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Log statements present in the source code provide important execution information to the software
developers while debugging. Predicting source code constructs that must be logged is a technically chal-
lenging task. Machine learning models are popularly used in literature for logging prediction. These mod-
els may not be suitable for small or new projects as these projects do not have sufficient prior data to
train the prediction model. For such scenarios, cross-project logging prediction can be useful, in which
knowledge gained from the standard project(s) is used to build the model. This paper proposes a
three-level model, CLIF, for Cross-project if-blocks logging prediction. CLIF first converts textual features
into numeric-textual features(Level-1). CLIF then combines numeric-textual features with Boolean and
numeric features(Level-2). Since only few code constructs are logged, CLIF finally learns an effective
imbalance decision threshold boundary to predict logged/non-logged code constructs(Level-3). We use
2 text mining classifiers(Level-1) and 8 machine learning classifiers(Level-2) and generate a total of 16
CLIF classifiers. We evaluate performance of CLIF classifiers on three open source projects(six source &
target project pair). Experimental results show that CLIF outperforms the existing LogOpt-Plus model
and give an improvement of up to 8.21% in average F1-score, and 4.89% in average ROC-AUC.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Logging is an important software development practice that is
performed by inserting log statements in the source code. Log
statements are helpful in recording the execution information of
the program. Execution information means debugging statements
and values of any variables that the developer wants to record in
a log file which can be used for diagnosis or troubleshooting. For
example, a web server application may record the timestamp,
the client IP address and the complete URL including name of the
file being requested whenever an exception on file not found is
thrown. Not just errors and warnings, a developer may also want
to log information that indicate success of an event. This execution
information can be used by the software developers at the time of
debugging. Logging is important because often this is the only
information available to the software developers for debugging.
Logging is also useful in several other applications such as anomaly
detection (Fu et al., 2009), performance problem diagnosis
(Nagaraj et al., 2012), and remote issue resolution (Blackberry
enterprise server logs submission, 2016).

Listing 1 shows an example of an if-block containing a log state-
ment. If the expression in the if-blocks condition evaluates to true,
the system will record the string in the log statement. Developers
can use this information in debugging or in other software devel-
opment applications. This log optput is found to be useful in fixing
the bug 5501 in the Hadoop project (Hadoop, 2016a). Log state-
ments have option to assign verbosity level such as ‘error’, ‘fatal’,
‘warn’. Verbosity level of a log statement indicates severity of a
log statement. Log statements are enabled at software startup
using log enable commands such as ‘–enable-logging �v = 1’.
Developers can also insert log statements inside if-blocks which
check for log levels i.e., they have expression like ‘log.isDebugEn
abled()’. The statements inside such if-blocks will be logged only
if the log level is set to ‘debug’ or ‘less verbose level’.

Listing 1: Example of a logged if-block and part of the log pro-
duced from it (taken from the Hadoop project).
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Logging is important but it has a tradeoff between cost and ben-
efit. Excessive logging can cause cost and performance overhead,
whereas, sparse logging can lessen the benefits of logging by leav-
ing out important debugging information. Ding et al. (2015) and
Sigelman et al. (2010) based on experimental studies reveal reveal
that in the case of search engines, logging impact on system’s per-
formance can be expressed as a 1.48% decrease in throughput or a
16.3% increase of average execution time of the requests. The doc-
umentation on Apache Log4j library1 provides details on the
response time, throughput and latency of various types of Log4j vari-
ants which demonstrates that logging can have a noticeable impact
on the performance depending on the workload. The benchmarking
exercise reveals that logging decisions and choices can impact the
performance to the extent of 30–100 times. Hence, it is important
to optimize the number of log statements in the source code. How-
ever, previous research shows that optimizing log statements in the
source code is a non-trivial task and software developers often face
difficulty in it (Fu et al., 2014). Hence, several recent studies propose
machine learning based logging prediction models to help software
developers in making strategic logging decision (Fu et al., 2014;
Zhu et al., 2015; Lal and Sureka, 2016; Lal et al., 2016b).

Machine learning based prediction requires a sufficient amount
of training data to train the prediction model. Xia et al. (2015a)
performs an experiment where they compare the performances
of machine learning models that were built using different amount
of training data. Results of their experiment show that the machine
learning model built using large amount of data gives much better
prediction performance than that of model built using small
amount of data. For example, model built using 90% of the data
give F1-score of 65.8% whereas model built using 5% of data give
F1-score of 55.4%. However, it is noticed that several real world
software projects are new or small. New projects (projects which
are in their starting phase) or small projects (projects which have
small sizes) do not have sufficient prior data to train the prediction
model. In such cases, we can use cross-project prediction to train
the logging prediction model on previously developed source pro-
ject(s) to perform logging prediction on target project.

Cross-project prediction is a popular machine learning research
area (Dai et al., 2007; Pan et al., 2011) and has also been used in
many software engineering applications such as defect prediction
(Nam et al., 2013) and build co-change prediction (Xia et al.,
2015a). Cross-project prediction is challenging because of two
main reasons. First, the source project might not be generalizable
1 https://logging.apache.org/log4 j/2.x/performance.html.
to the target project. Second, there is an imbalanced distribution
of positive and negative class datapoints in the source code i.e.,
the class-imbalance problem (He and Garcia, 2009). For example,
only 8.37%, 8.64%, and 10.6% of if-blocks are logged in the Tomcat,
CloudStack, and Hadoop project, respectively. Lal et al. (2017)
worked on cross-project catch-blocks logging prediction, however,
currently there is no study (to the best of our knowledge) on cross-
project if-blocks logging prediction. Hence, cross-project if-blocks
logging prediction is a relatively unexplored area.

In this work, we propose a novel three level, machine learning
based Cross-project If-blocks Logging Prediction Model (CLIF). At
the first level, CLIF uses a text mining approach to convert textual
features to numerical textual features (refer to Section 3 to get
details about conversion of textual features to numeric textual fea-
tures). At the second level, CLIF combines the numeric textual fea-
tures with numeric and Boolean features and trains a machine
learning classifiers. At the third level, CLIF learns an effective deci-
sion threshold boundary for if-blocks logging prediction. CLIF
searches an effective threshold boundary that maximizes Logged
F-measure (LF) (i.e., F1-score and refer to Section 4.3 for details)
achieved in the training data to address the class-imbalanced chal-
lenge. In this work, we use two text mining classifiers (Naive Baye-
sian (NB) and Bayesian Network (BN)) to convert textual features
to numerical textual features. We use BN and NB text mining clas-
sifies because they provide good results in our initial investigation
(refer to Section 5.1). CLIF combines these two text mining classi-
fiers with eight machine learning classifiers (Adaboost (ADA),
ADTree (ADT), BN, J48, Logistic Regression (LOG), NB, Random For-
est (RF), and Support Vector Machine (SVM)) to generate 16 CLIF
classifiers i.e., eight CLIFNB and CLIFBN classifiers.

We evaluate CLIF on three large, open-source project i.e., Tom-
cat (Apache, 2016), CloudStack (Cloudstack, 2016), and Hadoopt
(2016b), jointly consisting of 104,043 if-blocks. We consider Lop-
tOptPlus model proposed by Lal et al. (2016b) for within-project
if-blocks logging prediction on Java projects, as baseline classifier.
LogOptPlus classifier was not designed for a cross-project setting
and was designed for log statement predictions in a within-
project setting. However, in this work we consider LogOptPlus
as a baseline classifier as there is no other classifier which has been
proposed and evaluated on exactly the same dataset as the one
used in this work. Experimental results show that CLIF is effective
in improving the performance of cross-project if-block logging pre-
diction. Overall, Several CLIFNB and CLIFBN classifiers outperform
the baseline classifier. CLIFADTBN , CLIFLOGNB , CLIFLOGBN , CLIFADANB , CLIFADABN ,
and CLIFADTNB , give improvement of 8.21%, 8.18%, NB BN NB BN NB
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8.16%, 8.15%, 7.66%, and 7.16%, respectively, in average Logged F-
measure (LF), and improvement of 3.85%, 4.15%, 3.34%, 4.89%,
2.23%, and 4.12%, respectively, in average Area Under the ROC
Curve (RA). We believe that our work serves as a first step towards
effective cross-project if-block logging prediction.
2. Related work and research contribution

In this section, we discuss previous studies closely related to the
work presented in this paper, and the novel research contributions
of the work presented in this paper.

2.1. Logging prediction

Logging prediction has attracted attention from many research-
ers, in the software engineering research community (Fu et al.,
2014; Zhu et al., 2015; Lal and Sureka, 2016; Lal et al., 2016b,a,
2017). Fu et al. (2014) and Zhu et al. (2015) propose machine learn-
ing based models for within-project logging prediction on C# pro-
jects for exception types and return value check snippets. C/C#/
Java languages, all have many difference in their syntax. For exam-
ple, C is not an object oriented language. C also doesn’t have any
concept of try/catch block. In contrast both C# and Java are object
oriented languages and have try/catch block to catch exception
conditions in the code. Similarly, Java has a concept of ‘checked
exceptions’ but neither C nor C# have checked exceptions. Hence,
dedicated studies on each language are required for deep under-
standing of logging practices in each language. Lal et at. (Lal and
Sureka, 2016; Lal et al., 2016b) propose LogOpt and LogOptPlus
models for within-project logging prediction on catch-blocks and
if-blocks, respectively, for Java projects. In another work, Lal
et al. (2017) propose ECLogger, model for cross-project catch-
blocks logging prediction. In contrast to these studies, we work
on improving cross-project if-blocks logging prediction on Java
projects. We use LogOptPlus model proposed by Lal et al. (2016b)
as a baseline approach, as at present, this is the only model avail-
able for if-blocks logging prediction on Java projects. In this work,
we target if-blocks because they are one of most frequently logged
code snippets (Fu et al., 2014). However, the proposed model, CLIF,
can be easily extended to other code snippets.

