
Journal of King Saud University – Computer and Information Sciences 31 (2019) 514–527
Contents lists available at ScienceDirect

Journal of King Saud University –
Computer and Information Sciences

journal homepage: www.sciencedirect .com
On the comparison of memristor-transistor hybrid and transistor-only
heterogeneous FPGAsq
https://doi.org/10.1016/j.jksuci.2018.03.004
1319-1578/� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author at: Office No. 222 C, Department of Electrical
Engineering, Dhofar University, Salalah, Oman.

E-mail address: ufarooq@du.edu.om (U. Farooq).

Peer review under responsibility of King Saud University.
q This document is a collaborative effort.

Production and hosting by Elsevier
Umer Farooq a,⇑, M. Hassan Aslam b, Muhammad Usman b

aDepartment of Electrical and Computer Engineering, Dhofar University, Salalah, Oman
bCOMSATS Institute of Information Technology, Lahore, Pakistan

a r t i c l e i n f o
Article history:
Received 23 September 2017
Revised 3 March 2018
Accepted 3 March 2018
Available online 6 March 2018

Keywords:
Heterogeneous FPGA
Memristor-transistor hybrid approach
Reconfigurable architectures
Exploration flow
a b s t r a c t

Recently, memristor-CMOS based hybrid, homogeneous reconfigurable architectures have gained popu-
larity as they offer better area results compared to their CMOS-only counterparts. But no work has been
done on hybrid heterogeneous reconfigurable architectures (i.e. heterogeneous FPGAs). In this work, we
design and simulate basic as well as complex memristor-transistor hybrid building blocks of heteroge-
neous island-style FPGA which are later combined together to construct complete hybrid heterogeneous
FPGA architecture. Area comparison between hybrid and conventional building blocks of heterogeneous
FPGA shows that hybrid blocks are 25–60% smaller compared to transistor-only blocks. For complete
architecture level comparison, we propose an exploration flow which is built by combining several open
source and indigenous tools. For experimentation and comparison between two FPGA architectures, two
sets of open source heterogeneous benchmarks are used. These benchmarks are passed through our pro-
posed flow to generate the area results for hybrid as well as conventional heterogeneous FPGA architec-
tures. Area comparison results show that, on average, hybrid architecture requires 59% less area for two
benchmark sets.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The practically feasible field programmable gate arrays (FPGAs)
were first introduced by Xilinx almost three decades ago. Due to
the limited capability of associated design flow tools and large pro-
cessing technology, FPGAs were homogeneous in nature as they
supported only a single type of computation blocks. Furthermore,
they had limited computation potential and they were used only
as glue logic for different blocks of complex digital systems. How-
ever, they have come a long way since their inception and now
they have a multi-billion-dollar market with ability to implement
almost any complex digital system that requires huge computation
power and very high performance. This is largely because of the
rapid advancement in processing technology, which is further
aided by optimizations and innovations in FPGA architectures as
well as their improved design flows. Today, FPGAs are used in a
whole range of complex digital systems like data centers, automo-
biles, compute-intensive digital signal processing (DSP) applica-
tions, and many more. For low to medium level production of
digital systems, FPGAs are now seen as a viable ‘avant-garde’ to
application specific integrated circuits (ASICs) because compared
to ASICs, they are reconfigurable in nature with negligible non-
recurring engineering (NRE) cost and very rapid time to market.

As stated above, FPGAs were initially homogeneous, generalized
in nature and they could be used for implementation of almost any
digital system. Along with that, they offer in principle infinite
times the reconfiguration of the architecture. However, pre-
fabricated and generalized reconfigurable nature of homogeneous
FPGAs makes them much slower, larger, and immensely power
hungry as compared to their standard cell-based counterparts
(Kuon et al., 2008). As a consequence, they do not remain viable
for performance critical applications albeit they offer smaller costs
and shorter time to market compared to the ASICs. Thus, in order
to make the FPGAs attractive for high performance applications,
architectural modifications were made in them and they were
made heterogeneous in nature (Luu et al., 2009). Contrary to

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2018.03.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jksuci.2018.03.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ufarooq@du.edu.om
https://doi.org/10.1016/j.jksuci.2018.03.004
http://www.sciencedirect.com/science/journal/13191578
http://www.sciencedirect.com


U. Farooq et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 514–527 515
homogeneous FPGAs which contain only single type of generalized,
configurable computation blocks (normally termed as configurable
logic blocks (CLBs)), heterogeneous FPGAs are comprised of a mix-
ture of configurable and specific-purpose hard blocks (HBs) like
adders, multipliers, memory blocks, and even DSP blocks. Hetero-
geneous FPGAs have shown significant improvement over homo-
geneous FPGAs (Luu et al., 2009; Farooq et al., 2011; Underwood
et al., 2004; Beauchamp et al., 2006) in terms of area, performance,
power consumption and they are widely fabricated by commercial
vendors as well. Although introduction of heterogeneity in FPGAs
has helped in bridging the gap between FPGAs and ASICs, still
FPGAs are much larger and slower compared to ASICs (Kuon
et al., 2008) and other options are being investigated to make
FPGAs more efficient.

