
Chapter 8

Noise: Conditional Variance

Dynamics

The celebrated Wold decomposition makes clear that every covariance sta-

tionary series may be viewed as ultimately driven by underlying weak white

noise innovations. Hence it is no surprise that every forecasting model dis-

cussed in this book is driven by underlying white noise. To take a simple

example, if the series yt follows an AR(1) process, then yt = φ yt−1 + εt ,

where εt is white noise. In some situations it is inconsequential whether εt

is weak or strong white noise, that is, whether εt is independent, as opposed

to merely serially uncorrelated. Hence, so to simplify matters we sometimes

assume strong white noise, εt

iid

∼ (0, σ2) . Throughout this book, we have

thus far taken that approach, sometimes explicitly and sometimes implicitly.

When εt is independent, there is no distinction between the unconditional

distribution of εt and the distribution of εt conditional upon its past, by def-

inition of independence. Hence σ2 is both the unconditional and conditional

variance of εt . The Wold decomposition, however, does not require that εt be

serially independent; rather it requires only that εt be serially uncorrelated.

If εt is dependent, then its unconditional and conditional distributions will

differ. We denote the unconditional innovation distribution by εt ∼ (0, σ2) .
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We are particularly interested in conditional dynamics characterized by het-

eroskedasticity, or time-varying volatility. Hence we denote the conditional

distribution by εt | Ωt−1 ∼ (0, σ2
t ) , where Ωt−1 = εt−1, εt−2, ... . The

conditional variance σ2
t will in general evolve as Ωt−1 evolves, which focuses

attention on the possibility of time-varying innovation volatility.1

Allowing for time-varying volatility is crucially important in certain eco-

nomic and financial contexts. The volatility of financial asset returns, for

example, is often time-varying. That is, markets are sometimes tranquil and

sometimes turbulent, as can readily be seen by examining the time series of

stock market returns in Figure 1, to which we shall return in detail. Time-

varying volatility has important implications for financial risk management,

asset allocation and asset pricing, and it has therefore become central part

of the emerging field of financial econometrics. Quite apart from financial

applications, however, time-varying volatility also has direct implications for

interval and density forecasting in a wide variety of applications: correct

confidence intervals and density forecasts in the presence of volatility fluc-

tuations require time-varying confidence interval widths and time-varying

density forecast spreads. The forecasting models that we have considered

thus far, however, do not allow for that possibility. In this chapter we do so.

8.1 The Basic ARCH Process

Consider the general linear process,

yt = B(L)εt

B(L) =
∞∑
i=0

biL
i

1 In principle, aspects of the conditional distribution other than the variance, such as conditional skewness,
could also fluctuate. Conditional variance fluctuations are by far the most important in practice, however,
so we assume that fluctuations in the conditional distribution of ε are due exclusively to fluctuations in σ2

t .
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∞∑
i=0

b2
i < ∞

b0 = 1

εt ∼ WN(0, σ2) .

We will work with various cases of this process.

Suppose first that εt is strong white noise, εt

iid

∼ WN(0, σ2). Let us

review some results already discussed for the general linear process, which

will prove useful in what follows. The unconditional mean and variance of y

are

E(yt) = 0

and

E(y2
t ) = σ2

∞∑
i=0

b2
i ,

which are both time-invariant, as must be the case under covariance sta-

tionarity. However, the conditional mean of y is time-varying:

E(yt|Ωt−1) =
∞∑
i=1

biεt−i,

where the information set is

Ωt−1 = εt−1, εt−2, ....

The ability of the general linear process to capture covariance stationary

conditional mean dynamics is the source of its power.

Because the volatility of many economic time series varies, one would hope

that the general linear process could capture conditional variance dynamics
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as well, but such is not the case for the model as presently specified: the

conditional variance of y is constant at

E
(
(yt − E(yt | Ωt−1))

2 | Ωt−1

)
= σ2.

This potentially unfortunate restriction manifests itself in the properties of

the h-step-ahead conditional prediction error variance. The minimum mean

squared error forecast is the conditional mean,

E(yt+h | Ωt) =
∞∑
i=0

bh+iεt−i ,

and so the associated prediction error is

yt+h − E(yt+h | Ωt) =
h−1∑
i=0

biεt+h−i ,

which has a conditional prediction error variance of

E
(

(yt+h − E(yt+h | Ωt))
2 | Ωt

)
= σ2

h−1∑
i=0

b2
i .

The conditional prediction error variance is different from the uncondi-

tional variance, but it is not time-varying: it depends only on h, not on the

conditioning information Ωt. In the process as presently specified, the con-

ditional variance is not allowed to adapt to readily available and potentially

useful conditioning information.

So much for the general linear process with iid innovations. Now we extend

it by allowing εt to be weak rather than strong white noise, with a particular

nonlinear dependence structure. In particular, suppose that, as before,

yt = B(L)εt
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B(L) =
∞∑
i=0

biL
i

∞∑
i=0

b2
i < ∞

b0 = 1 ,

but now suppose as well that

εt | Ωt−1 ∼ N(0, σ2
t )

σ2
t = ω + γ(L)ε2

t

ω > 0 γ(L) =

p∑
i=1

γiL
i γi ≥ 0 for all i

∑
γi < 1 .

Note that we parameterize the innovation process in terms of its condi-

tional density,

εt | Ωt−1,

which we assume to be normal with a zero conditional mean and a con-

ditional variance that depends linearly on p past squared innovations. εt is

serially uncorrelated but not serially independent, because the current con-

ditional variance σ2
t depends on the history of εt .2 The stated regularity

conditions are sufficient to ensure that the conditional and unconditional

variances are positive and finite, and that yt is covariance stationary.