2.2. Cross-project logging prediction

Cross-project prediction or transfer learning is a popular
machine learning research area (Dai et al., 2007; Pan et al.,
2011). Cross-project prediction can be unsupervised or supervised
(Dai et al., 2007; Pan et al., 2011). In unsupervised prediction, all
instances from the target project are unlabeled, while in super-
vised prediction, only a proportion of the target project instances
is labeled. For example, Lal et al. (2017) worked on cross-project
prediction for catch-blocks. They did not consider any instance
from the target project for model building and hence worked on
unsupervised cross-project prediction. Xia et al. (2015a) worked
on cross-project build co-change prediction. Xia et al. consider all
the instances from the source project and 5% on the instances from
the target project to build the cross-project build co-change pre-
diction model and hence, worked on supervised cross-project pre-
diction. Cross-project prediction have been applied to several
applications such as defect prediction (Zhang et al., 2015), build
co-change prediction (Xia et al., 2015a), sentiment prediction
(Pan and Yang, 2010). However, cross-project logging prediction
is a relatively unexplored area. Zhu et al. (2015) test effectiveness
of their proposed tool, LogAdvisor, for cross-project logging predic-
tion and reported 11.9% degradation in model performance for
cross-project prediction as compared to within-project prediction.
Lal et al. (2017) propose, ECLogger, an ensemble based model for
cross-project catch-blocks logging prediction. In contrast to Lal
et al., our work is novel in several dimensions. First, we work on
cross-project if-blocks logging prediction, whereas, Lal et al. work
on cross-project catch-blocks logging prediction. Second, ECLogger
uses bagging, average vote and majority vote ensemble techniques
for cross-project logging prediction. Whereas, CLIF uses three level
learning for cross-project prediction. ECLogger does not address
the class-imbalance problem. Whereas, CLIF learns a suitable
threshold boundary for improving cross-project prediction on
imbalanced dataset.

2.3. Learning on imbalanced data

The class-imbalance is a well known problem in the area of
machine learning research. It occurs when count of negative class
instances is considerably higher than the count of positive class
instances. Older machine learning algorithms were designed to
work on balanced data and, hence, often give poor performance
in case of imbalanced data. Several approaches have been proposed
in the literature to address the class-imbalance problem (Chawla
et al., 2002, 2003; Kubat et al., 1997; Guo and Viktor, 2004). Data
sampling is the primary approach to address the class-imbalance
problem. Previous studies on logging prediction either use major-
ity class under-sampling (Fu et al., 2014; Lal and Sureka, 2016;
Lal et al., 2016b) or minority class over-sampling (Zhu et al.,
2015) to address the class-imbalance problem. However, identify-
ing a suitable sampling technique is a non-trivial task. Evaluation
metrics based approaches proposed new evaluation metrics for
performance evaluation on imbalanced data. F1-score and area
under the ROC curve are two popular and widely used evaluation
metrics for imbalanced dataset (Xia et al., 2016; Xia et al., 2015a;
He and Garcia, 2009). Hence, we use F1-score and area under the
roc curve as evaluation metric for comparing the performances of
different models. Threshold adjustment based approaches work
on learning a better threshold, as the default decision threshold
of 0.5 may not be suitable in case of imbalanced dataset. Xia
et al. (2015b) propose a threshold learning method for blocking
bug prediction on imbalanced dataset. We use the approach pro-
posed by Xia et al. for threshold learning in cross-project if-
blocks logging prediction, which to the best of our knowledge
has never been used in this context.

2.4. Research contribution

In terms of related work, the study presented in this paper
makes the following novel and unique research contributions.

1. We propose, CLIF, a novel, three level learning based model for
cross-project if-block logging prediction on Java projects. We
use two textual feature processing classifiers and eight machine
learning classifiers. We create eight CLIFNB and eight CLIFBN clas-
sifiers i.e., a total of 16 CLIF classifiers (refer to Section 3).

2. We present results of comprehensive evaluation of the pro-
posed model on three large open-source Java based projects
i.e., Tomcat (2016), Cloudstack (2016) and Hadoopt (2016b).
We use two metrics LF and Area under the ROC curve for com-
paring the prediction performances of CLIF and the baseline
(LogOptPlus) classifier. The results demonstrates that CLIF is
effective in improving the cross-project if-blocks logging pre-
diction performance (refer to Section 5).

3. CLIF model creation

Fig. 1 presents the overview of the proposed CLIF framework.
CLIF consists of two main phases: model building phase and



Fig. 1. Overview of the Proposed CLIF Framework, L1: Level 1, L2: Level 2, L3: Level 3.

Table 1
Notations used in the CLIF algorithm (algorithm 1) and threshold estimation
algorithm (algorithm 2).

Notation Meaning Notation Meaning

P Project PX Project X, where X 2
Tomcat (T), CloudStack (C),
and Hadoop (H)

SP Source project A Algorithms
TP Target project AX Algorithm X, where X 2

{ADA, ADT, BN, J48, LOG,
NB, RF, SVM}

TH Decision threshold TEXT �ALGO Text mining classifier
IB If-blocks IBX If-blocks of type X, where

X 2 {SP, TP}
FV Feature vector F̂V Feature vector obtained

after preprocessing textual
features

F̂V Feature vector
obtained after
filtering undesired
features

ZFVY
X

Feature vector for phase X
of domain Y and type Z,
where X 2 {SP, TP},Y 2
{Initial (I), Final (F)} and Z
2 {Textual (T), Numerical
(N), Boolean (B), Numeric
Textual Feature (NT)}

PD Prediction results THCLIFAML
CLIFclassifierusingtext
mining classifier ML,
algorithm A, and with
threshold value TH

RTD Randomized
training data

i, j, ML, a Temporary variables
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prediction phase (refer to Fig. 1). In the model building phase, we
build a cross-project if-blocks logging prediction model from the
labeled instances of the source project (step 1-step 6). In the pre-
diction phase, CLIF classifiers learned in the model building phase
are used to predict label of new instances (step 7) in the target pro-
ject (see Table 1).
3.1. Phase 1: (Model Building Phase)

3.1.1. Training Instances Collection (Step 1)
Our experimental dataset consists of three projects: Tomcat,

CloudStack and Hadoop. We consider one project as the source pro-
ject (SP), i.e., training project, and the other two projects as the tar-
get project (TP), i.e., testing project, a single project at a particular
instance. Using this, we create six source and target project pairs
(refer to lines 6–10 in Algorithm 1). CLIF extracts all logged and
non-logged if-blocks (IBSP) from the source project for training.

3.1.2. Feature Extraction (Step 2)
Lal et al. (2016b) propose 28 features for if-block logging pre-

diction on Java based projects. Lal et al. categorize features in terms
of domains (if, method_bi, and other), types (boolean, numerical,
and textual), and classes (positive and negative). Domain specifies
part of the source code from where the feature is extracted. If
the feature is extracted from if-block then it will have domain
‘if’, if the feature is extracted from the first line of the containing
function (the function that consists of the target if-block) to the
previous line of the target if-block it will have domain ‘method_bi’.
If the feature is extracted from some other part of the source code
it will have domain ‘other’. For example, the feature ‘Logged Meth-
od_bi [LM]’ (which checks whether the method_bi region has any
log statement or not) has domain ‘method_bi’. Type of a feature
specifies whether a feature is ‘textual’, ‘Boolean’ or ‘numeric’. Boo-
lean features can take value ‘0’ or ‘1’. Numeric features can take any
real (+ve) value. Textual features can take any ‘text’ value. For
example, ‘If-expression [EI]’ is a textual feature that extracts
‘checking condition’ of the target if-block. The class of a feature
can be ‘positive’ or ‘negative’. Positive class features are beneficial
in predicting logged if-blocks and negative class features are ben-
eficial in predicting non-logged if-blocks. For example, ‘Null Condi-
tion (NC)’ (checks whether the expression of if-block checks any
null value), is a positive class feature. We use all the 28 features



Table 2
Features used for cross-project if-blocks logging prediction. These features are taken
from the previously published work by by Lal et al. [23]. P,I: class = positive,
domain = if; P,M: class = positive, domain = method_bi; P,O: class = positive,
domain = other; N,I: class = negative, domain = if; and N,M: class = negative,
domain = method_bi.

Feature
Type

S.
No

Features Feature Description

Boolean 1. Logged Method_BI [LM]
(P,M)

Presence/absence of log
statement in method_bi
section

2. Method have Parameter
[PM](P,O)

Containing method have
parameters

3. IF in Method_BI [IM] (P,
M)

Presence/absence of if-
statement in method_bi
section

4. Null Condition [NC] (P,I) The condition of if-block
checks for ‘Null’ value

5. InstanceOf Condition
[IOC](P,I)

The condition of if-block
checks for ‘InstanceOf’

6. Throw/Throws in IF
Block [TTI] (N,I)

Presence/absence of Throw/
Throws in if-block

7. Throw/Throws in
Method_BI [TTM]

Presence/absence of Throw/
Throws in method_bi section

8. Return in IF Block [RI] (N,
I)

Presence/absence of ‘return’
statement in if-block

9. Return in Method_BI
[RM] (N, M)

Presence/absence of ‘return’
statement in method_bi
section

10. Assert in Method_BI
[AM] (N, M)

Presence/absence of ‘assert’
statement in method_bi
section

11. Assert in IF Block [AI] (N,
I)

Presence/absence of ‘assert’
statement in if-block

Numerical 1. Size of Method_BI [SM]
(P, M)

SLOC of method_bi section.

2. Log Count in Method_BI
[LCM] (P, M)

Number of log statements in
method_bi section.

3. Count of Operators in
Method_BI [COM] (P, M)

Number of arithmetic
operators in method_bi
section

4. Variable Declaration
Count in Method_BI
[VCM](P,M)

Number of variable declared
in method_bi section

5. Method Parameter Count
[PCM] (P,O)

Number of parameters in the
containing function

6. Method Call Count in
Method_BI [MCM] (P,M)

Number of methods called in
method_bi section.