With the advancement in processing technology gradually com-
ing to a respite, researchers are looking to other components that
could eventually replace metal oxide semiconductor (MOS) tran-
sistors (Strukov et al., 2008). Memristor is one such two terminal
circuit component that could be used for the design of future dig-
ital systems. It was first discovered in 1971 by a missing relation-
ship between flux linkage and charge (Chua, 1971) where it was
established that known fundamental elements could not produce
the behavior of memristor. It is a device whose resistance changes
with magnitude and polarity of the voltage and contrary to the
existing elements which are characterized by voltage and current,
a memristor is characterized by flux and charge. Memristor also
remembers its resistance until the voltage is re-applied
(Williams, 2008). Despite promising characteristics, memristor
remained largely unappreciated till 2008 when Hewlett-Packard
(HP) demonstrated its practical feasibility in nano scale era
(Williams, 2008). Since then, it has been shown that memristor
excels transistor as a component in terms of area and power con-
sumption (Sarwar et al., 2013). Moreover, it requires no modifica-
tion in software for fabrication; hence can be built upon current
fabrication technology (Vourkas et al., 2014). Memristor can either
be used as a replacement of transistor or can also be used in con-
junction with transistor for design of basic building blocks like
logic gates. These blocks can then be used to construct larger
blocks like memories, adders, multipliers which were previously
constructed using transistors only (Williams, 2008). Usage of
memristor in the construction of larger blocks can eventually lead
to very complex circuits having better performance compared to
the circuits that are based on transistors only.

In this work, we propose a novel hybrid heterogeneous FPGA
architecture. The proposed architecture is based on memristor-
transistor hybrid approach. Although some work regarding hybrid
architectures exists for homogeneous FPGAs (Cong and Xiao, 2011;
Farooq and Aslam, 2015), to the best of our knowledge, no prior
work has been done on hybrid heterogeneous FPGA architectures.
For the proposed heterogeneous FPGA architecture, we design and
simulate basic building blocks of heterogeneous FPGA architecture
using hybrid approach. These blocks include CLBs, programmable
connection boxes (CBs), programmable switch boxes (SBs), as well
as HBs like adders and multipliers. Main motivation behind this
approach is to propose an architecture that is more efficient than
transistor-only conventional architecture. Quality of an FPGA
architecture is normally best assessed using accompanying design
flow. For this purpose, we develop a generalized exploration flow
(i.e. environment) in this work. The exploration environment is
developed using a mixture of locally developed and state-of-the-
art open source academic tools. The environment is unique in the
sense that it can be used for exploration of conventional as well
as proposed FPGA architecture. In order to validate the flow, we
use two sets of large open source heterogeneous benchmarks
which are placed and routed on the proposed architecture. Results
obtained after placement and routing indicate that the proposed
architecture far surpasses the conventional heterogeneous FPGA
architecture. Further details on the proposed architecture, design
of building blocks, and exploration environment are discussed in
succeeding sections of the paper.

The main contributions of this work are summarized below:

� Design, simulation of basic building blocks as well as HBs of
heterogeneous FPGA using memristor-transistor hybrid
approach and their comparison with transistor-only blocks.

� Development of a generalized exploration environment that
gives end-to-end experience. Environment is developed
through a combination of state-of-the-art and locally developed
academic tools.

� Congregation of two sets of large, open source, heterogeneous
benchmarks and validation of proposed exploration environ-
ment through extensive experimentation.

� Comparison between proposed and transistor-only heteroge-
neous FPGA architecture using the results that are obtained
through exploration environment.

Remainder of the paper is organized as follows. In Section 2, we
give a comprehensive overview of related research in the domain
of hybrid reconfigurable architectures. Section 3 then briefly
describes related aspects of reference heterogeneous FPGA archi-
tecture. Section 4 details the design and simulation results of
building blocks of reference heterogeneous FPGA architecture that
we have designed using hybrid approach. Section 5 describes the
generalized flow which is used for the exploration and experimen-
tation of hybrid as well as conventional FPGA architecture. This
section also sheds light on the heterogeneous benchmarks that
we have used for experimentation. Experimental results are dis-
cussed in Section 6 where comprehensive comparison between
two architectures is presented and finally this work is concluded
in Section 7.
2. Background and related work

