
Chapter 10

Point Forecast Evaluation

As we’ve stressed repeatedly, good forecasts lead to good decisions. The im-

portance of forecast evaluation techniques follows immediately. Given a track

record of forecasts, yt+h,t, and corresponding realizations, yt+h, we naturally

want to monitor and improve forecast performance. In this chapter we show

how to do so. We discuss both absolute aspects of forecast evaluation, focus-

ing on methods for checking forecast optimality, and relative aspects, focusing

on methods for ranking forecast accuracy, quite apart from optimality.

10.1 Absolute Standards for Point Forecasts

Think about evaluating a single forecast, in isolation. Evaluating a single

forecast amounts to checking whether it has the properties expected of an

optimal forecast. Denote by yt the covariance stationary time series to be

forecast. The Wold representation is

yt = µ+ εt + b1εt−1 + b2εt−2 + ...

εt ∼ WN(0, σ2).

Thus the h-step-ahead linear least-squares forecast is

yt+h,t = µ+ bhεt + bh+1εt−1 + ...

333
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and the corresponding h-step-ahead forecast error is

et+h,t = yt+h − yt+h,t = εt+h + b1εt+h−1 + ...+ bh−1εt+1,

with variance

σ2
h = σ2

(
1 +

h−1∑
i=1

b2
i

)
.

The key property of optimal forecast errors, from which all others follow,

(including those cataloged below), is that they should be unforecastable on

the basis of information available at the time the forecast was made. This

unforecastability principle is valid in great generality; it holds, for exam-

ple, regardless of whether linear-projection optimality or conditional-mean

optimality is of interest, regardless of whether the relevant loss function is

quadratic, and regardless of whether the series being forecast is stationary.

Many tests of aspects of optimality are based on the unforecastability prin-

ciple. 1-step-ahead errors, for example, had better be white noise, because

otherwise we could forecast the errors using information readily available

when the forecast is made. Indeed at least four key properties of optimal

forecasts, which we can easily check, follow immediately from the unfore-

castability principle:

a. Optimal forecasts are unbiased

b. Optimal forecasts have 1-step-ahead errors that are white noise

c. Optimal forecasts have h-step-ahead errors that are at most MA(h− 1)

d. Optimal forecasts have h-step-ahead errors with variances that are non-

decreasing in h and that converge to the unconditional variance of the

process.
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10.1.1 Are errors zero-mean?

If the forecast is unbiased, then the forecast error has a zero mean. A va-

riety of tests of the zero-mean hypothesis can be performed, depending on

the assumptions we’re willing to maintain. For example, if et+h,t is Gaus-

sian white noise (as might be reasonably the case for 1-step-ahead errors),

then the standard t-test is the obvious choice. We would simply regress the

forecast error series on a constant and use the reported t-statistic to test the

hypothesis that the population mean is zero. If the errors are non-Gaussian

but remain iid, then the t-test is still applicable in large samples.

If the forecast errors are dependent, then more sophisticated procedures

are required. We maintain the framework of regressing on a constant, but we

must “correct” for any serial correlation in the disturbances. Serial correla-

tion in forecast errors can arise for many reasons. Multi-step-ahead forecast

errors will be serially correlated, even if the forecasts are optimal, because of

the forecast-period overlap associated with multi-step-ahead forecasts. More

generally, serial correlation in forecast errors may indicate that the forecasts

are suboptimal. The upshot is simply that when regressing forecast errors

on an intercept, we need to be sure that any serial correlation in the distur-

bance is appropriately modeled. A reasonable starting point for a regression

involving h-step-ahead forecast errors is MA(h−1) disturbances, which we’d

expect if the forecast were optimal. The forecast may, of course, not be op-

timal, so we don’t adopt MA(h − 1) disturbances uncritically; instead, we

try a variety of models using the AIC and SIC to guide selection in the usual

way.

10.1.2 Are 1-step-ahead errors white noise?

Under various sets of maintained assumptions, we can use standard tests

of the white noise hypothesis. For example, the sample autocorrelation and
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partial autocorrelation functions, together with Bartlett asymptotic standard

errors, are often useful in that regard. Tests based on the first autocorrelation

(e.g., the Durbin-Watson test), as well as more general tests, such as the Box-

Pierce and Ljung-Box tests, are useful as well.

10.1.3 Are h-step-ahead errors are at most MA(h− 1)?

The MA(h− 1) structure implies a cutoff in the forecast error’s autocorrela-

tion function beyond displacement h−1. This immediately suggests examin-

ing the statistical significance of the sample autocorrelations beyond displace-

ment h − 1 using the Bartlett standard errors. In addition, we can regress

the errors on a constant, allowing for MA(q) disturbances with q > (h− 1),

and test whether the moving-average parameters beyond lag h− 1 are zero.

10.1.4 Are h-step-ahead error variances non-decreasing in h?

It’s often useful to examine the sample h-step-ahead forecast error variances

as a function of h, both to be sure they’re non-decreasing in h and to see

their pattern, which may convey useful information.