7. IF Count in Method_BI
[ICM] (P,I)

Number of if-statements in
method_bi section

Textual 1. Log Levels in Method_BI
[LLM] (P,I)

Log levels of the log
statements present in the
method_bi section

2. Operators in Method_BI
[OM] (P,M)

Arithmetic operators used in
the method_bi section

3. Variable Declaration
Name in Method_BI
[VNM] (P,M)

Name of variables declared in
the method_bi section

4. Method Call Name in
Method_BI [MNM] (P,M)

Names of the methods called
in the method_bi section

5. Method Parameters
(type) [PTM] (P,O)

Type of the parameters called
in the containing function

6. Method Parameters
(name) [PNM](P,O)

Names of the parameters
called in the containing
function

7. Container Package Name
[CPN] (P,O)

Name of the package that
consists of the if-block

8. Container Class Name
[CCN] (P,O)

Name of the class that consists
of the if-block

9. Container Method Name
[CMN] (P,O)

Name of the method that
consists of the if-block

10. IF Expression [EI] (P,I) Checking Condition
(Expression) of the if-block
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proposed by Lal et al. (refer to line 11–13 in Algorithm 1). Table 2
presents listing of all the 28 features, and their respective domain,
class and type.
Algorithm 1 CLIF Algorithm
1: procedure CLIF
2: P ¼ fPT ;PC ;PHg
3: ALGO ¼ fAADA;AADT ;ABN ;AJ48;ALR;ANB;ARF ;ASVMg
4: TEXT � ALGO ¼ fANB;ABNg
5: for all ML 2 TEXT �ALGO do
6: for all S 2 P do
7: for all T 2 P do
8: if S–T then
9: SP ¼ S, TP ¼ T
10: IBSP = ReadCompleteData (SP)
11: TFVI

SP = ExtractTextualFeatures (IBSP)
12: NFVF

SP = ExtractNumericalFeatures (IBSP)
13: BFVF

SP = ExtractBooleanlFeatures (IBSP)
14: TFVF

SP = Preprocess(TFVI
SP)

15: NTFVF
SP = GenerateNumericalTextualFeature

(TFVF
SP ;ML)

16: FVF
SP = fNTFVF

SP ; NFVF
SP ; BFVF

SPg
17: for all A 2 ALGO do

18: CLIFAML = BuildModel (FVI
SP ;A)

19: THCLIF
A
ML = ThresholdEstimation (CLIFAML)

20: TFVI
TP = ExtractTextualFeatures (IBTP)

21: NFVF
TP = ExtractNumericalFeatures (IBTP)

22: BFVF
TP = ExtractBooleanlFeatures (IBTP)

23: TFVF
TP = Preprocess (TFVI

TP)
24: N

TFVF
TP = GenerateNumericalTextualFeature

(TFVF
SP ; TFVF

TP ;ML
25: FVF

TP ¼ fNTFVF
TP ; NFVF

TP ; BFVF
TPg

26: PD=ApplyModel(THCLIFAML;FVF
TP)

27:
28: procedure ReadCompleteData(P)
29: IB = ReadIfBlocks (P)
30: return IB
31:
32: procedure ExtractTextualFeaturesIB
33: TFV = getTextualFeatures IB)
34: return TFV
35:
36: procedure ExtractBooleanFeatures (IB)
37: BFV = getBooleanFeatures (IB)
38: return BFV
39:
40: procedure ExtractNumericalFeatures(IB)
41: NFV = getNumericalFeatures (IB)
42: return NFV
43:
44: procedure Preprocess(FV)
45: T F̂V = TF_IDFConversion(Stemming

(StopWordRemoval(LowerCase (CamelCaseSeparation
(T �FV)))))

46: if It is Test Data then
47: T ~FV = FilterFeatureNotTrainData (
48:T F̂V)
else

T ~FV ¼ T F̂V
return T ~FV

TF � IDFft;dg ¼ TFft;dg � log
N
DF

ð1Þ

t
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3.1.3. Pre-processing (Step 3)
We apply five feature pre-processing techniques on ini-tial tex-

tual features (TFV I
SP) to obtain final textual feature vectors (TFVF

SP)
. We ap-ply camel case conversion, lower case conversion, stop
word removal, stemming and tf-idf conversion (Manning et al.,
2008). We first, separate all the terms joined using camel casing.
For example, ‘LoginFailure’ is converted to ‘Login’ and ‘Failure’. Sec-
ond, we convert all the terms to lowercase. For example, the terms
‘Login’ is converted to ‘login’. Using both ‘Login’ and ‘login’ as sep-
arate features can result in large amount of redundant features.
Third, we remove all the English stop words such as ‘the’, ‘is’ from
the text. Stop words are frequently occurring terms in the docu-
ment. Since, they occur in most of the documents they are consid-
ered as non-content bearing. Fourth, we apply stemming and
convert all the terms to their root form. Stemming is the process
of reducing inflected words to their root form. For example, the
terms ‘modifier’ and ‘modify’ will be converted to root word ‘mod-
ifi’. Conversion of inflected forms results in lowering down the
dimensionality and hence, is beneficial in reducing the time and
space complexity of the feature space. Fifth, we convert all the
terms to their Tf-Idf (term frequency-inverse document frequency)
representation. Tf-idf is a numerical statistic that is used to identify
importance of a word in a given document in a collection of corpus
(Manning et al., 2008). Eq. (1) presents the formula for Tf-idf
weight computation. In Eq. (1), Term Frequency (TFt,d) presents fre-
quency of a word t in a document d, N is the total number of doc-
uments in the corpus and Document Frequency (DFt) represents
frequency of a term t in the corpus. Hence, tf-idf value increases
for frequent words in a document but it decreases as the frequency
of word increases in the corpus. Using these pre-processing steps
we obtain our final features (TFVF

SP) (refer to line 11, 14, 44–51
in Algorithm 1). These pre-processing steps have been used in
other logging prediction studies as well (Zhu et al., 2015; Lal and
Sureka, 2016; Lal et al., 2016b). Fig. 2 shows an illustrative example
of all the pre-proessing steps applied in this work.
Fig. 2. Conversion of Textual Featur
3.1.4. Numeric Textual Feature Generation (Step 4)
Tf-idf conversion performed in the previous step, can lead to

thousands of features, since they derive from all the terms in a doc-
ument corpus representing the code blocks. As a result, combining
all these textual features directly with numerical and Boolean fea-
tures may dilute the weight of the numerical and Boolean features.
We thus need away to normalize the representation of each class or
type of predictor to ensure that no feature class biases the outcome
or decreases the representation of other classes. Conversion of tex-
tual feature or consolidating the textual feature into a numeric fea-
ture is one way towards dimensionality reduction of one class of
feature with respect to other class of features. Dimensionality
reduction of features to remove irrelevant features or identifying
principal components is a well-known technique in machine learn-
ing (Guyon and Elisseeff, 2003; Liu and Yu, 2005; Yu and Liu, 2004).
Hence, in this work we explore the possibility of converting all the
textual features to a single feature i.e., numeric textual feature
(refer to Level 1 or step 4 in Fig. 1). In this manner, we can combine
the power of textual features without diluting the effects of boolean
and numeric features. Conversion of textual features to numeric
was used by Valdivia Garcia and Shihab (2014) for blocking bugs
prediction and by Xia et al. (2016) for closed question prediction.
However, its uses and effectiveness with respect to cross-project
if-blocks logging prediction is unexplored yet.

Fig. 3a shows the steps of conversion of textual features to
numerical textual features for the model building phase. In the
model building phase, we first divide the training dataset into
two equal parts using stratified random sampling. The main advan-
tage with stratified sampling is that it captures key population
characteristics in the sample. This method of sampling produces
characteristics in the sample that are proportional to the overall
population. Stratified sampling have also been used by other
researches in software engineering research community (Xia
et al., 2016). We have used stratified sampling to divide our train-
ing dataset into two parts such that the distribution of logged and
es to Numeric Textual Features.
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Fig. 3. Conversion from textual to numeric textual features.
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non-logged if-blocks is same in both the samples. We train a text
mining classifier on the first sample (using tf-idf representation
of textual features), and use it to assign a confidence score (i.e.,
likelihood of an if-block to be logged) to each if-block in the second
sample. Similarly, we also train a text mining classifier on the sec-
ond sample (using tf-idf representation of textual features) and use
it to assign a confidence score on the first sample. These confidence
score are termed as numerical textual features (NT FVF

SP) (refer to
line 15 in Algorithm 1 and Fig. 3a).

These numeric textual features are then combined with Boolean
and numeric features to obtain the final feature (FVF

SP). Fig. 2 shows
an illustrative example of conversion of textual to numeric textual
features. In this work, we use two text min-ing classifiers i.e., NB
and BN (refer to line 4 in Algorithm 1). We select NB and BN
because these two classifiers give the best result for cross-project
prediction in our initial investigation (refer to Section 5.1).

Algorithm 2 Threshold Estimation
1: Input: Train Data (FVF

SP), Machine Learning Algorithm(A),
Text Mining Classifier (ML)

2: Output: Threshold value (TH)
3: procedure ThresEstimation (Train)
4: for i=1, 1�10 , i=i+1 do
5: RTD = Randomize(FVF

SP i)
6: DivideRTD into two parts T1 and T2. T1 consists of 80%

of the instances and T2 consists of remaining 20%.