The unconditional moments of εt are constant and are given by

E(εt) = 0

2 In particular, σ2
t depends on the previous p values of εt via the distributed lag

γ(L)ε2t .
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and

E(εt − E(εt))
2 =

ω

1 −
∑
γi
.

The important result is not the particular formulae for the unconditional

mean and variance, but the fact that they are fixed, as required for covariance

stationarity. As for the conditional moments of εt , its conditional variance

is time-varying,

E
(
(εt − E(εt | Ωt−1))

2 | Ωt−1

)
= ω + γ(L)ε2

t ,

and of course its conditional mean is zero by construction.

Assembling the results to move to the unconditional and conditional mo-

ments of y as opposed to εt , it is easy to see that both the unconditional mean

and variance of y are constant (again, as required by covariance stationarity),

but that both the conditional mean and variance are time-varying:

E(yt | Ωt−1) =
∞∑
i=1

biεt−i

E
(
(yt − E(yt | Ωt−1))

2 | Ωt−1

)
= ω + γ(L)ε2

t .

Thus, we now treat conditional mean and variance dynamics in a symmet-

ric fashion by allowing for movement in each, as determined by the evolving

information set Ωt−1 . In the above development, εt is called an ARCH(p)

process, and the full model sketched is an infinite-ordered moving average

with ARCH(p) innovations, where ARCH stands for autoregressive condi-

tional heteroskedasticity. Clearly εt is conditionally heteroskedastic, because

its conditional variance fluctuates. There are many models of conditional

heteroskedasticity, but most are designed for cross-sectional contexts, such

as when the variance of a cross-sectional regression disturbance depends on
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one or more of the regressors.3 However, heteroskedasticity is often present as

well in the time-series contexts relevant for forecasting, particularly in finan-

cial markets. The particular conditional variance function associated with

the ARCH process,

σ2
t = ω + γ(L)ε2

t ,

is tailor-made for time-series environments, in which one often sees volatil-

ity clustering, such that large changes tend to be followed by large changes,

and small by small, of either sign. That is, one may see persistence, or se-

rial correlation, in volatility dynamics (conditional variance dynamics), quite

apart from persistence (or lack thereof) in conditional mean dynamics. The

ARCH process approximates volatility dynamics in an autoregressive fashion;

hence the name autoregressive conditional heteroskedasticity. To understand

why, note that the ARCH conditional variance function links today’s con-

ditional variance positively to earlier lagged ε2
t ’s, so that large ε2

t ’s in the

recent past produce a large conditional variance today, thereby increasing

the likelihood of a large ε2
t today. Hence ARCH processes are to conditional

variance dynamics precisely as standard autoregressive processes are to con-

ditional mean dynamics. The ARCH process may be viewed as a model for

the disturbance in a broader model, as was the case when we introduced it

above as a model for the innovation in a general linear process. Alternatively,

if there are no conditional mean dynamics of interest, the ARCH process may

be used for an observed series. It turns out that financial asset returns often

have negligible conditional mean dynamics but strong conditional variance

dynamics; hence in much of what follows we will view the ARCH process as

a model for an observed series, which for convenience we will sometimes call

a “return.”
3 The variance of the disturbance in a model of household expenditure, for example, may depend on

income.
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8.2 The GARCH Process

Thus far we have used an ARCH(p) process to model conditional variance

dynamics. We now introduce the GARCH(p,q) process (GARCH stands for

generalized ARCH), which we shall subsequently use almost exclusively. As

we shall see, GARCH is to ARCH (for conditional variance dynamics) as

ARMA is to AR (for conditional mean dynamics).

The pure GARCH(p,q) process is given by4

yt = εt

εt | Ωt−1 ∼ N(0, σ2
t )

σ2
t = ω + α(L)ε2

t + β(L)σ2
t

α(L) =

p∑
i=1

αiL
i, β(L) =

q∑
i=1

βiL
i

ω > 0, αi ≥ 0, βi ≥ 0,
∑

αi +
∑

βi < 1 .

The stated conditions ensure that the conditional variance is positive and

that yt is covariance stationary.

Back substitution on σ2
t reveals that the GARCH(p,q) process can be

represented as a restricted infinite-ordered ARCH process,

σ2
t =

ω

1 −
∑
βi

+
α(L)

1 − β(L)
ε2

t =
ω

1 −
∑
βi

+
∞∑

i=1

δiε
2
t−i ,

which precisely parallels writing an ARMA process as a restricted infinite-

ordered AR. Hence the GARCH(p,q) process is a parsimonious approximation

to what may truly be infinite-ordered ARCH volatility dynamics.

4 By “pure” we mean that we have allowed only for conditional variance dynamics, by setting yt = εt .
We could of course also introduce conditional mean dynamics, but doing so would only clutter the discussion
while adding nothing new.
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It is important to note a number of special cases of the GARCH(p,q)

process. First, of course, the ARCH(p) process emerges when

β(L) = 0.

Second, if both α(L) and β(L) are zero, then the process is simply iid Gaus-

sian noise with variance ω. Hence, although ARCH and GARCH processes

may at first appear unfamiliar and potentially ad hoc, they are in fact much

more general than standard iid white noise, which emerges as a potentially

highly-restrictive special case.