Since 1965, when Moore’s law was first presented, metal oxide
semiconductor (MOS) transistors have been shrunk down at an
unprecedented rate. However, scaling the processing technology
further has become really intimidating as it is very difficult to con-
tain the leakage current and parasitic capacitance issues (Bi et al.,
2012; Scaramuzzo, 2014). Researchers in recent years have scien-
tifically probed many other components to find an alternative to
MOS based processing technology and memristor is one such com-
ponent which has shown many advantages such as non-volatility
and no leakage current. The first known fabrication of memristor
was accomplished by HP labs and I-V characteristics of the fabri-
cated memristor are shown in Fig. 1 (Williams, 2008). It is a two
layer titanium dioxide (TiO2) cube between two crossed nano
wires. It can be seen from the figure that it is a voltage regulated
device where the value of applied voltage (V) controls the thickness
of doped region (w) and turns it on ðRonÞ or off ðRoff Þ.

Depending upon the last applied voltage value, memristor is
capable of storing logic values in terms of high or low impedance.
The capability of logic storage without power consumption makes
it an ideal candidate for storage systems (Sarwar et al., 2013). The
ability of memristor to remember its resistance is used in analog
circuits where they act as reconfigurable resistors (Pershin and
Di Ventra, 2010). Memristor resistance is used as logic state level
in Kvatinsky et al. (2011) where memristors are used to perform
logic operations. Memristive logic operations are also used in
Memristor Ratioed Logic (MRL) and Memristor-Aided Logic
(MAGIC) (Kvatinsky et al., 2012; Kvatinsky et al., 2014) architec-
tures where CMOS compatible hybrid CMOS-memristive logic



Fig. 1. Model and I-V characteristics of Hewlett-Packard (HP) memristor.

516 U. Farooq et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 514–527
family is used to construct basic logic gates. Another memristor-
based logic architecture is presented by Hamdioui et al. (1718).
This architecture has the potential of performing computation
and storage in the same physical layer; hence making
memristor-based devices more capable in terms of handling
data-intensive applications which require low leakage current
and high communication throughput. Memristors can also be used
as reconfigurable switches which can be immensely helpful in
making efficient reconfigurable architecture (Cong and Xiao,
2011). In such architecture, CMOS-memristor hybrid approach is
used where memristors are used for configuration bits and
CMOS-based components are used for logic elements. Similarly,
memristors can also be used with transistors to construct look-
up table (LUT) for FPGAs (Almurib et al., 2014). In this approach,
memristors are used for storage and NMOS transistors are used
for selection purposes. Authors in Almurib et al. (2014) propose a
novel memristor-based read and write technique which is more
efficient in terms of power consumption as compared to conven-
tional techniques. Finally, authors in Strukov and Mishchenko
(2010) present a monolithically stacked hybrid FPGA which is
based on memristor-transistor hybrid approach. Monolithic FPGA
is shown to produce significant improvements in terms of area
while having similar power results as compared to conventional
CMOS FPGA architectures.

From the work presented in Kvatinsky et al. (2012, 2014),
Hamdioui et al. (1718), Almurib et al. (2014), Strukov and
Mishchenko (2010), it is evident that work on memristor-
transistor hybrid reconfigurable architectures is a prevalent
research domain and hybrid architectures have shown significant
improvements over conventional architectures in terms of area
and power consumption. It is important to note here that work
in Kvatinsky et al. (2012, 2014), Hamdioui et al. (1718), Almurib
et al. (2014), Strukov andMishchenko (2010) incorporates memris-
tors either to build solely routing interconnect or as a replacement
of some memory elements. Authors in Aslam et al. (2016) extend
the idea of hybrid reconfigurable architectures and present design
of basic building blocks as well as routing interconnect of hybrid
homogeneous FPGA architecture. In addition, they also present
complete environment for the exploration of hybrid homogeneous
FPGA architecture.

However, in the context of hybrid reconfigurable architectures,
all the work cited above considers homogeneous architectures only
where homogeneous CLBs are designed using hybrid approach. In
this work, we extend the design of hybrid reconfigurable architec-
tures to heterogeneous domain (i.e. heterogeneous FPGAs). For this
purpose, we design and simulate basic building blocks like CLBs as
well as HBs like adders and multipliers using memristor-transistor
hybrid approach. Some examples of the design of individual HBs
like adders and multipliers exist in the literature (El-Slehdar
et al., 2015; Mane et al., 2014; Fey, 2014; Guckert and
Swartzlander, 2017). But, to the best of our knowledge, no detailed
work has been done on complete hybrid heterogeneous FPGA
architectures. Apart from logic and routing interconnect of hybrid
heterogeneous FPGA, we also present a complete exploration envi-
ronment in this work. The proposed environment is generalized in
nature and it is built using a mixture of open source and indige-
nously developed tools. A preliminary version of this work was
presented in Farooq et al. (2016). However, here we present
detailed design of proposed building blocks. Additionally, we also
present detailed discussion on the proposed exploration environ-
ment. For experimentation purposes, we add more benchmarks
to our benchmark suite and present a detailed discussion on explo-
ration and comparison results.
3. Reference FPGA architecture