7: CLIFAML =BuildClassifier(T1, A;ML)
8: score[i] = ApplyModel(CLIFAML, T2)

9: for i =1, 1�10 , i=i+1 do
10: for all a =0, a�1, a = a+0.01 do
11: Fmeasure[i][a]=ComputeFmeasure(score[i], a)
12: for all a =0, a 1, a = a+0.01 do

13: AvgFmeasure[a] =
P10

i¼1
Fmeasure½i�½a�

10
14: return a which maximizes the average LF (i.e.,

AvgFmeasure) for if-blocks in T2
15:

Predictðif � blockiÞ ¼
Logged; if Scorelogðif � blockÞ P TH
Non� logged; otherwise

�

ð2Þ
3.1.5. CLIF Classifier Learning (Step 5)
We combine numerical, boolean and numerical textual

features to obtain the final feature vector (FVF
ScalP) (line to 16 in

Algorithm 1). Using this we obtain total 19 features i.e., 11 boolean,
7 numeric, and 1 numeric textual feature. We then train eight main
machine learning classifiers (ADA, ADT, BN, NB, LR, NB, RF, SVM) to
obtain our initial CLIF classifiers (line 8 in Algorithm 1). For

example, CLIFADANB is created using NB as text mining classifier and
Adaboost as a main classifier. Using this approach we create

sixteen CLIF classifiers i.e., CLIFADANB CLIFADTNB CLIFBNNB , CLIF
J48
NB , CLIF

LR
NB

CLIFNBNB, CLIFRFNB CLIFSVMNB , CLIFADABN , CLIFADTBN
, CLIFBNBN , CLIFJ48BN , CLIFLRBN

CLIFNBBN , CLIF
RF
BN , CLIF

SVM
BN (refer to Level 2 or step 5 in Fig. 1).
3.1.6 Threshold Learning (Step 6)
At the time of logging prediction on new instances these clas-

sifiers will output a confidence score (refer to Scorelog in Eq. (2)).
If the value of this confidence score is greater than threshold
(TH) the given instance will be predicted as logged, otherwise
it is predicted as non-logged (refer to Eq. (2)). Default value of
threshold is 0.5, which may not be appropriate in case of imbal-
anced dataset. Hence, we use threshold learning to find the best
threshold for cross-project if-blocks prediction (refer to Level 3
or step 6 in Fig. 1). We use the threshold learning approach pro-
posed by Xia et al. (2016) for deleted question prediction. Algo-
rithm 2, presents the pseudo code of the threshold learning
approach. It randomly divides the training set into part T1 and
T2 using random sampling such that distribution of logged and
non-logged instances is same in both T1 and T2. T1 consists of
80% of the instances and T2 constitutes of the remaining 20%
instances. Next, we build a classifier using T1 and output a con-
fidence score for each if-block in T2. Finally, to tune the thresh-
old value we gradually increase the threshold value from 0 to 1
using a step size of 0.01. We compute LF for each threshold
value. Since, random sampling can have biases we create 10
such random samples and output the confidence score that max-
imizes the average LF on these 10 random samples. For example,
for CLIFADANB classifier the threshold value of 0.18 is used. Hence,

CLIFADANB will predict an instance NB as ‘logged’ if the confidence
score for that instance is greater than 0.18 otherwise it will be
predicted as ‘non-logged’ (refer to Table 5 in the paper). Using
this approach we obtain our CLIF prediction model (ðTHCLIFAMLÞ)
(refer to line 19 in Algorithm 1).



Table 3
Experimental dataset statistics.

Tomcat CloudStack Hadoop

Version 8.0.9 4.3.0 2.7.1
SLOC 273419 849832 915659
Number of Java Files 2036 5350 6331
Total If-Blocks 16991 65392 32143
Logged If-Blocks 1423(8.37%) 5653 (8.64%) 3407 (10.60%)
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3.2. Phase 2: (Prediction Phase)

3.2.1. Prediction (Step 7)
In the prediction phase, CLIF classifiers are used to predict

labels of new instances (IBTP) in the target project. We extract
all the 28 features from the if-blocks present in the testing set.
We extract all the three types of features (textual, Boolean, and
numeric) from the datatset. We apply all the pre-processing steps
(camel case conversion, lower case conversion, stop word
removal, stemming and tf-idf) describe in step 3 on initial textual
features ðTFV I

TPÞ. In addition to all these pre-processing steps, we
apply one more filtering step. In case of cross-project pre-diction,
it is possible that some textual features present in the training set
are absent in the testing set. We remove all such textual features
from the test set and obtain our final textual features ðTFVF

TPÞ
(line 46–48 in Algorithm 1). Next, we convert finalTP textual fea-
tures to numeric textual features ðN T FVF

TPÞ. Fig. 3b shows the
steps for numeric textual feature generation for the test dataset.
We learn a text mining classifier using final textual features from
the training dataset. The classifier is then used to predict confi-
dence scores of the test dataset. These confidence scores are then
used as numeric textual features for test dataset (refer to line 24
in Algorithm 1). We obtain our final feature vector ðFVF

TPÞ) by
combining Boolean, numeric and numeric textual features. We
then apply CLIF classifier for logging prediction on the instances
present in the target project. The instance is predicted as ‘logged’,
if the CLIF classifier gives the confidence score greater to the
threshold values that is learned in the training phase (refer to
step 5). Otherwise, it is predicted as ‘non-logged’.
4. Experimental details

In this section, we present details related to the experiment per-
formed in this work. We describe our experimental dataset, design
of the experiment, and the evaluation metrics.
4.1. Details of Experimental dataset

We perform all experiments on three large open source pro-
jects: Tomcat, CloudStack and Hadoop. All three projects are large,
long lived, and actively maintained Java based projects from
Apache Software Foundation (ASF2). Table 3 presents the experi-
mental dataset statistics. We extract all the if-blocks from all the
three projects using Eclipse AST3 source code parsing libraries. We
mark all the if-blocks as ‘logged’ or ‘non-logged’ based on presence
or absence of log statements in them. An if-block is marked as
‘logged’ if it consists of at least one log statement otherwise it is
marked as ‘non-logged’. Table 3 shows that 8.37%, 8.64% and
10.60% of if-blocks are logged in Tomcat, CloudStack and Hadoop
project, respectively.
4.2. Design of the experiment

To conduct the cross-project logging prediction experiment, we
create training and testing datasets. We use all the if-blocks from
the source projects for training and all the if-blocks from the target
project for testing. We use the default WEKA (Hall et al., Nov. 2009)
implementation of all the machine learning classifiers.
2 http://www.apache.org/.
3 https://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_

AST/index.html.
4.3. Evaluation metrics

In this subsection, we describe the metrics used to evaluate the
performance of the proposed model. We use five metrics: preci-
sion, recall, F1-score, accuracy, Are Under the ROC curve (RA). All
the five metrics are widely used and have been used in previous
studies (Kim et al., 2008; Lal et al., 2016b; Lal et al., 2017; Zhang
et al., 2015). At the time of prediction classifier outputs a decimal
score between 0 to 1. If the value of this score is above our learned
decision threshold the corresponding if-block will be predicted as
‘logged’ otherwise it will be predicted as ‘non-logged’. For example,

for CLIFADANB the value of threshold is 0.18 (refer to Table 5). If CLIFADANB

outputs a score of 0.19 for an if-block, the corresponding if-block
will be predicted as ‘logged’.

For each if-blockwe consider log statement inserted by software
developers as ground truth or gold standard. For each if-block we
compare the output of CLIF with ground truth. If the if-block does
not contain a log statement in the ground-truth and CLIF predicts
that a log statement should be inserted then we count it is a false
positive case. This is an error or mis-classification by the classifier.
Similarly, when an if-block in the ground-truth contains a log state-
ment and CLIF estimates that a log statement is not required then it
is a case of false negative and is the other type of mis-classification.
True positive and true negatives are correct classification and occur
when the actual and predicted values match. In total, at the time of
prediction following four outcomes are possible:

True Positive: Predicting a logged code constructs as logged
(l? l).

True Negative: Predicting a non-logged code constructs as non-
logged (n? n).

False Positive: Predicting a non-logged code construct as
logged (n? l).

False Negative: Predicting a logged code construct as non-
logged (l? n).

We build our model using training data and perform prediction
on testing data. We count the total number of true positive (Nl?l),
false negative (Nl?n), true negative (Nn?n), and false positive (Nn?l)
in the testing dataset. Using these four values we define following
metrics:

Logged precision: It is the percentage of correctly labeled
logged code constructs among those labeled as logged.

Logged PrecisionðLPÞ ¼ Nl!l

Nl!l þ Nn!l
� 100 ð3Þ

Logged recall: It is the proportion of logged code constructs
that are correctly labeled as logged.

Logged RecallðLRÞ ¼ Nl!l

Nl!l þ Nn!l
� 100 ð4Þ

Logged F-measure: Precision and recall metrics have a tradeoff
i.e., one can increase precision (recall) by decreasing recall (preci-
sion) (Han et al., 2011; Manning et al., 2008). Logged F-measure
metric combines the logged precision and recall metric and hence
is useful in overcoming the precision and recall tradeoff. It has been
widely used in the software engineering literature for performance
evaluation (Zhu et al., 2015; Valdivia Garcia and Shihab, 2014).

http://www.apache.org/
https://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html
https://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html
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Logged F �measureðLFÞ ¼ 2� LP � LR
LP þ LR

� 100 ð5Þ

Accuracy: It is the percentage of correctly labeled code con-
structs to all the code constructs.

Accuracy ¼ Nl!l þ Nn!n

Nj!l þ Nl!n þ Nn!n þ Nn!l
� 100 ð6Þ

Area Under the ROC Curve (RA): RA measures the likelihood
that a classifier will give higher probability to a ‘logged’ code con-
struct as compared to a ‘non-logged’ code construct. Value of RA
can range between 0 and 1. A classifier with higher RA value is con-
sidered better as compared to a classifier with lower RA value.
5. Experimental results

In this section, we address the five identified research questions
(RQs) by conducting experiments on three open-source projects.
The following subsections elaborate the motivation, approach,
and results obtained for each RQs.

5.1. RQ 1: What is performance of baseline classifier for cross-project
if-blocks logging prediction?

Motivation: In RQ 1, we evaluate effectiveness of the LogOpt-
Plus model proposed by Lal et al. (2016b) for cross-project if-
blocks logging prediction. We perform comprehensive evaluation
Table 4
Cross project if-blocks logging prediction results by LogOptPlus model [23].