10.1.5 Are errors orthogonal to available information?

The tests above make incomplete use of the unforecastability principle, in-

sofar as they assess only the univariate properties of the errors. We can

make a more complete assessment by broadening the information set and as-

sessing optimality with respect to various sets of information, by estimating

regressions of the form

et+h,t = α0 +
∑

αixit + ut.

The hypothesis of interest is that all the α’s are zero, which is a necessary

condition for forecast optimality (orthogonality) with respect to available
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information.

The particular case of testing optimality with respect to yt+h,t is very

important in practice. (Note that yt+h,t is obviously in the time-t information

set.) The relevant regression is

et+h,t = α0 + α1yt+h,t + ut,

and optimality corresponds to (α0, α1) = (0, 0).

If the above regression seems a little strange to you, consider what may

seem like a more natural approach to testing optimality, regression of the

realization on the forecast:

yt+h = β0 + β1yt+h,t + ut.

This is called a “Mincer-Zarnowitz regression.” If the forecast is opti-

mal with respect to the information used to construct it, then we’d expect

(β0, β1) = (0, 1), in which case

yt+h = yt+h,t + ut.

Note, however, that if we start with the regression

yt+h = β0 + β1yt+h,t + ut,

and then subtract yt+h,t from each side, we obtain

et+h,t = α0 + α1yt+h,t + ut,

where (α0, α1) = (0, 0) when (β0, β1) = (0, 1). Thus, the two approaches

are identical. We can regress the error on an intercept and the forecast and

test (0, 0), or we can regress the realization on an intercept and the forecast

and test (0, 1).
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10.2 Relative Standards for Point Forecasts

Now think about ranking a set of forecasts, quite apart from how any or all of

them fare regarding the absolute optimality criteria assessed in section 10.1.

10.2.1 Accuracy Rankings via Expected Loss

The crucial object in measuring forecast accuracy is the loss function, L(yt+h, yt+h,t),

often restricted to L(et+h,t), which charts the “loss,” “cost,” or “disutility”

associated with various pairs of forecasts and realizations.1 In addition to

the shape of the loss function, the forecast horizon h is of crucial importance.

Rankings of forecast accuracy may of course be very different across different

loss functions and different horizons.

Let’s discuss a few accuracy measures that are important and popular.

Accuracy measures are usually defined on the forecast errors,

et+h,t = yt+h − yt+h,t,

or percent errors,

pt+h,t = (yt+h − yt+h,t)/yt+h.

Mean error measures forecast-error location, which is one component of

accuracy. In population we write

µet+h,t = E(et+h,t),

and in sample we write

µ̂et+h,t =
1

T

T∑
t=1

et+h,t.

The mean error is the forecast bias. Other things the same, we prefer a

1Because in many applications the loss function will be a direct function of the forecast error,
L(yt, yt+h,t) = L(et+h,t), we write L(et+h,t) from this point on to economize on notation, while recog-
nizing that certain loss functions (such as direction-of-change) don’t collapse to the L(et+h,t) form.
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forecast with small bias.

Error variance measures dispersion of the forecast errors, which is an-

other component of accuracy. In population we write

σ2
et+h,t

= E(et+h,t − µet+h,t)2,

and in sample we write

σ̂2
et+h,t

=
1

T

T∑
t=1

(et+h,t − µ̂et+h,t)2.

Other things the same, we prefer a forecast with small error variance.

Although the mean error and the error variance are components of accu-

racy, neither provides an overall accuracy measure. For example, one forecast

might have a small µ̂et+h,t but a large σ̂2
et+h,t

, and another might have a large

µ̂et+h,t and a small σ̂2
et+h,t

. Hence we would like an accuracy measure that

somehow incorporates both the mean error and error variance.

The mean squared error does just that. It is the most common overall

accuracy measure, by far. In population we write

MSEet+h,t = E(et+h,t)
2,

and in sample we write

M̂SEet+h,t =
1

T

T∑
t=1

e2
t+h,t.

This “bias-variance tradeoff” is a crucially important insight for forecasting.

Among other things, it highlights the fact that bias is not necessarily “bad,”

under quadratic loss (MSE). We’d be happy, for example, to take a small

bias increase in exchange for a massive variance reduction.

We sometimes take square roots to preserve units, yielding the root mean



340 CHAPTER 10. POINT FORECAST EVALUATION

squared error. In population we write

RMSEet+h,t =
√
E(et+h,t)2,

and in sample we write

R̂MSEet+h,t =

√√√√ 1

T

T∑
t=1

e2
t+h,t.

To understand the meaning of “preserving units,” and why it’s sometimes

helpful to do so, suppose that the forecast errors are measured in dollars.

Then the mean squared error, which is built up from squared errors, is mea-

sured in dollars squared. Taking square roots – that is, moving from MSE to

RMSE – brings the units back to dollars.