Here we highlight some important properties of GARCH processes. All

of the discussion of course applies as well to ARCH processes, which are

special cases of GARCH processes. First, consider the second-order moment

structure of GARCH processes. The first two unconditional moments of the

pure GARCH process are constant and given by

E(εt) = 0

and

E(εt − E(εt))
2 =

ω

1 −
∑
αi −

∑
βi
,

while the conditional moments are

E(εt | Ωt−1) = 0

and of course

E
(
(εt − E(εt|Ωt−1))

2|Ωt−1

)
= ω + α(L)ε2

t + β(L)σ2
t .

In particular, the unconditional variance is fixed, as must be the case under

covariance stationarity, while the conditional variance is time-varying. It is no
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surprise that the conditional variance is time-varying – the GARCH process

was of course designed to allow for a time-varying conditional variance – but

it is certainly worth emphasizing: the conditional variance is itself a serially

correlated time series process.

Second, consider the unconditional higher-order (third and fourth) mo-

ment structure of GARCH processes. Real-world financial asset returns,

which are often modeled as GARCH processes, are typically uncondition-

ally symmetric but leptokurtic (that is, more peaked in the center and with

fatter tails than a normal distribution). It turns out that the implied uncondi-

tional distribution of the conditionally Gaussian GARCH process introduced

above is also symmetric and leptokurtic. The unconditional leptokurtosis of

GARCH processes follows from the persistence in conditional variance, which

produces clusters of “low volatility” and “high volatility” episodes associated

with observations in the center and in the tails of the unconditional distri-

bution, respectively. Both the unconditional symmetry and unconditional

leptokurtosis agree nicely with a variety of financial market data.

Third, consider the conditional prediction error variance of a GARCH

process, and its dependence on the conditioning information set. Because

the conditional variance of a GARCH process is a serially correlated random

variable, it is of interest to examine the optimal h-step-ahead prediction,

prediction error, and conditional prediction error variance. Immediately, the

h-step-ahead prediction is

E(εt+h | Ωt) = 0,

and the corresponding prediction error is

εt+h − E(εt+h | Ωt) = εt+h .

This implies that the conditional variance of the prediction error,
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E
(
(εt+h − E(εt+h | Ωt))

2 | Ωt

)
= E(ε2

t+h | Ωt) ,

depends on both h and

Ωt,

because of the dynamics in the conditional variance. Simple calculations

reveal that the expression for the GARCH(p, q) process is given by

E(ε2
t+h | Ωt) = ω

(
h−2∑
i=0

(α(1) + β(1))i

)
+ (α(1) + β(1))h−1σ2

t+1 .

In the limit, this conditional variance reduces to the unconditional variance

of the process,

lim
h→∞

E(ε2
t+h | Ωt) =

ω

1 − α(1) − β(1)
.

For finite h, the dependence of the prediction error variance on the current

information set Ωt can be exploited to improve interval and density forecasts.

Fourth, consider the relationship between ε2
t and σ2

t . The relationship is

important: GARCH dynamics in σ2
t turn out to introduce ARMA dynamics

in ε2
t .5 More precisely, if εt is a GARCH(p,q) process, then

ε2
t

has the ARMA representation

ε2
t = ω + (α(L) + β(L))ε2

t − β(L)νt + νt ,

where

νt = ε2
t − σ2

t

5 Put differently, the GARCH process approximates conditional variance dynamics in the same way that
an ARMA process approximates conditional mean dynamics.
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is the difference between the squared innovation and the conditional variance

at time t. To see this, note that if εt is GARCH(p,q), then

σ2
t = ω + α(L)ε2

t + β(L)σ2
t .

Adding and subtracting

β(L)ε2
t

from the right side gives

σ2
t = ω + α(L)ε2

t + β(L)ε2
t − β(L)ε2

t + β(L)σ2
t

= ω + (α(L) + β(L))ε2
t − β(L)(ε2

t − σ2
t ) .

Adding

ε2
t

to each side then gives

σ2
t + ε2

t = ω + (α(L) + β(L))ε2
t − β(L)(ε2

t − σ2
t ) + ε2

t ,

so that

ε2
t = ω + (α(L) + β(L))ε2

t − β(L)(ε2
t − σ2

t ) + (ε2
t − σ2

t ) ,

= ω + (α(L) + β(L))ε2
t − β(L)νt + νt .

Thus,

ε2
t

is an ARMA((max(p,q)), p) process with innovation νt , where

νt ∈ [−σ2
t , ∞).

ε2
t is covariance stationary if the roots of α(L)+β(L)=1 are outside the



8.2. THE GARCH PROCESS 285

unit circle.

Fifth, consider in greater depth the similarities and differences between σ2
t

and

ε2
t .

It is worth studying closely the key expression,

νt = ε2
t − σ2

t ,

which makes clear that

ε2
t

is effectively a “proxy” for σ2
t , behaving similarly but not identically, with

νt being the difference, or error. In particular, ε2
t is a noisy proxy: ε2

t is

an unbiased estimator of σ2
t , but it is more volatile. It seems reasonable,

then, that reconciling the noisy proxy ε2
t and the true underlying σ2

t should

involve some sort of smoothing of ε2
t . Indeed, in the GARCH(1,1) case σ2

t

is precisely obtained by exponentially smoothing ε2
t . To see why, consider

the exponential smoothing recursion, which gives the current smoothed value

as a convex combination of the current unsmoothed value and the lagged

smoothed value,

ε̄2
t = γε2

t + (1− γ)ε̄2
t−1 .

Back substitution yields an expression for the current smoothed value as

an exponentially weighted moving average of past actual values:

ε̄2
t =

∑
wjε

2
t−j ,

where

wj = γ(1− γ)j .

Now compare this result to the GARCH(1,1) model, which gives the cur-

rent volatility as a linear combination of lagged volatility and the lagged
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squared return, σ2
t = ω + αε2

t−1 + βσ2
t−1 .