Project: CloudStack? Tomcat
Source Instances:65392,Target Instances: 16991 Features: 124

Classifier LP (%) LR (%) LF (%) ACC (%) RA

LogOptPlusADA 29.22 43.57 34.98 86.43 67
LogOptPlusADT 39.37 15.74 22.49 90.91 67
LogOptPlusBN 12.35 65.35 20.77 58.24 66
LogOptPlusJ48 22.97 22.63 22.8 87.16 58
LogOptPlusLOG 14.65 17.57 15.98 84.53 60
LogOptPlusNB 9.69 92.97 17.54 26.8 70
LogOptPlusRF 24.9 4.29 7.31 90.9 65
LogOptPlusRBF 0 0 0 91.62 51
LogOptPlusSVM 17.07 16.8 16.93 86.2 61

Project: Tomcat? CloudStack
Source Instances: 16991, Target Instances: 65392 Features:13

Classifier LP (%) LR (%) LF (%) ACC (%) RA

LogOptPlusADA 0 0 0 91.36 77
LogOptPlusADT 41.94 0.46 0.91 91.34 80
LogOptPlusBN 32.28 56.57 41.11 85.99 74
LogOptPlusJ48 8.72 18.96 11.95 75.84 57
LogOptPlusLOG 7.5 18.57 10.68 73.15 42
LogOptPlusNB 27.37 58.48 37.29 82.99 77
LogOptPlusRF 40.64 1.8 3.46 91.28 62
LogOptPlusRBF 0 0 0 91.36 64
LogOptPlusSVM 6.86 15.8 9.57 74.19 45

Project: Tomcat? Hadoop
Source Instances: 16991, Target Instances: 32143 Features:13

Classifier LP (%) LR (%) LF (%) ACC (%) RA

LogOptPlusADA 0 0 0 89.4 68
LogOptPlusADT 26.47 0.26 0.52 89.35 71
LogOptPlusBN 29.75 34.16 31.81 84.47 68
LogOptPlusJ48 29.11 14.65 19.49 87.17 64
LogOptPlusLOG 12.34 17.35 14.42 78.17 53
LogOptPlusNB 24.75 37.33 29.77 81.33 70
LogOptPlusRF 33.33 0.91 1.77 89.3 64
LogOptPlusRBF 0 0 0 89.4 54
LogOptPlusSVM 18.61 9.13 12.25 86.14 58
of the LogOptPlus model with several machine learning classifiers,
as this model has never been evaluated for cross-project if-blocks
logging prediction.

Approach: We evaluate effectiveness of the LogOptPlus model
for all the six source and target project pairs. In addition to RF,
we use eight other machine learning classifiers i.e., ADA, ADT,
BN, J48, LOG, NB, RF, RBF, SVM.

Results: Table 4 presents the results of cross-project if-blocks
logging prediction using the LogOptPlus model. Table 4 presents
that the LogOptPlusBN and LogOptPlusNB classifiers give better per-
formances as compared to the other LogOptPlus classifiers.
LogOptPlusBN gives the highest LF for four source and target pro-
jects pairs. LogOptPlusNB classifier give the second highest LF for
four source and target projects. LogOptPlusBN and LogOptPlusNB
give the highest LF of 48.15% and 44.78%, respectively, for
Hadoop? CloudSta project pair. LogOptPlus classifier give the
highest LF for two source and target project pairs. It give LF of
34.98% and 38.58% for CloudStack? Tomcat and CloudStack?
Hadoop project pairs, respectively. However, it gives 0% LF for
other four source and target projects. LogOptPlusRBF classifier per-
forms the worst among all the LogOptPlus classifiers and give the
0% LF for all the six source and target project pairs. Hence, we
remove RBF classifier from further analysis
LogOptPlusBN and LogOptPlusNB classifiers performs the
best for crossproject if blocks logging prediction.
6
Project: Hadoop? Tomcat
Source Instances: 32143,Target Instances: 16991 Features: 1232

(%) LP (%) LR (%) LF (%) ACC (%) RA (%)

.15 0 0 0 91.62 67.48

.57 0 0 0 91.62 71.84

.92 26.31 46.45 33.6 84.62 70

.8 29.17 17.71 22.04 89.51 57.27

.89 25.46 12.72 16.96 89.57 65

.02 23.85 48.98 32.08 82.63 73.27

.73 41.23 3.3 6.12 91.51 68.72

.34 0 0 0 91.62 55.44

.98 23.93 11.81 15.81 89.47 65.55

98
Project: Hadoop? CloudStack
Source Instances: 32143, Target Instances: 65392 Features:1232

(%) LP (%) LR (%) LF (%) ACC (%) RA (%)

.11 0 0 0 91.36 76.07

.93 0 0 0 91.36 77.84

.05 40.9 58.52 48.15 89.1 77.06

.08 28.05 24.41 26.11 88.05 56.94

.86 40.33 5.61 9.85 91.12 57.07

.41 35.27 61.33 44.78 86.93 81.43

.31 59.46 2.72 5.21 91.43 74.69

.29 0 0 0 91.36 56.8

.21 46.2 9.15 15.27 91.23 70.65

98
Project: CloudStack? Hadoop
Source Instances: 65392, Target Instances: 32143 Features:1246

(%) LP (%) LR (%) LF (%) ACC (%) RA (%)

.07 33.41 45.64 38.58 84.6 67.62

.75 44.39 16.14 23.68 88.97 67.98

.81 14.34 75.84 24.12 49.41 67.1

.16 22.87 23.22 23.04 83.56 56.7
19.6 20.93 20.24 82.52 57.99

.46 11.31 96.04 20.23 19.72 68.52

.13 38.32 6.16 10.62 89 66.73

.39 0 0 0 89.4 52.29

.73 20.42 21.87 21.12 82.68 61.33
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5.2. RQ 2: What are the performances of CLIFNB classifiers for cross-
project if-blocks logging prediction?

Motivation: In RQ 2 we investigate the performances of CLIFNB
classifiers. CLIFNB classifiers use NB classifier for numeric textual
feature generation. We use NB classifier for numeric textual fea-
ture generation because it gives the best performance for cross-
project if-blocks logging prediction in our initial investigation
(refer to RQ 1).

Approach:We have total eight CLIFNB classifiers: CLIF
ADA
NB , CLIFADTNB ,

CLIFBNNB , CLIF
J48
NB , CLIF

LOG
NB , CLIFNBNB, CLIF

RF
NB CLIFSVMNB . We did not create

CLIFRBFNB because RBF classifier give 0% LF for all the source and target
projects in our initial investigation (refer to RQ1). To answer this RQ,
we compute LF and RA values of all the CLIFNB classifiers at a thresh-
old learned in model building phase (refer to Section 3).

Results: Table 5 presents the LF and RA values of all the CLIFNB

classifiers. Table 5 presents that CLIFLOGNB and CLIFADANB classifiers give
the highest LF for four and two source and target project pairs,

respectively. CLIFLOGNB and CLIFADANB give the highest LF of 50.96%
and 50.86% on Hadoop? CloudStack and Tomcat? CloudStack

project pairs, respectively. CLIFADTNB model give good performance
Table 5
Cross project if-blocks logging prediction by CLIFNB classifier.

Project: CloudStack? Tomcat
Source Instances:65392,Target Instances: 16991
Features:19

ALGO TH LF (%) RA (%)

CLIFADANB
0.18 34.81 70.57

CLIFADTNB
0.39 33.77 71.91

CLIFBNNB 0.93 33.08 65.11

CLIFJ48NB
0.19 29.17 64.8

CLIFLOGNB
0.27 34.38 70.34

CLIFNBNB 0.99 33.6 68.08

CLIFRFNB 0.36 28.8 68.34

CLIFSVMNB
0.08 29.91 69.82

Project: Tomcat? CloudStack
Source Instances: 16991,Target Instances: 65392
Features:19

ALGO TH LF (%) RA (%)

CLIFADANB
0.13 50.86 79.04

CLIFADTNB
0.32 49.89 77.92

CLIFBNNB 0.41 48.32 72.72

CLIFJ48NB
0.08 42.18 63.79

CLIFLOGNB
0.13 50.03 78.49

CLIFNBNB 0.1 39.24 72.76

CLIFRFNB 0.26 30.19 69.94

CLIFSVMNB
0.1 31.72 65.47

Project: Tomcat? Hadoop
Source Instances: 16991,Target Instances: 32143
Features:19

ALGO TH LF (%) RA (%)

CLIFADANB
0.13 38.8 73.88

CLIFADTNB
0.32 38.82 73.32

CLIFBNNB 0.41 37.53 68.85

CLIFJ48NB
0.08 34.81 61.49

CLIFLOGNB
0.13 38.83 73.28

CLIFNBNB 0.1 32.07 67.99

CLIFRFNB 0.26 28.45 66.08

CLIFSVMNB
0.1 27.02 61.17
i.e., near to the best CLIF classifier, on three source and target pro-
ject pairs. We observe similar results for RA metric of these three

classifiers, with CLIFADANB classifier giving the highest RA on 4 source

and target project pairs. CLIFBNNB , CLIF
J48
NB and CLIFNBNB classifier also

give good performance for LF values. For example, CLIFNBNB give LF
value of 35.06% (Hadoop? Tomcat) and 37.91% (CloudStack?

