρ∗, ψ∗, and

ϕ∗, the Econometrician has no incentive to deviate from the equal-weights

combination λ∗ = 1/2, because

σ2
C(ψ∗, ρ∗, ϕ∗, λ) =

ψ̄

2

[
λ2 + (1− λ)2 + 2λ(1− λ)

]
=
ψ̄

2
.
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In sum, the minimax analysis provides a rational for combining ya and yb with

equal weights of λ = 1/2. Of course it does not resolve the equal weights

puzzle, which refers to quadratic loss, but it puts equal weights on an even

higher pedestal, and from a very different perspective.

12.6 Interval Forecast Combination

12.7 Density Forecast Combination

12.7.1 Choosing Weights to Optimize a Predictive Likelihood

Has Bayesian foundations. Geweke-Amisano.

12.7.2 Choosing Weights Optimize Conditional Calibration

Maximize a test statistic for iid uniformity of the PIT.

12.8 Exercises, Problems and Complements

1. Combining Forecasts.

You are a managing director at Paramex, a boutique investment bank

in Los Angeles. Each day during the summer your two interns give you

a 1-day-ahead forecast of the Euro/Dollar exchange rate. At the end of

the summer, you calculate each intern’s series of daily forecast errors.

You find that the mean errors are zero, and the error variances and

covariances are σ̂2
AA = 153.76, σ̂2

BB = 92.16, and σ̂2
AB = .2.

(a) If you were forced to choose between the two forecasts, which would

you choose? Why?

(b) If instead you had the opportunity to combine the two forecasts

by forming a weighted average, what would be the optimal weights
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according to the variance-covariance method? Why?

(c) Is it guaranteed that a combined forecast formed using the “opti-

mal” weights calculated in part 1b will have lower mean squared

prediction error? Why or why not?

2. The algebra of forecast combination.

Consider the combined forecast,

yct+h,t = λyat+h,t + (1− λ)ybt+h,t.

Verify the following claims made in the text:

a. The combined forecast error will satisfy the same relation as the com-

bined forecast; that is,

ect+h,t = λeat+h,t + (1− λ)eb.t+h,t

b. Because the weights sum to unity, if the primary forecasts are unbi-

ased then so too is the combined forecast.

c. The variance of the combined forecast error is

σ2
c = λ2σ2

aa + (1− λ)2σ2
bb + 2λ(1− λ)σ2

ab,

where σ2
aa and σ2

bb are unconditional forecast error variances and σ2
ab

is their covariance.

d. The combining weight that minimizes the combined forecast error

variance (and hence the combined forecast error MSE, by unbiased-

ness) is

λ∗ =
σ2
bb − σ2

ab

σ2
bb + σ2

aa − 2σ2
ab

.
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e. If neither forecast encompasses the other, then

σ2
c < min(σ2

aa, σ
2
bb).

f. If one forecast encompasses the other, then

σ2
c = min(σ2

aa, σ
2
bb).

3. Quantitative forecasting, judgmental forecasting, forecast combination,

and shrinkage.

Interpretation of the modern quantitative approach to forecasting as es-

chewing judgment is most definitely misguided. How is judgment used

routinely and informally to modify quantitative forecasts? How can

judgment be formally used to modify quantitative forecasts via forecast

combination? How can judgment be formally used to modify quanti-

tative forecasts via shrinkage? Discuss the comparative merits of each

approach.

4. The empirical success of forecast combination.

In the text we mentioned that we have nothing to lose by forecast com-

bination, and potentially much to gain. That’s certainly true in popu-

lation, with optimal combining weights. However, in finite samples of

the size typically available, sampling error contaminates the combining

weight estimates, and the problem of sampling error may be exacer-

bated by the collinearity that typically exists between yat+h,t and ybt+h,t.

Thus, while we hope to reduce out-of-sample forecast MSE by combin-

ing, there is no guarantee. Fortunately, however, in practice forecast

combination often leads to very good results. The efficacy of forecast

combination is well-documented in a vast literature.

5. Regression forecasting models with expectations, or anticipatory, data.
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A number of surveys exist of anticipated market conditions, investment

intentions, buying plans, advance commitments, consumer sentiment,

and so on.

(a) Search the World Wide Web for such series and report your results.

A good place to start is the Resources for Economists page men-

tioned in Chapter ??.

(b) How might you use the series you found in a regression forecasting

model of y? Are the implicit forecast horizons known for all the

anticipatory series you found? If not, how might you decide how to

lag them in your regression forecasting model?

(c) How would you test whether the anticipatory series you found pro-

vide incremental forecast enhancement, relative to the own past his-

tory of y?

6. Crowd-sourcing via internet activity.

How, in a sense, are trends identified by search data (on Google, YouTube,

...), tweets, etc. “combined forecasts”?

7. Turning a set of point forecasts into a combined density forecast.

We can produce a combined density forecast by drawing from an estimate

of the density of the combining regression disturbances, as we did in a

different context in section 4.1.

12.9 Notes

The idea of forecast encompassing dates at least to Nelson (1972), and was

formalized and extended by Chong and Hendry (1986) and Fair and Shiller

(1990). The variance-covariance method of forecast combination is due to

Bates and Granger (1969), and the regression interpretation is due to Granger
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and Ramanathan (1984). Surveys of econometric forecast combination in-

clude Diebold and Lopez (1996) and Timmermann (2006). Surveys of survey-

based combination include Pesaran and Weale (2006). Snowberg et al. (2013)

(prediction markets) provide a nice review of prediction markets.
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