MSE can be decomposed into bias and variance components, reflecting the

tradeoff between bias and variance forecast accuracy under quadratic loss. In

particular, MSE can be decomposed into the sum of variance and squared

bias. In population we write

MSEet+h,t = σ2
et+h,t

+ µ2
et+h,t

,

and in sample we write

M̂SEet+h,t = σ̂2
et+h,t

+ µ̂2
et+h,t

.

Mean absolute error is a less popular, but nevertheless common, overall

accuracy measure. In population we write

MAEet+h,t = E|et+h,t|,



10.2. RELATIVE STANDARDS FOR POINT FORECASTS 341

and in sample we write

M̂AE =
1

T

T∑
t=1

|et+h,t|.

When using MAE we don’t have to take square roots to preserve units.

10.2.2 On MSE vs. MAE

Introspection suggests using MAE – not MSE – as the canonical benchmark

loss function. Consider using the distribution of e directly, ranking forecasts

by the distance of F (e) from F ∗(·), the unit step function at 0 (the cdf of

errors from a perfect forecast, which are 0 w.p. 1). That is, rank forecasts by

SED(F, F ∗) =

∫ ∞
−∞
|F (e)− F ∗(e)| de,

where smaller is better. We call SED(F, F ∗) the stochastic error distance.

In Figure 10.1a we show SED(F, F ∗), and in Figure 10.1b we provide an

example of two error distributions such that one would prefer F1 to F2 under

SED(F, F ∗).

We motivated SED(F, F ∗) as directly appealing and intuitive. It turns

out, moreover, that SED(F, F ∗) is intimately connected to one, and only one,

traditionally-invoked loss function, and it is not quadratic. In particular, for

any forecast error e, with cumulative distribution function F (e) such that

E(|e|) <∞, we have

SED(F, F ∗) =

∫ 0

−∞
F (e) de+

∫ ∞
0

[1− F (e)] d e = E(|e|). (10.1)

That is, SED(F, F ∗) equals expected absolute loss for any error distribution.

Hence if one is comfortable with SED(F, F ∗) and wants to use it to evaluate

forecast accuracy, then one must also be comfortable with expected absolute-

error loss and want to use it to evaluate forecast accuracy. The two criteria
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(a) c.d.f. of e. Under the SED(F, F ∗) criterion, we prefer smaller SED(F, F ∗) = SED−(F, F ∗)+SED+(F, F ∗).

(b) Two forecast error distributions. Under the SED(F, F ∗) criterion, we prefer F1(e) to F2(e).

Figure 10.1: Stochastic Error Distance (SED(F, F ∗))
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are identical.

10.2.3 Benchmark Comparisons

It is sometimes of interest to compare forecast performance to that of an

allegedly-naive benchmark.

Predictive R2

Recall the formula for R2,

R2 = 1−
∑T

t=1 e
2
t∑T

t=1(yt − ȳ)2
,

where et is the in-sample regression residual. If we replace the et’s with

et,t−1’s, out-of-sample 1-step forecast errors, then we get the predictive R2,

R2 = 1−
∑T

t=1 e
2
t,t−1∑T

t=1(yt − ȳ)2
,

Predictive R2 compares an estimate of 1-step-ahead out-of-sample forecast

error variance to an estimate of unconditional variance. Put differently, it

compares actual 1-step forecast accuracy to that of the historical mean fore-

cast, ȳ. The hope is that the former is much smaller than the latter, in which

case the predictive R2 will be near 1.

h-step-ahead versions of predictive R2’s are immediate. We simply replace

et,t−1 with et,t−h in the formulas.

Theil’s U-Statistic

The so-called “Theil U-statistic” is just a predictive R2, but we change the

benchmark from the historical mean forecast, ȳ , to a “no change” forecast,
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yt−1,

U = 1−
∑T

t=1 e
2
t,t−1∑T

t=1(yt − yt−1)2
.

In the meteorological literature measures like U are called “skill scores,”

because they assess actual skill relative to a potentially-naive forecast.

It is important to note that allegedly-naive benchmarks may not be so

naive. For example, many economic variables may in fact be nearly random

walks, in which case forecasters will have great difficulty beating the random

walk through no fault of their own (i.e., the predictive R2 relative to a random

walk “no-change” forecast given by Theil’s U may be near 0)!

10.2.4 Measures of Forecastability

Forecastability measures are a leading example of benchmark comparisons,

as we discuss them here.

It is natural and informative to judge forecasts by their accuracy. How-

ever, actual and forecasted values will differ, even for good forecasts. To take

an extreme example, consider a zero-mean white noise process. The optimal

linear forecast under quadratic loss in this case is simply zero, so the paths of

forecasts and realizations will clearly look different. These differences illus-

trate the inherent limits to predictability, even when using optimal forecasts.

The extent of a series’ predictability depends on how much information the

past conveys regarding future values of this series; as a result, some processes

are inherently easy to forecast, and others are more difficult. Note also that

predictability and volatility are different concepts; predictability is about the

ratio of conditional to unconditional variance, whereas volatility is simply

about unconditional variance.