Homogeneous FPGAs were first introduced almost three dec-
ades ago and they got instant popularity because of their general-
ized reconfigurable nature. An abstract level view of a
homogeneous mesh-based FPGA is shown in Fig. 2. It can be seen
from this figure that CLBs are arranged in a two dimensional mesh
and they are surrounded by uniformly distributed SBs and CBs.
Furthermore, it can also be seen that routing resources are
arranged in the form of horizontal and vertical routing channels
where each routing channel contains uniform number of routing



Fig. 2. Abstract level view of mesh-based homogeneous FPGA.

U. Farooq et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 514–527 517
wires. Computation capability of a homogeneous FPGA mainly
comes from CLBs which are connected together to implement com-
plex logic functions. Internal architecture of a four-input CLB is
shown in Fig. 3. It can be seen from this figure that 4-input CLB
contains a 4-input LUT which further contains fifteen 2-input
multiplexers.

Programmable nature of the routing interconnect of FPGAs is
mainly due to reconfigurable SB and CB of the FPGA. SBs in an FPGA
are used to provide programmable interconnect between horizon-
tal and vertical routing channels (see Fig. 2) which are incident on
them whereas CBs provide programmable interconnect between
I/Os of CLBs and the routing interconnect of the FPGA. Internal
structure of sample SB and CB of an FPGA is shown in Fig. 4.
Fig. 4a shows the internal structure of a programmable SB. Simi-
larly, Fig. 4b shows the internal structure of a sample connection
box where I/Os of CLB are connected to surrounding routing
channels.

Contrary to homogeneous FPGAs that contain only a single type
of computation blocks (i.e. CLBs), heterogeneous FPGAs contain a
mixture of general purpose (i.e. CLBs) and specific purpose (i.e.
HBs) computation blocks. The CLBs and HBs in a heterogeneous
FPGA are arranged in a mesh-based manner and they are sur-
rounded by evenly distributed programmable routing resources.
An abstract level view of the mesh-based heterogeneous FPGA
used in this work is shown in Fig. 5. Just like homogeneous FPGA,
CLBs, SBs, and CBs in heterogeneous FPGA are programmable in
nature while HBs are specific purpose blocks that can perform
Fig. 3. Internal structure of CLB.
specific computation operations only. Inclusion of HBs in heteroge-
neous FPGAs has made them less generalized in nature compared
to their homogeneous counterparts. In addition, specific nature of
HBs can lead to potential wastage of precious computing resources
(Jamieson and Rose, 2006). But overall, they give better area results
compared to homogeneous FPGAs and are widely regarded as a
possible replacement of cell-based, application specific circuits
(Pangracious et al., 2013). Normally, in conventional heteroge-
neous FPGAs, CLBs, SBs, CBs, and HBs are constructed using transis-
tors only; hence they are termed as transistor-only architectures.
In this work, we propose the design of these blocks using
memristor-transistor hybrid approach. In the next section, we pre-
sent the memristor-model that we have used for the design of
these blocks and then we present the spice simulation results of
some sample blocks as well.

4. Proposed hybrid building blocks

Internal structure of sample CLB, SB, and CB shown in Figs. 3
and 4 indicates that homogeneous FPGAs can be constructed using
a combination of multiplexers, F/Fs, and SRAMs. Furthermore, we
know that HBs like adders and multipliers can be constructed
using a combination of basic logic gates. Conventionally, building
blocks of FPGAs are created using transistors only, but in this sec-
tion we present the design of these blocks using memristor-
transistor hybrid approach which will lead to a much efficient
hybrid FPGA architecture. In the following part of this section, first
we present the memristor model that we have used for the design
of hybrid blocks and then we present the spice simulation results
of the design of these hybrid blocks.

4.1. Spice memristor model

First physical implementation of memristor was announced by
HP in 2008 (Williams, 2008) where they proved the feasibility of
the element. Since then, a lot of research has been carried out on
spice models of memristor as it plays a critical role in the advance-
ment of research. Researchers have developed different models of
memristor (Biolek et al., 2009; Batas and Fiedler, 2011; Rák and
Cserey, 2010) using different environments like PSPICE, LTSPICE,
and Matlab. However, no standard model in HSPICE exists for
memristor simulation. In this work, we use HSPICE based current
controlled memristor model (Biolek et al., 2013). Selected memris-
tor model is an ideal model and it is based on Eq. (1).