Back substitution yields σ2
t = ω

1−β + α
∑
βj−1ε2

t−j , so that the GARCH(1,1)

process gives current volatility as an exponentially weighted moving average

of past squared returns.

Sixth, consider the temporal aggregation of GARCH processes. By tem-

poral aggregation we mean aggregation over time, as for example when we

convert a series of daily returns to weekly returns, and then to monthly

returns, then quarterly, and so on. It turns out that convergence toward

normality under temporal aggregation is a feature of real-world financial as-

set returns. That is, although high-frequency (e.g., daily) returns tend to

be fat-tailed relative to the normal, the fat tails tend to get thinner under

temporal aggregation, and normality is approached. Convergence to normal-

ity under temporal aggregation is also a property of covariance stationary

GARCH processes. The key insight is that a low-frequency change is simply

the sum of the corresponding high-frequency changes; for example, an annual

change is the sum of the internal quarterly changes, each of which is the sum

of its internal monthly changes, and so on. Thus, if a Gaussian central limit

theorem can be invoked for sums of GARCH processes, convergence to nor-

mality under temporal aggregation is assured. Such theorems can be invoked

if the process is covariance stationary.

In closing this section, it is worth noting that the symmetry and leptokur-

tosis of the unconditional distribution of the GARCH process, as well as the

disappearance of the leptokurtosis under temporal aggregation, provide nice

independent confirmation of the accuracy of GARCH approximations to as-

set return volatility dynamics, insofar as GARCH was certainly not invented

with the intent of explaining those features of financial asset return data.

On the contrary, the unconditional distributional results emerged as unan-

ticipated byproducts of allowing for conditional variance dynamics, thereby

providing a unified explanation of phenomena that were previously believed
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unrelated.

8.3 Extensions of ARCH and GARCH Models

There are numerous extensions of the basic GARCH model. In this section,

we highlight several of the most important. One important class of extensions

allows for asymmetric response; that is, it allows for last period’s squared

return to have different effects on today’s volatility, depending on its sign.6

Asymmetric response is often present, for example, in stock returns.

8.3.1 Asymmetric Response

The simplest GARCH model allowing for asymmetric response is the thresh-

old GARCH, or TGARCH, model.7 We replace the standard GARCH condi-

tional variance function, σ2
t = ω + αε2

t−1 + βσ2
t−1 , with σ2

t = ω + αε2
t−1 + γε2

t−1Dt−1 + βσ2
t−1 ,

where Dt =
1, if εt < 0

0 otherwise .
.

The dummy variable D keeps track of whether the lagged return is posi-

tive or negative. When the lagged return is positive (good news yesterday),

D=0, so the effect of the lagged squared return on the current conditional

variance is simply α. In contrast, when the lagged return is negative (bad

news yesterday), D=1, so the effect of the lagged squared return on the cur-

rent conditional variance is α+γ. If γ = 0, the response is symmetric and we

have a standard GARCH model, but if γ 6= 0 we have asymmetric response

of volatility to news. Allowance for asymmetric response has proved useful

for modeling “leverage effects” in stock returns, which occur when γ <0.8

6 In the GARCH model studied thus far, only the square of last period’s return affects the current
conditional variance; hence its sign is irrelevant.

7 For expositional convenience, we will introduce all GARCH extensions in the context of GARCH(1,1),
which is by far the most important case for practical applications. Extensions to the GARCH(p,q) case are
immediate but notationally cumbersome.

8 Negative shocks appear to contribute more to stock market volatility than do positive shocks. This is
called the leverage effect, because a negative shock to the market value of equity increases the aggregate
debt/equity ratio (other things the same), thereby increasing leverage.
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Asymmetric response may also be introduced via the exponential GARCH

(EGARCH) model,

ln(σ2
t ) = ω + α

∣∣∣ε t−1
σt−1

∣∣∣ + γε t−1
σt−1

+ β ln(σ2
t−1) .

Note that volatility is driven by both size and sign of shocks; hence the model

allows for an asymmetric response depending on the sign of news.9 The

log specification also ensures that the conditional variance is automatically

positive, because σ2
t is obtained by exponentiating ln(σ2

t ) ; hence the name

“exponential GARCH.”

8.3.2 Exogenous Variables in the Volatility Function

Just as ARMA models of conditional mean dynamics can be augmented to

include the effects of exogenous variables, so too can GARCH models of

conditional variance dynamics.

We simply modify the standard GARCH volatility function in the obvious

way, writing

σ2
t = ω + α ε2

t−1 + β σ2
t−1 + γxt ,

where γ is a parameter and x is a positive exogenous variable.10 Allowance

for exogenous variables in the conditional variance function is sometimes

useful. Financial market volume, for example, often helps to explain market

volatility.