Below we discuss some of the difficulties involved in predictability mea-

surement and propose a simple measure of relative predictability based on the

ratio of the expected loss of an optimal short-run forecast to the expected loss
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of an optimal long-run forecast. Our measure allows for covariance station-

ary or difference stationary processes, univariate or multivariate information

sets, general loss functions, and different forecast horizons of interest. First

we propose parametric methods for estimating the predictability of observed

series, and then we discuss alternative nonparametric measures, survey-based

measures, and more.

Population Measures

The expected loss of an optimal forecast will in general exceed zero, which

illustrates the inherent limits to predictability, even when using optimal fore-

casts. Put differently, poor forecast accuracy does not necessarily imply that

the forecaster failed. The extent of a series’ predictability in population de-

pends on how much information the past conveys regarding the future; given

an information set, some processes are inherently easy to forecast, and others

are more difficult.

In measuring predictability it is important to keep two points in mind.

First, the question of whether a series is predictable or not should be replaced

by one of how predictable it is. Predictability is always a matter of degree.

Second, the question of how predictable a series is cannot be answered in

general. We have to be clear about the relevant forecast horizon and loss

function. For example, a series may be highly predictable at short horizons,

but not at long horizons.

A natural measure of the forecastability of covariance stationary series

under squared-error loss, patterned after the familiar regression R2, is

G = 1− var(et+j,t)

var(yt+j)
,

where ŷt+j,t is the optimal (i.e., conditional mean) forecast and et+j,t = yt+j − ŷt+j,t.
We can also relax several constraints that limit the broad applicability of

the predictive R2 above. Its essence is basing measures of predictability on



346 CHAPTER 10. POINT FORECAST EVALUATION

the difference between the conditionally expected loss of an optimal short-run

forecast, E(L(et+j,t)), and that of an optimal long-run forecast, E(L(et+k,t)),,

j � k, , where E(·) denotes the mathematical expectation conditional on

the information set Ω. If E(L(et+j,t))�E(L(et+k,t)), we say that the series is

highly predictable at horizon j relative to k, and if E(L(et+j,t)) ≈E(L(et+k,t)).

we say that the series is nearly unpredictable at horizon j relative to k. Thus,

we define a general measure of predictability as

P (L,Ω, j, k) = 1− E(L(et+j,t)

E(L(et+k,t)
,

where the information set Ω can be univariate or multivariate, as desired.

The predictive R2 measure emerges when the series is covariance stationary,

L(x) = x2 (and hence the optimal forecast is the conditional mean), the in-

formation set is univariate, and k =∞. The advantages of our generalization

include: (1) It is valid for both covariance stationary and difference station-

ary series, so long as k <∞. (2) It allows for general loss functions. The loss

function L(·) need not be quadratic or even symmetric; we only require that

L(0) = 0 and that L(·) be strictly monotone on each side of the origin. By

the restrictions imposed on L(·) , we have that for all covariance stationary

or difference stationary processes P (L(·),Ω, j, k) ∈ [0, 1], with larger values

indicating greater predictability. (3) It allows for univariate or multivariate

information sets, and economic theory may suggest relevant multivariate in-

formation sets. (4) It allows for flexibility in the choice of j and k and enables

one to tailor the predictability measure to the horizons of economic interest.

Our predictability measure is closely related to Theil’s U statistic, which

we define for the 1-step-ahead horizon as

U =
E(e2

t,t−1)

E((yt − yt−1)2)
.

To see this, specialize P to the quadratic, univariate, j = 1 case and write it
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as

P (quadratic, univariate, 1, k) = 1−
E(e2

t,t−1)

E(e2
t,t−k)

,

or

1− P =
E(e2

t,t−1)

E(e2
t,t−k)

.

Thus, under certain conditions, 1−P is similar in spirit to Theil’s U . The key

difference is that Theil’s U assesses 1-step forecast accuracy relative to that

of a “naive” no-change forecast, whereas P assesses 1-step accuracy relative

to that of a long-horizon (k-step) forecast. In the general case,

P (L(·),Ω, j, k) = 1− E(L(et,t−j))

E(L(et,t−k))
.

Thus, P (L(·),Ω, j, k) is effectively one minus the ratio of expected losses of

two forecasts of the same object, yt. Typically, one forecast, ŷt,t−j, is based

on a rich information set, while the other forecast, ŷt,t−k, is based on a sparse

information set.

The formula for P (L(·),Ω, j, k) also makes clear that the concept of pre-

dictability is related to, but distinct from, the concept of persistence of a

series. Suppose, for example, that the series yt is a random walk. Then

P (e2, univariate, j, k) = 1− j

k
,

as will be shown later. The corresponding j-step variance ratio, a common

persistence measure, is

Vj =
var(yt − yt−j)
var(yt − yt−1)

= j.

It is clear, however, that although P (e2, univariate, j, k) and Vj are deter-

ministically related in the random walk case (P = 1 − V/k), they are not

deterministically related in more general cases.
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Sample Measures

Predictability is a population property of a series, not of any particular sam-

ple path, but predictability can be estimated from a sample path. We pro-

ceed by fitting a parametric model and then transforming estimates of the

parameters into an estimate of P . To keep the discussion tractable, and in

keeping with the empirical analysis of subsequent sections, we postulate a

quadratic loss function L(e) = e2 for estimation, prediction, model selection,

and construction of predictability measures.