RqðtÞ ¼ Roff þ ðRon � Roff Þ
ðae�4kqðtÞ þ 1Þ ð1Þ

In Eq. (1), Ron (1kX) is conducting memristor resistance, Roff

(100kX) is non-conducting memristor resistance and k is memris-
tor film thickness (10 nm). Furthermore, the value of a is calculated
using Eq. (2) where Rinit is initial memristor resistance and its value
is 5kX (Biolek et al., 2013). By using Eqs. (1) and (2), we have mod-
eled a memristor in HSPICE that replicates its behavior shown in
Fig. 1.

a ¼ Rinit � Ron

ðRoff � RinitÞ ð2Þ
4.2. Building block design and simulation

Memristor model described above is combined with transistors
to construct basic components like NOT gate, NOR gate, multiplex-
ers, F/Fs, and memory cell etc. These components are then com-
bined together to construct hybrid blocks like CLBs, SBs, and CBs
of a homogeneous FPGA. Design and simulation results of these



Fig. 4. (a) Internal structure of programmable switch box; (b) Internal structure of programmable connection box.

Fig. 5. Abstract level view of mesh-based heterogeneous FPGA.

Fig. 6. Schematic circuit diagram of a 1-bit half adder.

518 U. Farooq et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 514–527
hybrid building blocks have already been presented in our previous
work (Aslam et al., 2016). Here we extend our hybrid approach to
design HBs like adders and multipliers. Hybrid HBs are then com-
bined with hybrid CLBs, CBs, and SBs to construct a hybrid hetero-
geneous FPGA like the one shown in Fig. 5. For the sake of
explanation, we start with the design of basic hybrid HB like
half-adder which can be then used to construct large HBs like
multi-bit full adder and multiplier. Two NOT gates and three
NOR gates are normally required to construct a half adder. Sche-
matic circuit diagram of a half adder constructed using hybrid
approach is shown in Fig. 6. Schematics of hybrid NOT and NOR
gate are shown inside the dashed boxes of Fig. 6. Value of Vcc is
set to be 1.8 volts in this circuit. Spice simulation results of hybrid
1-bit half adder are shown in Fig. 7.

Combination of single bit hybrid half adders and hybrid logic
gates is used to construct single bit full adder. Logic diagram of sin-
gle bit full adder constructed using two half adders and an OR gate
is shown in Fig. 8. For the sake of simplicity, we do not show sche-
matic circuit diagram of hybrid full adder here but spice simulation
results of designed hybrid full adder are shown in Fig. 9. We know
that heterogeneous FPGAs contain complex HBs like multi-bit
adders and multipliers. In this work, we use heterogeneous FPGAs
that contain 20 + 20 bit adders. So, multiple instances of single bit
hybrid full adder described above are combined together to
construct large ripple carry adders which form the HB of our target
hybrid heterogeneous FPGA architecture.

Apart from a large adder as a HB, we have also designed a multi
bit hybrid multiplier in this work. Here, we present the design and
simulation results of only a 2-bit hybrid multiplier as a sample.
Block diagram of a sample 2-bit multiplier is shown in Fig. 10. It
can be seen from this figure that a 2-bit array multiplier is com-
posed of a combination of two half adders and four AND gates.
Deign of hybrid half adder has already been discussed before and
schematic circuit diagram of hybrid AND gate is shown in Fig. 11.
So, we combine hybrid half adders and AND gates to construct a
hybrid 2-bit multiplier. Simulation results of hybrid multiplier
are shown in Fig. 12. Here, we have shown design and simulation
results of 2-bit array multiplier only. But for our experimentation,
we have designed multiplier HBs which have large sizes. For exam-
ple, in this work, we design 18 � 18-, 16 � 16-bit multipliers as per
the requirements of our target heterogeneous benchmarks. These
large hybrid multipliers are designed as array multipliers and they
are constructed by combining together multiple AND gates, half
adders, and full adders.

Specifications of hybrid HBs presented in this section are com-
bined with hybrid CLBs, CBs, and SBs to generate the hybrid hetero-
geneous FPGA architecture. Multiple heterogeneous benchmarks
are then placed and routed on the proposed FPGA architecture
through a generalized exploration flow and their area results are
compared with those of transistor-only heterogeneous FPGA.



Fig. 7. (a) Half adder input simulation waveform; (b) Half adder output simulation waveform.

Fig. 8. Gate level logic diagram of 1-bit full adder.

Fig. 9. (a) Full adder input simulation waveform; (b) Full adder output simulation waveform.

U. Farooq et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 514–527 519
Detailed discussion on different steps involved in the exploration
flow and relevant tools are discussed in the next section of the
paper.