9 The absolute “size” of news is captured by |rt−1/σt−1| , and the sign is captured by rt−1/σt−1 .
10 Extension to allow multiple exogenous variables is straightforward.
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8.3.3 Regression with GARCH disturbances and GARCH-M

Just as ARMA models may be viewed as models for disturbances in regres-

sions, so too may GARCH models. We write

yt = β0 + β1xt + εt

εt|Ωt−1 ∼ N(0, σ2
t )

σ2
t = ω + αε2

t−1 + βσ2
t−1 . Consider now a regression model with GARCH

disturbances of the usual sort, with one additional twist: the conditional vari-

ance enters as a regressor, thereby affecting the conditional mean. We write

yt = β0 + β1xt + γσ2
t + εt

εt|Ωt−1 ∼ N(0, σ2
t )

σ2
t = ω + αε2

t−1 + βσ2
t−1 . This model, which is a special case of the

general regression model with GARCH disturbances, is called GARCH-in-

Mean (GARCH-M). It is sometimes useful in modeling the relationship be-

tween risks and returns on financial assets when risk, as measured by the

conditional variance, varies.11

8.3.4 Component GARCH

Note that the standard GARCH(1,1) process may be written as (σ2
t − ω̄) = α(ε2

t−1 − ω̄) + β(σ2
t−1 − ω̄) ,

where ω̄ = ω
1−α−β is the unconditional variance.12 This is precisely the

GARCH(1,1) model introduced earlier, rewritten it in a slightly different but

equivalent form. In this model, short-run volatility dynamics are governed by

the parameters α and β, and there are no long-run volatility dynamics, be-

cause ω̄ is constant. Sometimes we might want to allow for both long-run and
11 One may also allow the conditional standard deviation, rather than the conditional variance, to enter

the regression.
12 ω̄ is sometimes called the “long-run” variance, referring to the fact that the unconditional variance is

the long-run average of the conditional variance.
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short-run, or persistent and transient, volatility dynamics in addition to the

short-run volatility dynamics already incorporated. To do this, we replace ω̄

with a time-varying process, yielding (σ2
t − qt) = α(ε2

t−1 − qt−1) + β(σ2
t−1 − qt−1) ,

where the time-varying long-run volatility, qt , is given by qt = ω + ρ(qt−1 − ω) + φ(ε2
t−1 − σ2

t−1) .

This “component GARCH” model effectively lets us decompose volatility

dynamics into long-run (persistent) and short-run (transitory) components,

which sometimes yields useful insights. The persistent dynamics are governed

by ρ , and the transitory dynamics are governed by α and

β .13

8.3.5 Mixing and Matching

In closing this section, we note that the different variations and extensions of

the GARCH process may of course be mixed. As an example, consider the fol-

lowing conditional variance function: (σ2
t − qt) = α(ε2

t−1 − qt−1) + γ(ε2
t−1 − qt−1)Dt−1 + β(σ2

t − qt−1) + θxt .

This is a component GARCH specification, generalized to allow for asymmet-

ric response of volatility to news via the sign dummy D, as well as effects from

the exogenous variable x.

8.4 Estimating, Forecasting and Diagnosing GARCH

Models

Recall that the likelihood function is the joint density function of the data,

viewed as a function of the model parameters, and that maximum likelihood

estimation finds the parameter values that maximize the likelihood function.

This makes good sense: we choose those parameter values that maximize

the likelihood of obtaining the data that were actually obtained. It turns

13 It turns out, moreover, that under suitable conditions the component GARCH model introduced here
is covariance stationary, and equivalent to a GARCH(2,2) process subject to certain nonlinear restrictions
on its parameters.



8.4. ESTIMATING, FORECASTING AND DIAGNOSING GARCH MODELS 291

out that construction and evaluation of the likelihood function is easily done

for GARCH models, and maximum likelihood has emerged as the estimation

method of choice.14 No closed-form expression exists for the GARCH maxi-

mum likelihood estimator, so we must maximize the likelihood numerically.15

Construction of optimal forecasts of GARCH processes is simple. In fact,

we derived the key formula earlier but did not comment extensively on it.

Recall, in particular, that

σ2
t+h,t = E

[
ε2

t+h | Ωt

]
= ω

(
h−1∑
i=1

[α(1) + β(1)]i
)

+ [α(1) + β(1)]h−1 σ2
t+1 .

In words, the optimal h-step-ahead forecast is proportional to the optimal

1-step-ahead forecast. The optimal 1-step-ahead forecast, moreover, is easily

calculated: all of the determinants of σ2
t+1 are lagged by at least one period,

so that there is no problem of forecasting the right-hand side variables. In

practice, of course, the underlying GARCH parameters α and β are unknown

and so must be estimated, resulting in the feasible forecast σ̂2
t+h,t formed in

the obvious way. In financial applications, volatility forecasts are often of di-

rect interest, and the GARCH model delivers the optimal h-step-ahead point

forecast, σ2
t+h,t . Alternatively, and more generally, we might not be intrin-

sically interested in volatility; rather, we may simply want to use GARCH

volatility forecasts to improve h-step-ahead interval or density forecasts of εt

, which are crucially dependent on the h-step-ahead prediction error variance,

σ2
t+h,t . Consider, for example, the case of interval forecasting. In the case

of constant volatility, we earlier worked with Gaussian ninety-five percent

14 The precise form of the likelihood is complicated, and we will not give an explicit expression here, but
it may be found in various of the surveys mentioned in the Bibliographical and Computational Notes at the
end of the chapter.

15 Routines for maximizing the GARCH likelihood are available in a number of modern software packages
such as Eviews. As with any numerical optimization, care must be taken with startup values and convergence
criteria to help insure convergence to a global, as opposed to merely local, maximum.
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interval forecasts of the form

yt+h,t ± 1.96σh ,

where σh denotes the unconditional h-step-ahead standard deviation (which

also equals the conditional h-step-ahead standard deviation in the absence of

volatility dynamics). Now, however, in the presence of volatility dynamics

we use

yt+h,t ± 1.96σt+h,t .

The ability of the conditional prediction interval to adapt to changes in

volatility is natural and desirable: when volatility is low, the intervals are

naturally tighter, and conversely. In the presence of volatility dynamics, the

unconditional interval forecast is correct on average but likely incorrect at any

given time, whereas the conditional interval forecast is correct at all times.