It is clear that parametric measures of predictability in general will depend

on the specification of the parametric model. Here we focus on univariate

autoregressive models, although one could easily generalize the discussion

to other parametric models, such as vector ARMA models. We construct

P by simply reading off the appropriate diagonal elements of the forecast

MSE matrices for forecast horizons j and k. To build intuition, consider

a univariate AR(1) population process with innovation variance Σu: yt =

A1yt−1 + ut . Then for A1 = 0 the model reduces to white noise, and short-

run forecasts are just as accurate as long-run forecasts. As a result, relative

predictability is zero: P (j, k) = 1 − Σu / Σu = 0, for all j. In contrast, for

A1 = 1 the model becomes a random walk, and relative predictability steadily

declines as the forecast horizon increases: P (j, k) = 1 − (jΣu)/(kΣu) = 1 −
j/k.

Forecast errors from consistently estimated processes and processes with

known parameters are asymptotically equivalent. In practice, we estimate

P by replacing the underlying unknown parameters by their least squares

estimates.
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10.2.5 Statistical Assessment of Accuracy Rankings

Once we’ve decided on a loss function, it is often of interest to know whether

one forecast is more accurate than another. In hypothesis testing terms, we

might want to test the equal accuracy hypothesis,

E[L(eat+h,t)] = E[L(ebt+h,t)],

against the alternative hypothesis that one or the other is better. Equiva-

lently, we might want to test the hypothesis that the expected loss differential

is zero,

E(dt) = E[L(eat+h,t)]− E[L(ebt+h,t)] = 0.

The hypothesis concerns population expected loss; we test it using sample

average loss.

A Motivational Example

Consider a model-free forecasting environment, as for example with forecasts

based on surveys, forecasts extracted from financial markets, forecasts ob-

tained from prediction markets, or forecasts based on expert judgment. One

routinely has competing model-free forecasts of the same object, gleaned for

example from surveys or financial markets, and seeks to determine which is

better.

To take a concrete example, consider U.S. inflation forecasting. One might

obtain survey-based forecasts from the Survey of Professional Forecasters (S),

{πSt }Tt=1, and simultaneously one might obtain market-based forecasts from

inflation-indexed bonds (B), {πBt }Tt=1. Suppose that loss is quadratic and that

during t = 1, ..., T the sample mean-squared errors are M̂SE(πSt ) = 1.80 and

M̂SE(πBt ) = 1.92. Evidently “S wins,” and one is tempted to conclude that

S provides better inflation forecasts than does B. The forecasting literature is

filled with such horse races, with associated declarations of superiority based
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on outcomes.

Obviously, however, the fact that M̂SE(πSt ) < M̂SE(πBt ) in a particular

sample realization does not mean that S is necessarily truly better than B

in population. That is, even if in population MSE(πSt ) = MSE(πBt ), in any

particular sample realization t = 1, ..., T one or the other of S and B must

“win,” so the question arises in any particular sample as to whether S is truly

superior or merely lucky. The Diebold-Mariano test answers that question,

allowing one to assess the significance of apparent predictive superiority. It

provides a test of the hypothesis of equal expected loss (in our example,

MSE(πSt ) = MSE(πBt )), valid under quite general conditions including, for

example, wide classes of loss functions and forecast-error serial correlation of

unknown form.

The Diebold-Mariano Perspective

The essence of the DM approach is to take forecast errors as primitives,

intentionally, and to make assumptions directly on those forecast errors. (In

a model-free environment there are obviously no models about which to make

assumptions.) More precisely, DM relies on assumptions made directly on the

forecast error loss differential. Denote the loss associated with forecast error

et by L(et); hence, for example, time-t quadratic loss would be L(et) = e2
t .

The time-t loss differential between forecasts 1 and 2 is then d12t = L(e1t)−
L(e2t). DM requires only that the loss differential be covariance stationary.2

That is, DM assumes that:

Assumption DM :


E(d12t) = µ, ∀t
cov(d12t, d12(t−τ)) = γ(τ), ∀t
0 < var(d12t) = σ2 <∞.

(10.2)

2Actually covariance stationarity is sufficient but may not be strictly necessary, as less-restrictive types
of mixing conditions could presumably be invoked.
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The key hypothesis of equal predictive accuracy (i.e., equal expected loss)

corresponds to E(d12t) = 0, in which case, under the maintained Assumption

DM :

DM12 =
d̄12

σ̂d̄12

d

→ N(0, 1), (10.3)

where d̄12 = 1
T

∑T
t=1 d12t is the sample mean loss differential and σ̂d̄12 is a

consistent estimate of the standard deviation of d̄12 (more on that shortly).

That’s all: If Assumption DM holds, then the N(0, 1) limiting distribution

of test statistic DM must hold.