5. Exploration flow

In this work, we present area comparison between two hetero-
geneous FPGA architectures. In order to have a fair comparison
between the two architectures, we develop a generalized explo-
ration flow that can cater the needs of both architectures. An
overview of our exploration flow is given in Fig. 13. It can be seen
from this figure that our exploration flow is mainly divided into
two parts. First part takes hardware description of the benchmark
as input and after passing through various steps, these benchmarks
are converted into netlists (.net format). Second part takes netlists
as inputs which are then placed and routed on the target FPGA
architecture. Target FPGA architecture can either be a hybrid
heterogeneous FPGA architecture or a conventional heterogeneous
FPGA architecture and our architecture independent, general pur-
pose tools serve well for both architectures.



Fig. 10. Block diagram of 2-bit multiplier.

Fig. 11. Schematic circuit diagram of hybrid AND gate.

520 U. Farooq et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 514–527
5.1. Benchmark selection and netlist conversion

Fig. 13 shows that first part of exploration takes structural hard-
ware description (.vst) of the benchmark under consideration. This
description is then passed through VST TO BLIF tool (B. University
of California, 1992) that converts standard hardware description
into I/O port, gate, and HB instances. The output of this tool is a.blif
file which is then supposed to pass through a synthesis tool so that
it may be converted into LUT format, since, in this work, we use
Fig. 12. (a) Multiplier input simulation
benchmarks having HBs and we want to preserve them. So, the
benchmark under consideration is first passed through a parser
that we term as Parser-I. The main objective of this parser is to
remove HBs from blif file in such a way that all the dependence
between HBs and rest of the blif file is preserved. Parser-I performs
a number of modifications in the blif file. Some of the modification
performed by Parser-I are illustrated in Fig. 14. For example
Fig. 14a shows a scenario where outputs of HB are connected to
inputs of other gates. In order to remove the HB and preserve the
dependence, main inputs are added to the netlist and they are con-
nected to the inputs of the gates eventually resulting in netlist of
Fig. 14b. Similarly, Fig. 14c shows a scenario where output of HB
is connected to main output of the netlist. In order to preserve
dependence, main outputs are connected to zero gates (see
Fig. 14d). This is done because when HBs are removed, the main
outputs do not remain unconnected. Similarly, two other possible
modification cases are shown in Fig. 14e, f where inputs of
removed HBs are added as the main outputs of the netlist. Once
the requisite modifications are performed by Parser-I, all the HBs
are removed from blif file and it is then passed to SIS tool
(Sentovich et al., 1992) for logic optimization. SIS performs logic
optimization of blif file and maps the gate level presentation into
LUT and F/F format. For mapping, FlowMap mapper is used which
is integrated in SIS tool. Fig. 15a and b show the sample benchmark
before and after mapping. Once mapping is performed, the LUTs
and F/F in the netlist are packed through T-VPACK (Marquart
et al., 1999). Transformation of a netlist from mapping to packing
is shown in Fig. 15b and c respectively. After packing, the netlist
is finally passed through Parser-II that removes previously added
temporary dependencies and also adds previously removed HBs.
After passing through Parser-II, benchmark is converted into.net
format and it is now ready to be placed and routed on the target
FPGA architecture.

In this work, we use two sets of open core benchmarks. Hard-
ware description of these benchmarks is obtained from their
respective sources and they are then converted to.net format using
series of steps detailed above. Details of two benchmark sets
obtained after conversion to.net format are given in Tables 1 and
2 respectively. It can be seen from these tables that division of
these benchmarks in two sets is mainly based on the types of hard-
ware blocks supported by each set. Furthermore, it can also be
noted from these tables that we use benchmarks having CLB size
equal to 4 as it is reported to produce best area results (Aslam
et al., 2016).
; (b) Multiplier output simulation.



Fig. 13. Flow diagram of exploration environment.

Fig. 14. Illustration of modifications performed by Parser-I.

Fig. 15. Illustrations of (a) Sample BLIF file; (b) Sample mapped file; (c) Sample packed file.

U. Farooq et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 514–527 521



Table 1
Details of open core benchmarks SET I.

Circuit name No of inputs No of outputs No of 4-input CLBs No of multipliers (18 � 18) Function

cf_fir_3_8_8 42 22 224 4 Third order FIR filter
cf_fir_24_16_16 496 250 3348 30 24 order FIR filter
diffeq_f_systemC 66 99 1560 4 Differential equation solver
diffeq_paj_convert 12 101 756 7 Differential equation converter
fir_scu 10 27 1400 20 16 order FIR filter
iir 33 30 400 5 Infinite impulse response (8 bit)
iir1 28 15 648 6 Infinite impulse response (16 bit)
rs_decoder_1 13 20 1560 20 Reed Solomon decoder (4 bit)
rs_decoder_2 21 20 2968 14 Reed Solomon decoder (8 bit)

Table 2
Details of open core benchmarks SET II.