The issue arises as to how to detect GARCH effects in observed returns, and

related, how to assess the adequacy of a fitted GARCH model. A key and

simple device is the correlogram of squared returns, ε2
t . As discussed earlier,

ε2
t is a proxy for the latent conditional variance; if the conditional variance

displays persistence, so too will ε2
t .16 Once can of course

also fit a GARCH model, and assess significance of the GARCH coefficients

in the usual way.

Note that we can write the GARCH process for returns as εt = σtvt ,

where vt

iid

∼ N(0, 1) σ2
t = ω + αε2

t−1 + βσ2
t−1 .

Equivalently, the standardized return, v, is iid,

16 Note well, however, that the converse is not true. That is, if ε2t displays persistence, it does not
necessarily follow that the conditional variance displays persistence. In particular, neglected serial correlation
associated with conditional mean dynamics may cause serial correlation in εt and hence also in ε2t . Thus,
before proceeding to examine and interpret the correlogram of ε2t as a check for volatility dynamics, it is
important that any conditional mean effects be appropriately modeled, in which case εt should be interpreted
as the disturbance in an appropriate conditional mean model.
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Figure 8.1: NYSE Returns

ε t
σ t

= vt

iid

∼ N(0, 1) .

This observation suggests a way to evaluate the adequacy of a fitted

GARCH model: standardize returns by the conditional standard deviation

from the fitted GARCH model, σ̂ , and then check for volatility dynam-

ics missed by the fitted model by examining the correlogram of the squared

standardized return, (εt/σ̂t)
2 . This is routinely done in practice.

8.5 Application: Stock Market Volatility

We model and forecast the volatility of daily returns on the New York Stock

Exchange (NYSE) from January 1, 1988 through December 31, 2001, exclud-

ing holidays, for a total of 3531 observations. We estimate using observations

1-3461, and then we forecast observations 3462-3531.

In Figure 8.1 we plot the daily returns, rt . There is no visual evidence

of serial correlation in the returns, but there is evidence of serial correlation

in the amplitude of the returns. That is, volatility appears to cluster: large
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Figure 8.2: Histogram of NYSE Returns

changes tend to be followed by large changes, and small by

small, of either sign. In Figure 8.2 we show the histogram and related statis-

tics for rt . The mean daily return is slightly positive. Moreover, the returns

are approximately symmetric (only slightly left skewed) but highly leptokur-

tic. The Jarque-Bera statistic indicates decisive rejection of normality.

In Figure 8.3 we show the correlogram for rt . The sample autocorrelations

are tiny and usually insignificant relative to the Bartlett standard errors, yet

the autocorrelation function shows some evidence of a systematic cyclical

pattern, and the Q statistics (not shown), which cumulate the information

across all displacements, reject the null of weak white noise. Despite the weak

serial correlation evidently present in the returns, we will proceed for now as

if returns were weak white noise, which is approximately, if not exactly, the

case.17

In Figure 8.4 we plot r2
t . The volatility clustering is even more evident

than it was in the time series plot of returns. Perhaps the strongest evidence

of all comes from the correlogram of r2
t , which we show in Figure 8.5: all

sample autocorrelations of r2
t are positive, overwhelmingly larger than those

of the returns themselves, and statistically significant. As a crude first pass

at modeling the stock market volatility, we fit an AR(5) model directly to r2
t

17 In the Exercises, Problems and Complements at the end of this chapter we model the conditional mean,
as well as the conditional variance, of returns.
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Figure 8.3: Correlogram of NYSE Returns

Figure 8.4: Squared NYSE Returns

; the results appear in Table 8.6. It is interesting to note that the t-statistics

on the lagged squared returns are often significant, even at long lags, yet the

R2 of the regression is low, reflecting the fact that r2
t is a very noisy volatility

proxy. As a more sophisticated second pass at modeling NYSE volatility, we

fit an ARCH(5) model to rt ; the results appear in Table 8.7. The lagged

squared returns appear significant even at long lags. The correlogram of

squared standardized residuals shown in Figure 8.8, however, displays some

remaining systematic behavior, indicating that the ARCH(5) model fails to
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Figure 8.5: Squared NYSE Returns Correlogram

capture all of the volatility dynamics, potentially because even longer lags

are needed.18

18 In the Exercises, Problems and Complements at the end of this chapter we also examine ARCH(p)
models with p>5.
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Figure 8.6: Squared NYSE Returns, AR(5) Model

Figure 8.7: Squared NYSE Returns, ARCH(5) Model
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Figure 8.8: NYSE Returns, Correlogram of Squared Standardized Residuals from ARCH(5)
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In Table 8.9 we show the results of fitting a GARCH(1,1) model. All of the

parameter estimates are highly statistically significant, and the “ARCH co-

efficient” (α) and “GARCH coefficient” (β) sum to a value near unity (.987),

with β substantially larger then α, as is commonly found for financial as-

set returns. We show the correlogram of squared standardized GARCH(1,1)

residuals in Figure 8.10. All sample autocorrelations are tiny and inside the

Bartlett bands, and they display noticeably less evidence of any systematic

pattern than for the squared standardized ARCH(5) residuals. In Figure 8.11

we show the time series of estimated conditional standard deviations implied

by the estimated GARCH(1,1) model. Clearly, volatility fluctuates a great

deal and is highly persistent. For comparison we show in Figure 8.12 the

series of exponentially smoothed r2
t , computed using a standard smoothing

parameter of .05.19 Clearly the GARCH and exponential smoothing volatility

estimates behave similarly, although not at all identically. The difference re-

flects the fact that the GARCH smoothing parameter is effectively estimated

by the method of maximum likelihood, whereas the exponential smoothing

parameter is set rather arbitrarily. Now, using the model estimated using

observations 1-3461, we generate a forecast of the conditional standard de-

viation for the out-of-sample observations 3462-3531. We show the results

in Figure 8.13. The forecast period begins just following a volatility burst,

so it is not surprising that the forecast calls for gradual volatility reduction.