Hadoop) which close to the CLIFLOGNB classifier (i.e., the best per
forming classifier for these two source and target project pairs).
However, RA values of the CLIFBNNB , CLIF

J48
NB and CLIFNBNB classifier are

considerably lower as compared to the best performing CLIF classi-
fiers. For example, for Hadoop CloudStack project pair, CLIFLOGNB give

50.96% LF and 81.8% RA. Whereas, CLIFNBNB give 47.74% LF and only

74.86% RA. CLIFRFNB and CLIFSVMNB perform the worst (among CLIFNB
classifiers) and give poor results for both the metrics. We also
observe that for all the CLIFNB classifiers threshold values are dif-
ferent from traditional 0.5 threshold value.
CLIFLOGNB , CLIFADANB and CLIFADTNB classifier performs the best
among all the CLIFNB classifiers.
Project: Hadoop? Tomcat
Source Instances: 32143,Target Instances: 16991
Features:19

TH (%) LF (%) RA (%)

0.16 35.76 73.88

0.32 33.55 73.72

0.37 35.09 66.62

0.07 33.75 62.34

0.16 35.85 75.08

0.19 35.06 69.34

0.2 28.84 68.5

0.11 13.54 51.82

Project: Hadoop? CloudSatck
Source Instances: 32143,Target Instances: 65392
Features:19

TH (%) LF (%) RA (%)

0.16 49.9 84.76

0.32 49.98 81.37

0.37 49.85 74.73

0.07 45.21 66.21

0.16 50.96 81.8

0.19 47.74 74.86

0.2 35.41 74.41

0.11 26.52 69.7

Project: CloudStack? Hadoop
Source Instances: 65392,Target Instances: 32143
Features:19

TH (%) LF (%) RA (%)

0.18 38.3 71.18

0.39 36.51 70.35

0.93 33.4 66.01

0.19 31.21 65.44

0.27 38.57 69.88

0.99 37.91 68.7

0.36 31.83 68.09

0.08 30.28 68.51
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5.3. RQ 3: What are the performances of CLIFBN classifiers for cross-
project if-blocks logging prediction?

Motivation: In RQ 3 we investigate the performances of CLIFBN
classifiers. CLIFBN classifiers use BN classifier for numeric textual
feature generation. We use BN classifier for numeric textual feature
generation because it give good performance for cross-project if-
blocks logging prediction in our initial investigation (refer to RQ 1).

Approach: We have total eight CLIFBN classifiers: CLIFADABN ,

CLIFADTBN , CLIFBNBN , CLIF
J48
BN , CLIF

Log
BN , CLIF

NB
BN , CLIF

RF
BN , CLIF

SVM
BN . We did not

create CLIFRBFBN because RBF classifier give 0% LF for all the source
and target projects in our initial investigation (refer to RQ1). To
answer this RQ, we compute LF and RA values of all the CLIFBN clas-
sifiers at a threshold learned in the model building phase (refer to
Section 3).

Results: Table 6 presents the LF values of all the CLIFBN classi-
fiers. CLIFLOGBN gives the highest LF for four source and target project

pairs. CLIFLOGBN give the LF of 50.63% (Hadoop? CloudStack), 39.08%
(Tomcat? Hadoop), 38.62% (CloudStack? Hadoop) and 35.9%

(Hadoop? Tomcat). CLIFADTBN give the highest LF on two source

and target project pairs. CLIFADTBN give LF of 49.89% (Tomcat CloudS-

tack) and 35.63% (CloudStack? Tomcat). CLIFADTBN gives the highest
RA on four source and target project pairs i.e., on CloudStack?
Table 6
Cross project if-blocks logging prediction by CLIFBN classifier, NW: Not Working.

Project: CloudStack? Tomcat
Source Instances: 65392,Target Instances:16991
Features:19

ALGO TH LF (%) RA (%)

CLIFADABN
0.18 34.57 67.02

CLIFADTBN
0.39 35.63 70.5

CLIFBNBN 0.98 NW NW

CLIFJ48BN
0.19 29.99 62.87

CLIFLOGBN
0.26 34.58 70.22

CLIFNBBN 0.98 29.97 68.06

CLIFRFBN 0.31 28.54 67.73

CLIFSVMBN
0.11 24.34 62.11

Project: Tomcat? CloudStack
Source Instances: 16991,Target Instances:65392
Features:19

ALGO TH LF (%) RA (%)

CLIFADABN
0.2 49.36 77.33

CLIFADTBN
0.33 49.89 78.14

CLIFBNBN 0.52 48.13 73.16

CLIFJ48BN
0.09 43.29 67.25

CLIFLOGBN
0.11 49.72 76.76

CLIFNBBN 0.12 36.75 70.96

CLIFRFBN 0.23 32.09 71.94

CLIFSVMBN
0.11 33.04 62.23

Project: Tomcat? Hadoop
Source Instances: 16991,Target Instances: 32143
Features:19

ALGO TH LF (%) RA (%)

CLIFADABN
0.2 37.69 70.15

CLIFADTBN
0.33 38.82 72.2

CLIFBNBN 0.52 36.06 68.55

CLIFJ48BN
0.09 33.28 62.54

CLIFLOGBN
0.11 39.08 72.26

CLIFNBBN 0.12 28.72 66.99

CLIFRFBN 0.23 28.6 66.54

CLIFSVMBN
0.11 20.35 55.82
Tomcat, Hadoop? Tomcat, Tomcat? CloudStack, and Hadoop?

CloudStack. CLIFADABN also per-form well and give LF values close to

the best performing CLIFBNBN classifier on all the source and target
projects. CLIFBN give good performance for four source and target
projects. For two source and target project pairs, CloudStack?
Tomcat and CloudStack? Hadoop, we have NW entries in Table 6.
For these two project we are not able to train the classifier. It is
because, the default WEKA implementation of BN classifier was
not able to discritize very low numeric values of numeric textual
feature. Although, scaling can be applied at pre-processing step
to overcome this problem. However, currently we use default val-
ues of the all the features for classifier learning and, hence, do not

apply any further pre-processing. CLIFNBBN give good i.e., close to the
best CLIFBN classifier, LF values on Hadoop? Tomcat (35.9%) and
Hadoop? CloudStack (47.54%) projects. However, its RA values
are considerably lower than the best per-BNforming CLIFBN classi-

fier. Among all the CLIFBN classifiers, CLIFRFBN and CLIFSVMBN perform BN
the worst and give poor results for both the metrics.
CLIFLOGBN , CLIFADABN and CLIFADTBN classifier performs the best
among all the CLIFBN classifiers.
Project: Hadoop? Tomcat
Source Instances: 32143,Target Instances: 16991
Features:19

TH (%) LF (%) RA (%)

0.12 35.56 73.29

0.34 35.83 75.35

0.4 34.79 66.99

0.07 33.31 61.98

0.18 35.9 74.57

0.17 34.34 68.71

0.21 26.57 67.63

0.1 20.43 63.42

Project: Hadoop? CloudStack
Source Instances: 32143,Target Instances:65392
Features:19

TH (%) LF (%) RA (%)

0.12 49.83 81.11

0.34 50.27 81.77

0.4 50.11 74.39

0.07 46.33 66.81

0.18 50.63 80.11

0.17 47.54 73.59

0.21 39.48 73.95

0.1 23.53 67.03

Project: CloudStack? Hadoop
Source Instances: 65392,Target Instances: 32143
Features:19

TH (%) LF (%) RA (%)

0.18 38.52 68.42

0.39 38.37 69.12

0.98 NW NW

0.19 31.39 62.3

0.26 38.62 70.08

0.98 34.74 69.11

0.31 31.92 68.25

0.11 24.33 62.13
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5.4. RQ 4: What is the performance of CLIF model as compared to
baseline classifier?

Motivation: In RQ 4, we compare the performances of CLIFNB
and CLIFBN classifiers against the baseline classifiers. The answer
to this RQ can provide important insight about effectiveness of CLIF
classifiers for improving the cross-project if-blocks logging predic-
tion performances.

Approach: To answer RQ 4, we compute value of the LF and RA
values for all the LogOptPlus, CLIFNB, and CLIFBN classifiers. For each
source and target project pair LogOptPlus classifier giving the high-
est LF value is considered as baseline classifier. We then compare,
for each source and target project pair, performances of the CLIFNB
and CLIFBN classifiers against the baseline classifier.

Results: Tables 7 and 8 presents the LF and RA values and the
respective improvements (as compared to the baseline classifier)
for all the CLIFNB and CLIFBN classifiers. Tables 7 and 8 presents
that several CLIF classifiers outperformed the baseline classifier
in both LF and RA metrics. In Tables 7 and 8, cells containing U

indicate that the respective classifier improved the LF or RA val-
ues as compared to the baseline classifier and cell containing H

indicate the classifier giving the best result for the respective

source and target project pair. Among CLIFNB classifiers, CLIFADANB

and CLIFLOGNB give the highest improvement on one and three

source and target project pairs, respectively. CLIFADANB give the
highest improvement of 9.75% in LF on Tomcat? CloudStack pro-

ject. CLIFLOGNB give the highest improvement of 2.25% (Hadoop?
Tomcat), 2.81% (Hadoop? CloudStack), and 7.02% (Tomcat?

Hadoop) in LF. CLIFADTNB , CLIFBNNB , CLIFJ48NB and CLIFNBNB also show
improvement in LF values on various source and target project

pairs. CLIFADANB , CLIFADTNB and CLIFLOG give improvement in RA on all

the six source and target projects, with CLIFADANB giving the highest
improvement on NB maximum (i.e, four) number of source and

target projects. CLIFADANB give improvement of 4.99% (Tomcat?
Table 7
LF and RA values for CLIFNB classifiers and the improvements obtained as compared to the
Improvement, NA: Not Applicable.

Improvements obtained in LF using CLIFNB Clas sifiers

CS? TC HD? TC TC? CS

ALGO LF(%) IMP (%) LF(%) IMP (%) LF (%) IM

LogOptPlus(baseline) 34.98 NA 33.6 NA 41.11 N

CLIFADANB
34.81 �0.17 35.76 2.16 (U) 50.86 9

CLIFADTNB
33.77 �1.21 33.55 �0.05 49.89 8

CLIFBNNB 33.08 �1.9 35.09 1.49 (U) 48.32 7

CLIFJ48NB
29.17 �5.81 33.75 0.15 (U) 42.18 1

CLIFLOGNB
34.38 �0.6 35.85 2.25(H) 50.03 8

CLIFNBNB 33.6 �1.38 35.06 1.46 (U) 39.24 �

CLIFRFNB 28.8 �6.18 28.84 �4.76 30.19 �

CLIFSVMNB
29.91 �5.07 13.54 �20.06 31.72 �

Improvements obtained in RA using CLIFNBClassifiers

ALGO CS�>TC HD�>TC TC�>CS

LogOptPlus RA(%) IMP (%) RA(%) IMP (%) RA (%) IM

(baseline) 67.15 NA 70 NA 74.05 N

CLIFADANB
70.57 3.42 (U) 73.88 3.88 (U) 79.04 4

CLIFADTNB
71.91 4.76(H) 73.72 3.72 (U) 77.92 3

CLIFBNNB 65.11 �2.04 66.62 �3.38 72.72 �

CLIFJ48NB
64.8 �2.35 62.34 �7.66 63.79 �

CLIFLOGNB
70.34 3.19 (U) 75.08 5.08(H) 78.49 4

CLIFNBNB 68.08 0.93(U) 69.34 �0.66 72.76 �

CLIFRFNB 68.34 1.19 (U) 68.5 �1.5 69.94 �

CLIFSVMNB
69.82 2.67 (U) 51.82 �18.18 65.47 �
CloudStack), 7.7% (Hadoop?CloudStack), 5.07% (Tomcat?
Hadoop) and 3.56% (CloudStack? Hadoop).