Circuit name No of inputs No of outputs No of 4-input CLBs No of multipliers (16 � 16) No of Adders (20 + 20) Function

cf_fir_3_8_8 42 18 159 4 3 Third order FIR filter
cf_fir_7_16_16 146 35 638 8 14 Seven order FIR filter
cf_fir_24_16_16 520 230 2275 26 52 24 order FIR filter
cfft16x8 20 40 1511 - 26 Complex fast fourier transform
cordic_p2r 18 32 803 - 43 Polar to rectangular
cordi_r2p 34 40 1328 - 52 Rectangular to polar
fm 9 12 1308 1 19 Frequency modulation transmitter
fm_receiver 10 12 910 1 20 Frequency modulation receiver
lms 18 16 940 10 11 Adaptive equalizer routine
reed_solomon 138 128 537 16 16 High speed reed solomon encoder

522 U. Farooq et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 514–527
5.2. Architecture exploration

It can be seen from Fig. 13 that once the benchmark is converted
into.net format, it can then be placed and routed on the target
FPGA architecture for exploration and final resource estimation.

5.2.1. Placer
For placement, in this work, we develop a generalized place-

ment tool that takes architecture description and.net files as input
and generates the placement file as output. The placement tool
reads specific information about interconnection of CLBs, HBs,
and I/Os from.net file and then places them on the target architec-
ture through heuristic based simulated annealing placement algo-
rithm (Kirkpatrick et al., 1983). The objective of the simulated
annealing algorithm is to place connected blocks close to each
other and minimize the total wire length requirement of a place-
ment solution. The total wire length of a placement solution is esti-
mated using Eq. (3) where N is the total number of nets in the
netlist, bbxðiÞ is the horizontal span of net i, bbyðiÞ is its vertical
span, and qðiÞ is a correction factor. Simulated annealing algorithm
uses an iterative approach to gradually reduce the wire cost of
placement solution over multiple iterations. This algorithm is
architecture independent and it is applicable to both conventional
as well as hybrid FPGA architecture.

WireCost ¼
XN

i¼1

qðiÞ � ðbbxðiÞ þ bbyðiÞÞ ð3Þ
5.2.2. Router
After the successful placement of netlist, routing between

source and destination pins of different blocks of the netlist is per-
formed. Routing problem in FPGAs consists of finding dedicated
routing resources for individual nets. In order to perform routing,
in this work, we use Pathfinder algorithm (McMurchie et al.,
1995) which is an architecture independent, commonly used rout-
ing algorithm for FPGAs. Due to generalized nature of pathfinder,
the routing resources of FPGA are first modeled as directed graph
GðV ; EÞ and pathfinder then routes individual nets of the netlist
using an iterative approach. In this graph, the I/O pins of different
blocks are represented as nodes V and these nodes are connected to
each other through edges E which represent wires of routing inter-
connect of FPGA architecture. Fig. 16a shows sample portion of the
routing interconnect of an FPGA architecture and Fig. 16b shows
the corresponding directed graph abstraction. Given this graph
abstraction, the goal of the routing algorithm is to find unique,
non-intersecting paths for all the nets of the netlist under consid-
eration which is a difficult problem. In order to resolve this prob-
lem, pathfinder uses an iterative, negotiation based, congestion
driven routing approach. In this approach, multiple iterations of
routing are performed until all congestion is removed. In each
routing iteration, individual nets are routed using Dijkstra’s short-
est path algorithm (Dijkstra, 1959) and congestion of a node ðcnÞ is
controlled using cost function of Eq. (4) where bn is the base cost of
using the resource n;hn is the history of congestion of node n, and
pn is the present number of nets sharing the node n in the current
iteration.

cn ¼ ðbn þ hnÞ � pn ð4Þ
5.2.3. Resource optimization
It can be seen from Fig. 13 that when one routing round is com-

plete, routing file is generated that contains all the information
about different paths taken by different nets of the netlist under
consideration. In order to optimize the routing resource require-
ment of the netlist, we perform multiple rounds of routing. The
resource optimization of the FPGA architecture is performed
through binary search algorithm where for each round of routing,
resources of the architecture are adjusted and this process contin-
ues until the optimal resources are found. After the completion of
binary search flow, we know the logic and routing resource
requirement of the netlist under consideration and area of the
FPGA architecture is calculated. Discussion on the used area model
and the area estimation is described next.

5.2.4. Area model
Once the resource optimization process is completed, we know

the total resource requirement and area of FPGA architecture is



Fig. 16. (a) Sample interconnect portion of FPGA; (b) Directed routing graph of sample interconnect.