DM is simply an asymptotic z-test of the hypothesis that the mean of a

constructed but observed series (the loss differential) is zero. The only wrinkle

is that forecast errors, and hence loss differentials, may be serially correlated

for a variety of reasons, the most obvious being forecast sub-optimality. Hence

the standard error in the denominator of the DM statistic (10.3) should

be calculated robustly. A simple approach is to recognize that DM is just

a t-statistic for the hypothesis of a zero population mean loss differential,

adjusted to reflect the fact that the loss differential series is not necessarily,

so that we can compute it via HAC regression (e.g., Newey-West or Kiefer-

Vogelsang) on an intercept. Perhaps an even simpler approach is to regress

the loss differential on an intercept, allowing for AR(p) disturbances, and

using information criterion like AIC to select p.

DM is also readily extensible. The key is to recognize that the DM

statistic can be trivially calculated by regression of the loss differential on an

intercept, using heteroskedasticity and autocorrelation robust (HAC) stan-

dard errors. Immediately, then (and as noted in the original Diebold-Mariano

paper), one can potentially extend the regression to condition on additional

variables that may explain the loss differential, thereby moving from an un-
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conditional to a conditional expected loss perspective.3 For example, com-

parative predictive performance may differ by stage of the business cycle, in

which case one might include a 0-1 NBER business cycle chronology variable

(say) in the DM HAC regression.

Thoughts on Assumption DM

Thus far I have praised DM rather effusively, and its great simplicity and

wide applicability certainly are virtues: There is just one Assumption DM ,

just one DM test statistic, and just one DM limiting distribution, always

and everywhere. But of course everything hinges on Assumption DM . Here

I offer some perspectives on the validity of Assumption DM .

First, as George Box (1979) famously and correctly noted, “All models

are false, but some are useful.” Precisely the same is true of assumptions.

Indeed all areas of economics benefit from assumptions that are surely false

if taken literally, but that are nevertheless useful. So too with Assumption

DM . Surely dt is likely never precisely covariance stationary, just as surely

no economic time series is likely precisely covariance stationary. But in many

cases Assumption DM may be a useful approximation.

Second, special forecasting considerations lend support to the validity of

Assumption DM . Forecasters strive to achieve forecast optimality, which cor-

responds to unforecastable covariance-stationary errors (indeed white-noise

errors in the canonical 1-step-ahead case), and hence unforecastable covariance-

stationary loss differentials. Of course forecasters may not achieve optimality,

resulting in serially-correlated, and indeed forecastable, forecast errors. But

I(1) non-stationarity of forecast errors takes serial correlation to the extreme.4

Third, even in the extreme case where nonstationary components somehow

do exist in forecast errors, there is reason to suspect that they may be shared.
3Important subsequent work takes the conditional perspective farther; see Giacomini and White (2006).
4Even with apparent nonstationarity due to apparent breaks in the loss differential series, Assumption

DM may nevertheless hold if the breaks have a stationary rhythm, as for example with hidden-Markov
processes in the tradition of Hamilton (1989).
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In particular, information sets overlap across forecasters, so that forecast-

error nonstationarities may vanish from the loss differential. For example, two

loss series, each integrated of order one, may nevertheless be cointegrated with

cointegrating vector (1,−1). Suppose for example that L(e1t) = xt + ε1t and

L(e2t) = xt + ε2t, where xt is a common nonstationary I(1) loss component,

and ε1t and ε2t are idiosyncratic stationary I(0) loss components. Then d12t =

L(e1t)−L(e2t) = ε1t−ε2t is I(0), so that the loss differential series is covariance

stationary despite the fact that neither individual loss series is covariance

stationary.

Fourth, and most importantly, standard and powerful tools enable em-

pirical assessment of Assumption DM . That is, the approximate validity of

Assumption DM is ultimately an empirical matter, and a wealth of diagnos-

tic procedures are available to help assess its validity. One can plot the loss

differential series, examine its sample autocorrelations and spectrum, test it

for unit roots and other nonstationarities including trend, structural breaks

or evolution, and so on.

10.3 OverSea Shipping

We’ll work with an application to OverSea Services, Inc., a major interna-

tional cargo shipper. To help guide fleet allocation decisions, each week Over-

Sea makes forecasts of volume shipped over each of its major trade lanes, at

horizons ranging from 1-week ahead through 16-weeks-ahead. In fact, Over-

Sea produces two sets of forecasts – a quantitative forecast is produced using

modern quantitative techniques, and a judgmental forecast is produced by

soliciting the opinion of the sales representatives, many of whom have years

of valuable experience.

Here we’ll examine the realizations and 2-week-ahead forecasts of vol-

ume on the Atlantic East trade lane (North America to Europe). We have
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nearly ten years of data on weekly realized volume (V OL) and weekly 2-

week-ahead forecasts (the quantitative forecast V OLQ, and the judgmental

forecast V OLJ), from January 1988 through mid-July 1997, for a total of

499 weeks.