For greater understanding, in Figure 8.14 we show both a longer history and

a longer forecast. Clearly the forecast conditional standard deviation is re-

verting exponentially to the unconditional standard deviation (.009), per the

formula discussed earlier.

19 For comparability with the earlier-computed GARCH estimated conditional standard deviation, we
actually show the square root of exponentially smoothed r2t .



300 CHAPTER 8. NOISE: CONDITIONAL VARIANCE DYNAMICS

Figure 8.9: Squared NYSE Returns, GARCH(1,1)

Figure 8.10: NYSE Returns, Correlogram of Squared Standardized Residuals from
GARCH(1,1)
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Figure 8.11: Estimated Conditional Standard Deviations from GARCH(1,1)

Figure 8.12: Estimated Conditional Standard Deviations - Exponential Smoothing
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Figure 8.13: Conditional Standard Deviations, History and Forecast from GARCH(1,1)

Figure 8.14: Conditional Standard Deviation, History and Extended Forecast from
GARCH(1,1)
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8.6 Exercises, Problems and Complements

1. Volatility dynamics: correlograms of squares.

In the Chapter 3 EPC, we suggested that a time series plot of a squared

residual, e2
t , can reveal serial correlation in squared residuals, which

corresponds to non-constant volatility, or heteroskedasticity, in the levels

of the residuals. Financial asset returns often display little systematic

variation, so instead of examining residuals from a model of returns,

we often examine returns directly. In what follows, we will continue to

use the notation et , but you should interpret et it as an observed asset

return.

a. Find a high frequency (e.g., daily) financial asset return series, et ,

plot it, and discuss your results.

b. Perform a correlogram analysis of et, and discuss your results.

c. Plot e2
t , and discuss your results.

d. In addition to plotting e2
t , examining the correlogram of e2

t often

proves informative for assessing volatility persistence. Why might

that be so? Perform a correlogram analysis of e2
t and discuss your

results.

2. Removing conditional mean dynamics before modeling volatility dynam-

ics. In the application in the text we noted that NYSE stock returns

appeared to have some weak conditional mean dynamics, yet we ignored

them and proceeded directly to model volatility.

a. Instead, first fit autoregressive models using the SIC to guide order

selection, and then fit GARCH models to the residuals. Redo the

entire empirical analysis reported in the text in this way, and discuss

any important differences in the results.
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b. Consider instead the simultaneous estimation of all parameters of

AR(p)-GARCH models. That is, estimate regression models where

the regressors are lagged dependent variables and the disturbances

display GARCH. Redo the entire empirical analysis reported in the

text in this way, and discuss any important differences in the results

relative to those in the text and those obtained in part a above.

3. Variations on the basic ARCH and GARCH models.

Using the stock return data, consider richer models than the pure ARCH

and GARCH models discussed in the text.

a. Estimate, diagnose and discuss a threshold GARCH(1,1) model.

b. Estimate, diagnose and discuss an EGARCH(1,1) model.

c. Estimate, diagnose and discuss a component GARCH(1,1) model.

d. Estimate, diagnose and discuss a GARCH-M model.

4. Empirical performance of pure ARCH models as approximations to volatil-

ity dynamics.

Here we will fit pure ARCH(p) models to the stock return data, including

values of p larger than p=5 as done in the text, and contrast the results

with those from fitting GARCH(p,q) models.

a. When fitting pure ARCH(p) models, what value of p seems adequate?

b. When fitting GARCH(p,q) models, what values of p and q seem ad-

equate?

c. Which approach appears more parsimonious?

5. Direct modeling of volatility proxies.

In the text we fit an AR(5) directly to a subset of the squared NYSE

stock returns. In this exercise, use the entire NYSE dataset.



8.6. EXERCISES, PROBLEMS AND COMPLEMENTS 305

a. Construct, display and discuss the fitted volatility series from the

AR(5) model.

b. Construct, display and discuss an alternative fitted volatility series

obtained by exponential smoothing, using a smoothing parameter of

.10, corresponding to a large amount of smoothing, but less than done

in the text.

c. Construct, display and discuss the volatility series obtained by fitting

an appropriate GARCH model.

d. Contrast the results of parts a, b and c above.

e. Why is fitting of a GARCH model preferable in principle to the AR(5)

or exponential smoothing approaches?

6. GARCH volatility forecasting.

You work for Xanadu, a luxury resort in the tropics. The daily tem-

perature in the region is beautiful year-round, with a mean around

76 (Fahrenheit!) and no conditional mean dynamics. Occasional pres-

sure systems, however, can cause bursts of temperature volatility. Such

volatility bursts generally don’t last long enough to drive away guests,

but the resort still loses revenue from fees on activities that are less pop-

ular when the weather isn’t perfect. In the middle of such a period of

high temperature volatility, your boss gets worried and asks you to make

a forecast of volatility over the next ten days. After some experimenta-

tion, you find that daily temperature yt follows 11111 yt|Ωt−1 ∼ N(µ, σ2
t )

, where σ2
t follows a GARCH(1,1) process, σ2

t = ω + αε2
t−1 + βσ2

t−1

.

a. Estimation of your model using historical daily temperature data

yields µ̂ = 76 , ω̂ = 3, α̂ = .6 , and β̂ = 0 . If yesterday’s temper-

ature was 92 degrees, generate point forecasts for each of the next ten

days conditional variance.
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b. According to your volatility forecasts, how many days will it take until

volatility drops enough such that there is at least a 90% probability

that the temperature will be within 4 degrees of 76?

c. Your boss is impressed by your knowledge of forecasting, and asks

you if your model can predict the next spell of bad weather. How

would you answer him?