Among CLIFBN classifiers, CLIFADTBN and CLIFLOGBN give the highest
improvement on one and three source and target project pairs,

respectively. CLIFADTBN give thehighest improvementof 8.78%onTom-

cat? CloudStackproject pair. CLIFLOGBN give the highest improvement
of 2.3% (Hadoop? Tomcat), 2.48% (Hadoop? CloudStack), and

7.27% (Tomcat? Hadoop). Overall, CLIFADABN , CLIFADTBN , CLIFBNBN , and

CLIFLOGBN give improvement in LF on 4 out of 6 source and target pro-

jects. However, since we are not able to train CLIFBNBN classifier for 2
source and target project pairs i.e., CloudStack? Tomcat and
CloudStack? Hadoop, we are ignoring CLIFBNBN from further analysis.

CLIFADTBN give the highest improvement in RA on 4 source and target

project pairs. CLIFADTBN give improvement of 3.35% (CloudStack?
Tomcat), 5.35% (Hadoop? Tomcat), 4.09% (Tomcat? CloudStack)

and 4.71% (Hadoop? CloudStack). CLIFADTBN and CLIFLOGBN give
improvement in RA on all source and target project pairs.
Several CLIFNB and CLIFBN classifiers outperform the base-

line classifier, with CLIFADANB giving the maximum improvement
of 9.75% (in LF metric) on Tomcat? CloudStack and 7.7% (in
RA metric) on Hadoop? Tomcat source and target project
pair.
5.5. RQ 5: What are the average performances of baseline, CLIFNB, and
CLIFBN classifiers over all the source and target project pairs ?

Motivation: In RQ 5, we investigate the performances off all
classifiers over all source and target project pairs. We believe that
answer to this research question can provide us important insight
about the classifier that is generalizable to all the six source and
target project pairs considered in this work
baseline classifier, TC: Tomcat, CS: CloudStack, HD: Hadoop, ALGO: Algorithm, IMP:

HD? CS TC? HD CS? HD

P (%) LF (%) IMP (%) LF (%) IMP (%) LF (%) IMP (%)

A 48.15 NA 31.81 NA 38.58 NA
.75(H) 49.9 1.75 (U) 38.8 6.99 (U) 38.3 �0.3

.78 (U) 49.98 1.83 (U) 38.82 7.01 (U) 36.51 �2.1

.21 (U) 49.85 1.7 (U) 37.53 5.72 (U) 33.4 �5.2

.07 (U) 45.21 �2.9 34.81 3 (U) 31.21 �7.4

.92 (U) 50.96 2.81(H) 38.83 7.02(H) 38.57 �0.01

1.87 47.74 �0.4 32.07 0.3 (U) 37.91 �0.7

10.92 35.41 �12.7 28.45 �3.4 31.83 �6.8

9.39 26.52 �21.6 27.02 �4.8 30.28 �8.3

HD�>CS TC�>HD CS�>HD

P (%) RA (%) IMP (%) RA (%) IMP (%) RA (%) IMP (%)

A 77.06 NA 68.81 NA 67.62 NA
.99(H) 84.76 7.7(H) 73.88 5.07(H) 71.18 3.56(H)

.87 (U) 81.37 4.31 (U) 73.32 4.51 (U) 70.35 2.73 (U)

1.33 74.73 �2.3 68.85 0.04 66.01 �1.6

10.26 66.21 �10.9 61.49 �7.3 65.44 �2.2

.44 (U) 81.8 4.74 (U) 73.28 4.47 (U) 69.88 2.26 (U)

1.29 74.86 �2.2 67.99 �0.8 68.7 1.08 (U)

4.11 74.41 �2.7 66.08 �2.7 68.09 0.5

8.58 69.7 �7.4 61.17 �7.6 68.51 0.9



Table 8
LF and RA values for CLIFBN classifiers and the respective improvements obtained as compared to the baseline classifier, TC: Tomcat, CS: CloudStack, HD: Hadoop, ALGO:
Algorithm, IMP: Improvement, NA: Not Applicable, NW: Not Working.

Improvements obtained in LF using CLIFBN Clas sifiers

ALGO CS? TC HD? TC TC? CS HD? CS TC? HD CS? HD

LogOptPlus LF(%) IMP (%) LF(%) IMP (%) LF (%) IMP (%) LF (%) IMP (%) LF (%) IMP (%) LF (%) IMP (%)

(baseline) 34.98 NA 33.6 NA 41.11 NA 48.15 NA 31.81 NA 38.58 NA

CLIFADABN
34.57 �0.41 35.56 1.96 (U) 49.36 8.25 (U) 49.83 1.68 (U) 37.69 5.88 (U) 38.52 �0.1

CLIFADTBN
35.63 0.65 35.83 2.23 (U) 49.89 8.78(H) 50.27 2.12 (U) 38.82 7.01 (U) 38.37 �0.2

CLIFBNBN NW NW 34.79 1.19 (U) 48.13 7.02 (U) 50.11 1.96 (U) 36.06 4.25 (U) NW NW

CLIFJ48BN
29.99 �4.99 33.31 �0.29 43.29 2.18 (U) 46.33 �1.8 33.28 1.47 (U) 31.39 �7.2

CLIFLOGBN
34.58 �0.4 35.9 2.3(H) 49.72 8.61 (U) 50.63 2.48(H) 39.08 7.27(H) 38.62 0.1

CLIFNBBN 29.97 �5.01 34.34 0.74 (U) 36.75 �4.36 47.54 �0.6 28.72 �3.1 34.74 �3.8

CLIFRFBN 28.54 �6.44 26.57 �7.03 32.09 �9.02 39.48 �8.7 28.6 �3.2 31.92 �6.7

CLIFSVMBN
24.34 �10.64 20.43 �13.17 33.04 �8.07 23.53 �24.6 20.35 �11.5 24.33 �14.25

Improvements obtained in RA using CLIFBN Classifiers

ALGO CS? TC HD? TC TC? CS HD? CS TC? HD CS? HD

LogOptPlus RA(%) IMP (%) RA(%) IMP (%) RA (%) IMP (%) RA (%) IMP (%) RA (%) IMP (%) RA (%) IMP (%)

(baseline) 67.15 NA 70 NA 74.05 NA 77.06 NA 68.81 NA 67.62 NA

CLIFADABN
67.02 �0.13 73.29 3.29 (U) 77.33 3.28 (U) 81.11 4.05 (U) 70.15 1.34 (U) 68.42 0.8 (U)

CLIFADTBN
70.5 3.35(H) 75.35 5.35(H) 78.14 4.09(H) 81.77 4.71(H) 72.2 3.39 (U) 69.12 1.5 (U)

CLIFBNBN NW NW 66.99 �3.01 73.16 �0.89 74.39 �2.7 68.55 �0.3 NW NW

CLIFJ48BN
62.87 �4.28 61.98 �8.02 67.25 �6.8 66.81 �10.3 62.54 �6.3 62.3 �5.3

CLIFLOGBN
70.22 3.07 (U) 74.57 4.57 (U) 76.76 2.71 (U) 80.11 3.05 (U) 72.26 3.45(H) 70.08 2.46(H)

CLIFNBBN 68.06 0.91 (U) 68.71 �1.29 70.96 �3.09 73.59 �3.5 66.99 �1.8 69.11 1.49 (U)

CLIFRFBN 67.73 0.58 (U) 67.63 �2.37 71.94 �2.11 73.95 �3.1 66.54 �2.3 68.25 0.6 (U)

CLIFSVMBN
62.11 �5.04 63.42 �6.58 62.23 �11.82 67.03 �10. 55.82 �13.01 62.13 �5.49

Fig. 4. Average improvement obtained using CLIFNB and CLIFBN classifiers, NA = Not Available.
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Approach: To answer RQ 5, we compute the average LF and
average RA of all the LogOptPlus classifiers. We select the LogOpt-
Plus classifier giving the highest average LF as a baseline classifiers.
We then compute average LF and average RA of all the CLIFNB and
CLIFBN classifiers. We, finally compute average improvement
obtained by each CLIFNB and CLIFBN classifier over the baseline
classifier.

Results: LogOptPlusBN classifier gives the highest average LF
among all the LogOpt-Plus classifiers, hence, we consider it as
our baseline classifier for this experiment. LogOptPlusBN give aver-
age LF of 33.26% and average RA of 70.66%. Fig. 4 presents the
improvement obtained in average LF and average RA using CLIFNB
and CLIFBN classifiers as compared to the baseline classifiers.