In Figure 1, we plot realized volume vs. the quantitative forecast, and in

Figure 2 we show realized volume vs. the judgmental forecast. The two plots

look similar, and both forecasts appear quite accurate; it’s not too hard to

forecast shipping volume just two weeks ahead.

In Figures 3 and 4, we plot the errors from the quantitative and judgmental

forecasts, which are more revealing. The quantitative error, in particular,

appears roughly centered on zero, whereas the judgmental error seems to be

a bit higher than zero on average. That is, the judgmental forecast appears

biased in a pessimistic way – on average, actual realized volume is a bit higher

than forecasted volume.

In Figures 5 and 6, we show histograms and related statistics for the

quantitative and judgmental forecast errors. The histograms confirm our

earlier suspicions based on the error plots; the histogram for the quantitative

error is centered on a mean of -.03, whereas that for the judgmental error

is centered on 1.02. The error standard deviations, however, reveal that the

judgmental forecast errors vary a bit less around their mean than do the

quantitative errors. Finally, the Jarque-Bera test can’t reject the hypothesis

that the errors are normally distributed.

In Tables 1 and 2 and Figures 7 and 8, we show the correlograms of the

quantitative and judgmental forecast errors. In each case, the errors appear to

have MA(1) structure; the sample autocorrelations cut off at displacement

1, whereas the sample partial autocorrelations display damped oscillation,

which is reasonable for 2-step-ahead forecast errors.

To test for the statistical significance of bias, we need to account for the

MA(1) serial correlation. To do so, we regress the forecast errors on a con-
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stant, allowing for MA(1) disturbances. We show the results for the quanti-

tative forecast errors in Table 3, and those for the judgmental forecast errors

in Table 4. The t-statistic indicates no bias in the quantitative forecasts, but

sizable and highly statistically significant bias in the judgmental forecasts.

In Tables 5 and 6, we show the results of Mincer-Zarnowitz regressions;

both forecasts fail miserably. We expected the judgmental forecast to fail,

because it’s biased, but until now no defects were found in the quantitative

forecast.

Now let’s compare forecast accuracy. We show the histogram and descrip-

tive statistics for the squared quantitative and judgmental errors in Figures 9

and 10. The histogram for the squared judgmental error is pushed rightward

relative to that of the quantitative error, due to bias. The RMSE of the

quantitative forecast is 1.26, while that of the judgmental forecast is 1.48.

In Figure 11 we show the (quadratic) loss differential; it’s fairly small

but looks a little negative. In Figure 12 we show the histogram of the loss

differential; the mean is -.58, which is small relative to the standard deviation

of the loss differential, but remember that we have not yet corrected for serial

correlation. In Table 7 we show the correlogram of the loss differential, which

strongly suggests MA(1) structure. The sample autocorrelations and partial

autocorrelations, shown in Figure 13, confirm that impression. Thus, to test

for significance of the loss differential, we regress it on a constant and allow

for MA(1) disturbances; we show the results in Table 8. The mean loss

differential is highly statistically significant, with a p-value less than .01; we

conclude that the quantitative forecast is more accurate than the judgmental

forecast under quadratic loss.
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10.4 Exercises, Problems and Complements

1. Forecast evaluation in action.

Discuss in detail how you would use forecast evaluation techniques to

address each of the following questions.

a. Are asset returns (e.g., stocks, bonds, exchange rates) forecastable

over long horizons?

b. Do forward exchange rates provide unbiased forecasts of future spot

exchange rates at all horizons?

c. Are government budget projections systematically too optimistic, per-

haps for strategic reasons?

d. Can interest rates be used to provide good forecasts of future infla-

tion?

2. Forecast error analysis.

You work for a London-based hedge fund, Thompson Energy Investors,

and your boss has assigned you to assess a model used to forecast U.S.

crude oil imports. On the last day of each quarter, the model is used to

forecast oil imports at horizons of 1-quarter-ahead through 4-quarters-

ahead. Thompson has done this for each of 80 quarters and has kept

the corresponding four forecast error series, which appear on the book’s

web page.

a. Based on a correlogram analysis, assess whether the 1-quarter-ahead

forecast errors are white noise. (Be sure to discuss all parts of the cor-

relogram: sample autocorrelations, sample partial autocorrelations,

Bartlett standard errors and Ljung-Box statistics.) Why care?

b. Regress each of the four forecast error series on constants, in each case

allowing for a MA(5) disturbances. Comment on the significance of
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the MA coefficients in each of the four cases and use the results to

assess the optimality of the forecasts at each of the four horizons. Does

your 1-step-ahead MA(5)-based assessment match the correlogram-

based assessment obtained in part a? Do the multi-step forecasts

appear optimal?

c. Overall, what do your results suggest about the model’s ability to

predict U.S. crude oil imports?