7. Assessing volatility dynamics in observed returns and in standardized

returns.

In the text we sketched the use of correlograms of squared observed re-

turns for the detection of GARCH, and squared standardized returns

for diagnosing the adequacy of a fitted GARCH model. Examination

of Ljung-Box statistics is an important part of a correlogram analysis.

McLeod and Li (1983) show that the Ljung-Box statistics may be legit-

imately used on squared observed returns, in which case it will have the

usual

χ2
m

distribution under the null hypothesis of independence. Bollerslev and

Mikkelson (1996) argue that one may also use the Ljung-Box statistic

on the squared standardized returns, but that a better distributional

approximation is obtained in that case by using a

χ2
m−k

distribution, where k is the number of estimated GARCH parameters,

to account for degrees of freedom used in model fitting.

8. Allowing for leptokurtic conditional densities.

Thus far we have worked exclusively with conditionally Gaussian GARCH
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models, which correspond to εt = σtvt vt

iid

∼ N(0, 1) , or equivalently,

to normality of the standardized return, εt/σt .

a. The conditional normality assumption may sometimes be violated.

However, Bollerslev and Wooldridge (1992) show that GARCH pa-

rameters are consistently estimated by Gaussian maximum likelihood

even when the normality assumption is incorrect. Sketch some intu-

ition for this result.

b. Fit an appropriate conditionally Gaussian GARCH model to the stock

return data. How might you use the histogram of the standardized

returns to assess the validity of the conditional normality assumption?

Do so and discuss your results.

c. Sometimes the conditionally Gaussian GARCH model does indeed fail

to explain all of the leptokurtosis in returns; that is, especially with

very high-frequency data, we sometimes find that the conditional den-

sity is leptokurtic. Fortunately, leptokurtic conditional densities are

easily incorporated into the GARCH model. For example, in Boller-

slev’s (1987) conditionally Student’s-t GARCH model, the conditional

density is assumed to be Student’s t, with the degrees-of-freedom d

treated as another parameter to be estimated. More precisely, we

write

vt

iid

∼
td

std(td)
.

εt = σtvt

What is the reason for dividing the Student’s t variable, td , by its
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standard deviation, std(td) ? How might such a model be estimated?

9. Optimal prediction under asymmetric loss.

In the text we stressed GARCH modeling for improved interval and den-

sity forecasting, implicitly working under a symmetric loss function. Less

obvious but equally true is the fact that, under asymmetric loss, volatil-

ity dynamics can be exploited to produce improved point forecasts, as

shown by Christoffersen and Diebold (1996, 1997). The optimal predic-

tor under asymmetric loss is not the conditional mean, but rather the

conditional mean shifted by a time-varying adjustment that depends on

the conditional variance. The intuition for the bias in the optimal pre-

dictor is simple – when errors of one sign are more costly than errors

of the other sign, it is desirable to bias the forecasts in such a way as

to reduce the chance of making an error of the more damaging type.

The optimal amount of bias depends on the conditional prediction error

variance of the process because, as the conditional variance grows, so

too does the optimal amount of bias needed to avoid large prediction

errors of the more damaging type. .

10. Multivariate GARCH models.

In the multivariate case, such as when modeling a set of returns rather

than a single return, we need to model not only conditional variances,

but also conditional covariances .

a. Is the GARCH conditional variance specification introduced earlier,

say for the i− th return, σ2
it = ω + αε2

i,t−1 + βσ2
i,t−1 , still appeal-

ing in the multivariate case? Why or why not?

b. Consider the following specification for the conditional covariance be-

tween i− th and j-th returns: σij,t = ω + αεi,t−1εj,t−1 + βσij,t−1 .

Is it appealing? Why or why not?
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c. Consider a fully general multivariate volatility model, in which ev-

ery conditional variance and covariance may depend on lags of every

conditional variance and covariance, as well as lags of every squared

return and cross product of returns. What are the strengths and

weaknesses of such a model? Would it be useful for modeling, say, a

set of five hundred returns? If not, how might you proceed?

8.7 Notes

This chapter draws upon the survey by Diebold and Lopez (1995), which may

be consulted for additional details. Other broad surveys include Bollerslev,

Chou and Kroner

(1992), Bollerslev, Engle and Nelson (1994), Taylor (2005) and Ander-

sen et al. (2007). Engle (1982) is the original development of the ARCH

model. Bollerslev (1986) provides the important GARCH extension, and

Engle (1995) contains many others. Diebold (1988) shows convergence to

normality under temporal aggregation. TGARCH traces to Glosten, Jagan-

nathan and Runkle (1993), and EGARCH to Nelson (1991). Engle, Lilien and

Robins (1987) introduce the GARCH-M model, and Engle and Lee (1999)

introduce component GARCH. Recently, methods of volatility measurement,

modeling and forecasting have been developed that exploit the increasing

availability of high-frequency financial asset return data. For a fine overview,

see Dacorogna et al. (2001), and for more recent developments see Andersen,

Bollerslev, Diebold and Labys (2003) and Andersen, Bollerslev and Diebold

(2006). For insights into the emerging field of financial econometrics, see

Diebold (2001) and many of the other papers in the same collection.
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