Fig. 4a presents that CLIFADANB , CLIFADTNB , CLIFBNNB , CLIF
J48
NB , CLIF

LOG
NB and

CLIFNBNB classifiers give improvement of 8.15%, 7.16%, 6.29%, 2.8%,

8.18% and 4.34%, respectively, in average LF. CLIFADANB , CLIFADTNB , and

CLIFLOGNB also give improvement of 4.89%, 4.11%, and 4.15%, respec-

tively, in average RA. Fig. 4c and d presents that CLIFADABN , CLIFADTBN ,

CLIFJ48BN , CLIFLOGBN and CLIFNBBN give improvement of 7.66%, 8.21%,

3.01%, 8.16% and 2.08%, respectively, in average LF. CLIFADABN ,

CLIFADTBN , and CLIFLOGBN give improvement of 2.23%, 3.85% and 3.34%,
respectively, in average RA. Fig. 4c and d have Not Available
(‘NA’) entries for CLIFBNBN classifier because we are not able to train
this classifier for CloudStack? Tomcat, CloudStack? Hadoop pro-
ject pairs. CLIFRFNB, CLIF

SVM
NB , CLIFRFBN And CLIFSVMBN classifier did not give

any improvement in average LF or average RA as com- BN pared to
the baseline classifier.
Several CLIFNB and CLIFBN classifiers outperform the base-

line classifier. CLIFADTNB , CLIFLOGNB , CLIFLOGBN , CLIFADANB , CLIFADABN , CLIFADTNB ,
give improvement of 8.21%, 8.18%, 8.16%, 8.15%, 7.66%, and
7.16%, respectively, in average LF, and improvement of
3.85%, 4.15%, 3.34%, 4.89%, 2.23%, and 4.12%, respectively,
in average RA.
6. Discussion

6.1. Performance of the classifiers

LOG, ADT, and ADA based CLIF classifiers give good results for
cross-project if-blocks logging prediction. We believe that ADT
based classifiers performed well as it is a generalization of decision
trees and uses a concept of voted decision tree along with combin-
ing the advantages of boosting for improving accuracy (Freund and
Mason, 1999). Previous research shows that ADT has performed
well on Software Engineering dataset and problems and is suitable
for imbalanced dataset cases (Antoniol et al., 2008; Panichella
et al., 2015; Tan et al., 2015). Antoniol et al. (2008) apply ADT to
classify if an issue is a bug or enhancement. Panichella et al.
(2015) apply ADT for the purpose of categorizing mobile app user
reviews for software maintenance and evolution. Tan et al. (2015)
use ADT for defect prediction and mention that ADT has performed
best in previous work. In CLIF, as we combine text mining classi-
fiers output with Boolean and numeric features and then learning
a classifier on it. Hence, the upper classifier is basically working
as a meta classifier. It is found that LOG regression give good per-
formance when used as a meta classifier in ensemble techniques
like stacking (Jonsson et al., 2016; Witten et al., 2011). BN and
NB classifiers give good performance for cross-project if-blocks
logging prediction with LogOptPlus classifier. NB give good results
in other text classification tasks (Shivaji et al., 2013). We observe
that among all the classifiers RBF give the worst performance for
cross-project if-blocks logging prediction. RBF is an artificial neural
network based classifier which requires parameter tuning for bet-
ter performance. Lal et al. (2017) also achieved the same results for
cross-project catch-blocks logging prediction with RBF classifier.

6.2. CLIF performance on different projects

We evaluated performance of the CLIF classifiers on six source
and target project pairs. CLIF classifiers give considerable improve-
ment in RA metric on all the source and target project pairs. CLIF
classifiers also give considerable improvement in LF metric on four
source and target project pairs (Tomcat? CloudStack, Tomcat?
Hadoop, Hadoop? CloudStack, Hadoop? Tomcat). CLIF classifiers
did not give much improvement in LF metric in two cases when
CloudStack project is used for model building. We believe that this
happens because in this work, we use NB and BN classifiers as text
mining classifiers for generating numerical textual features. We
use NB and BN because these two classifiers give the best results
on most of the source and target project pairs in our initial inves-
tigation (referto Section 5.1). However, on CloudStack? Tomcat,
CloudStack? Hadoop project pair ADA classifier give the highest
LF value. We believe that this is one of the reason CLIF classifiers
give poor performance (in any case no worst than baseline classi-
fier) when CloudStack is used as source project. In future, we plan
to create one more CLIF variant using ADA as a text mining classi-
fiers for numerical textual feature generation.

6.3. Effectiveness of threshold learning

We use threshold learning to address the class imbalance prob-
lem of logging dataset. We use threshold value learned on source
project (training dataset) for if-block logging prediction of target
project (testing dataset). Tables 5 and 6 presents the threshold
value of CLIF classifiers. Tables 5 and 6 shows that CLIF classifiers
give best results on source project for threshold value other than
0.5. This shows that threshold learning can be beneficial in improv-
ing the logging prediction performance in case of imbalanced log-
ging datatset.

6.4. Effectiveness of numeric textual features

In this work, we use two metrics, LF and RA, for comparing the
prediction performances of the baseline classifier and CLIF classi-
fiers. CLIF uses numerical textual features generation and thresh-
old learning for improving the cross-project if-blocks logging
prediction performance. We observe that several CLIF classifiers
give improvement in RA metric as compared to baseline LogOpt-
Plus Classifier on all source and target project pairs. RA is not
affected by the decision threshold used for prediction. Hence, all
the improvements obtained in RA metric is because of the uses
of numeric textual features. This shows that numeric textual fea-
tures can be very useful in improving the performance of machine
learning classifiers.

7. Threats to validity

In this section, we discuss threats to validity related to the work
presented in this paper.

7.1. Threat to external validity

The external threat to validity is concerned with the generaliza-
tion of the results. In our study, we conduct all our experiments on
three open source Java projects. These projects have different
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domains, sizes, and development history. Based on our study, we
have found that the proposed approach i.e., CLIF is effective in
improving cross-project if-blocks logging prediction performance.
However, our results may not be generalizable to all the Java pro-
jects, because we have only studied three projects from the ASF.
Additionally, studied are required on Java project from ASF as well
on other Java ecosystem such as Android, Eclipse. In addition to
this, more research is required for other types of projects such as
closed source projects or projects written in other programming
languages (e.g., C#, Python etc.) may have different logging prac-
tices. However, to mitigate this threat we conduct our experiments
on three large and standard projects having good logging practices.
In future, we plan to conduct experiments on more projects from
different languages and domains.

7.2. Threat to construct validity

It is concerned with how we identify log statements. We create
26 regular expressions to find all the log statements. The manual
inspection reveals that we identify all the types of log statements.
However, there is still a possibility that we missed some types of
log statements.

We consider logging statements inserted by the software devel-
opers in the source code as gold standard or optimal. However,
there is a possibility of error or non-optimal logging in the source
code by the software developer which can affect the performance
of the prediction model. However, all the three projects are long
lived and actively maintained, hence, we can assume good logging
in all the three projects.

We predict cross-project if-blocks logging prediction on the
basis of Boolean, numeric and numeric textual features that we
extracted in model building phase. There is a possibility that there
exists a better set of predictors for cross-project if-blocks logging
prediction. In future, we plan to extend this study with more
predictors.

7.3. Threat to Internal validity

At the threshold learning step we randomly divide the training
dataset into two part. This random division can lead to biases in
the threshold learned. To mitigate this threat we perform this split
10 times and report the threshold value that performed the best on
average.

We use default WEKA parameters for all the classifiers. Tuning
classifier parameter is important and can be beneficial in improv-
ing the prediction performance. However, as a first step towards
cross-project if-blocks logging prediction we use default clas-
sifier parameters. In future, we plan to extend this study and notice
the effect of parameter tuning on classifier performance.

We mainly consider LF metric for comparing results of different
classifiers. LF (i.e., F1-score) is a well known and a widely used
metric for classifier performance evaluation on imbalanced data-
set. However, depending on different application needs other eval-
uation metrics might be desirable. In such cases, at threshold
learning step we can select the threshold value that is maximizing
the desirable metric. In future, we plan to consider more metrics to
compare the performances of different classifiers.
8. Conclusion and future work

In this work, we propose CLIF, a three level, machine learning
based model for cross-project if-blocks logging prediction. CLIF
uses three types of features (Boolean, numeric, and textual) for
model building. At the level 1, CLIF coverts textual features to
numeric textual features. At level 2, CLIF combines numeric textual
features with Boolean and numeric features and forms a final fea-
tures vector. CLIF then learns a machine learning classifier on final
feature vector. At level 3, CLIF learns an effective decision threshold
boundary for prediction on imbalanced dataset. At level 1, we use
two text mining classifiers NB and BN. We use NB and BN because
they give better results as compared to other classifiers in our ini-
tial investigation, as inferred in Section 5.1. At level 2, we use eight
machine learning classifiers i.e., ADA, ADT, BN, J48, LOG, NB, RF,
SVM. In total, we generate sixteen CLIF classifies i.e., eight CLIFNB
and CLIFBN classifiers. Experimental results on three open source
projects show that CLIF is effective in improving cross-project if-
blocks logging prediction. Several CLIFNB and CLIFBN classifiers out-
perform the baseline LogOptPlus classifier. Experimental results in

Section 5 show that among CLIFNB and CLIFBN classifiers, CLIFADTNB ,

CLIFLOGNB , CLIF
ADA
NB , CLIFADTNB , CLIFLOGBN , and CLIFADABN performs the best.

CLIFADTBN , CLIFLOGNB , CLIFLOGBN , CLIFADANB , CLIFADABN , and CLIFADTNB give improve-
ment of 8.21%, 8.18%, 8.16%, 8.15%, 7.66%, and 7.16%, NB respec-
tively, in average LF, and improvement of 3.85%, 4.15%, 3.34%,
4.89%, 2.23%, and 4.12%, respectively, in average RA.

The work presented in this paper, is the first in-depth study of
cross-project if-blocks logging prediction. It opens the door to
many interesting future directions. At present, we use the default
parameters for all the classifiers. In future, we plan to work on
parameter tuning to find the optimal classification parameters to
further improve the performance of CLIF classifier. At present, we
use only one numeric textual feature. In future, we plan to combine
multiple numeric textual features and add one more level to CLIF.
We plan to extend the functionality of CLIF for other types of code
constructs such as catch-blocks. We also plan to develop a CLIF
plug-in for Eclipse IDE that can be used to give logging suggestions
to the software developers.
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