3. The mechanics of practical forecast evaluation.

For the following, use the time series of shipping volume, quantitative

forecasts, and judgmental forecasts used in this chapter.

a. Replicate the empirical results reported in this chapter. Explore and

discuss any variations or extensions that you find interesting.

b. Using the first 250 weeks of shipping volume data, specify and es-

timate a univariate autoregressive model of shipping volume (with

trend and seasonality if necessary), and provide evidence to support

the adequacy of your chosen specification.

c. Use your model each week to forecast two weeks ahead, each week

estimating the model using all available data, producing forecasts for

observations 252 through 499, made using information available at

times 250 through 497. Calculate the corresponding series of 248

2-step-ahead recursive forecast errors.

d. Using the methods of this chapter, evaluate the quality of your fore-

casts, both in isolation and relative to the original quantitative and

judgmental forecasts. Discuss.

4. Forecasting Competitions.

There are many forecasting competitions. Kaggle.com, for example, is a

well-known online venue. Participants are given a “training sample” of
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data and asked to forecast a “test sample”; that is, to make an out-of-

sample forecast of hold-out data, which they are not shown

(a) Check out Kaggle. Also read “A Site for Data Scientists to Prove

Their Skills and Make Money,” by Claira Cain Miller, New York

Times, November 3, 2011. What’s good about the Kaggle approach?

What’s bad? What happened to Kaggle since its launch in 2011?

(b) “Kaggle competitions” effectively outsource forecasting. What are

pros and cons of in-house experts vs. outsourcing?

(c) Kaggle strangely lets people peek at the test sample by re-submitting

forecasts once per day.

(d) Kaggle scores extrapolation forecasts rather than h-step. This blends

apples and oranges.

(e) Kaggle is wasteful from a combining viewpoint. One doesn’t just

want to find the “winner.”

5. The Peso Problem.

Suppose someone assigns a very high probability to an event that fails

to occur, or a very low probability to an event that does occur. Is

the person a bad probability forecaster? The answer is perhaps, but

not at all necessarily. Even events correctly forecast to occur with high

probability may simply fail to occur, and conversely.

Thus, for example, a currency might sell forward at a large discount,

indicating that the market has assigned a high probability of a large

depreciation. In the event, that depreciation might fail to occur, but that

does not necessarily mean that the market was in any sense “wrong” in

assigning a high depreciation probability. The term “Peso problem”

refers to exactly such issues in a long-ago situation involving the Mexican

Peso.
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6. Measuring forecastability with canonical correlations.

One can measure forecastability via canonical correlation between “past”

and “future,” as in Jewell and Bloomfield 1983, Hannan and Poskitt

1988.

7. Forecast Evaluation When Realizations are Unobserved.

Sometimes we never see the realization of the variable being forecast.

This occurs for example in forecasting ultimate resource recovery, such

as the total amount of oil in an underground reserve. The actual value,

however, won’t be known until the reserve is depleted, which may be

decades away. Such situations obviously make for difficult accuracy eval-

uation!

If the resource recovery example sounds a bit exotic, rest assured that

it’s not. In volatility forecasting, for example, “true” volatility is never

observed. And in any sort of state-space model, such as a dynamic factor

model, the true state vector is never observed. (See Chapters ***.)

(a) Nordhaus tests.

– Some optimality tests can be obtained even when the forecast

target is unobservable (Patton and Timmermann 2010, building on

Nordhaus 1987). In particular, (1) forecast revisions (for fixed target

date) should be MDS, and (2) forecast variance (not error variance,

but forecast variance) should decrease with distance from terminal

date. PT 2010 also have a nice generalized MZ test that builds on

these ideas.

(b) Patton tests.

8. Nonparametric predictabilty assessment.

We presented our autoregressive modeling approach as a parametric

method. However, in general, we need not assume that the fitted autore-
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gression is the true data-generating process; rather, it may be considered

an approximation, the order of which can grow with sample size. Thus

the autoregressive model can be viewed as a sieve, so our approach ac-

tually is nonparametric.

Nevertheless, the sieve approach has a parametric flavor. For any fixed

sample size, we assess predictability through the lens of a particular

autoregressive model. Hence it may be of interest to develop an approach

with a more thoroughly nonparametric flavor by exploiting Kolmogorov’s

well-known spectral formula for the univariate innovation variance,

σ2 = exp(
1

2π

∫ π

−π
ln 2πf(ω)dω),

where f is the spectral density function. Kolmogorov’s result has been

extended to univariate h-step-ahead forecast error variances by Bhansali

(1992).

9. Can unskilled density forecasters successfully disguise themselves as skilled?

10. Cross section forecast evaluation.

Most of the basic lessons for time-series forecast evaluation introduced in

this chapter are also relevant for cross-section forecast evaluation. Cross-

section forecast errors (appropriately standardized if heteroskedasticity

is present) should be iid white noise over space, and unpredictable using

any available covariates. DM-type tests can be done for point forecasts,

and DGT-type test for density forecasts.

11. Turning point forecasts into density forecasts.

As we have shown, Mincer-Zarnowitz corrections can be used to “cor-

rect” sub-optimal point forecasts. They can also be used to produce

density forecasts, by drawing from an estimate of the density of the MZ

regression disturbances, as we did in a different context in section 4.1.
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10.5 Notes