U. Farooq et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 514–527 523
then calculated using our generalized area model. It is discussed in
Betz et al. (1999), DeHon (2001) that cell area dominates the wir-
ing density issue for digital systems and we have to care about
number of switches rather than wiring density of a network. For
this reason, we have devised an area model based on the area of
cells used by the FPGA architecture. Area of a heterogeneous FPGA
can be mainly divided into two parts: logic area and routing area.

Logic area of an FPGA is composed of sum of area of all the CLBs
and HBs in the architecture. From discussion presented in Section 3
and from structure shown in Figs. 3, 8, we know that CLBs and HBs
are further composed of multiplexers, F/Fs, SRAMs, and basic logic
gates. We calculate area of aforementioned components, deter-
mine their total number in FPGA, and then sum them up to calcu-
late total logic area of architecture. Routing area, on the other hand,
comprises of sum of area of all the CBs, SBs in the routing intercon-
nect of the architecture. From Fig. 4, we know that internal struc-
ture of above mentioned blocks is further comprised of
multiplexers, buffers, SRAMs etc. In this work, we calculate the
area of individual cells (both conventional and hybrid) and then
by combining the area of individual cells we calculate the routing
area of the architecture. Once the logic area and routing area of
architecture under consideration are calculated, we combine them
to calculate the total area of architecture. Further discussion on the
individual cell area calculation and area comparison between two
architectures is given in the next section of paper.
6. Experimental results and analysis

Experimental results presented in this section are mainly
divided into two parts. In the first part, we present and compare
area results of basic building blocks of FPGA. In this part, we pre-
sent results of both hybrid and conventional building blocks. In
the second part, we present comprehensive area comparison
between conventional and hybrid heterogeneous FPGA
architectures.
6.1. Component level area comparison

As discussed in Section 4, the fundamental component of basic
building blocks of FPGA is transistor for conventional architectures
and memristor, transistor for hybrid architectures. In this work, we
have used HSPICE metal oxide semi-conductor field effect transis-
tor (MOSFET) model. The values of channel length (65 nm) and
width (100 nm) are taken from the data manual for 65 nm process-
ing technology. Based on these values, area of a single transistor is
calculated to be AreaTransistor ¼ 0:0065 um2. As demonstrated by HP
labs and also discussed in Strukov et al. (2008), Williams (2008), as
a rough first order estimation, the area of memristor is considered
to be half of area of MOSFET of equivalent technology.So, the area
of memristor is assumed to be AreaMemristor ¼ 0:00325 um2 for our
experimentation.

Given the above values of memristor and transistor areas and
by using the design of different blocks discussed in Section 4, we
calculate their areas and present them in Table 3. In this table
we present number of I/Os, basic component requirement, and
area estimation results of both hybrid as well as conventional
building blocks of heterogeneous FPGA. It can be seen from this
table that hybrid building blocks in general give better area results
as compared to conventional building blocks. However, the area
gain of hybrid blocks varies as compared to conventional blocks.
Reason for the variation in this area gain is varying component
requirement for hybrid building blocks as compared to their con-
ventional counterparts. For example, in case of hybrid multiplexer,
we need three transistors and one memristor to achieve the
desired multiplexer behavior (Aslam et al., 2016). But for conven-
tional multiplexer, we need six transistors to achieve the requisite
behavior. This variation in component requirement leads to an area
gain of 42% for hybrid multiplexer as compared to conventional
multiplexer. Similarly, for NOR gate, the number of components
required for conventional block (4 transistors) is same as hybrid
block (2 memristors + 2 transistors). But smaller area of memris-
tors gives 25% area gain for hybrid NOR gate as compared to con-
ventional NOR gate. Similar trend is observed for NOT gate, AND
gate, buffer, and F/F etc. As far as CLB is concerned, the difference
in component requirement is quite significant and it ultimately
leads to an area gain of 60% for hybrid CLB as compared to conven-
tional CLB. The reason behind this component requirement gap can
be understood by considering the internal structure of CLB. For
example, inside a 4-input, 1-output CLB (see line 7 of Table 3),
there are 16 memory cells, 16 2 �;1 MUXs, and 1 D-flip flop.
Although hybrid MUX and D-flip flop give significant area gain as
compared to their conventional counterparts, the main gain for
hybrid CLB comes from the replacement of 16 memory cells with
memristors. In conventional CLB, each memory cell is comprised
of 6 transistors, whereas in hybrid cells they are directly replaced
with memristors; hence leading to 60% area gain of hybrid CLB
over conventional CLB. As far as multi bit hybrid adder and multi-
plier are concerned, we have designed them using a combination of
single bit half adders, full adders, and AND gates. Since hybrid half
adder, full adder, AND gate give smaller area gain (i.e. 25%) com-
pared to CLB, so, the area gain of hybrid multi bit adder and mul-
tipliers is also comparatively small.

Area results of different blocks presented in Table 3 are used in
the area estimation model discussed in Section 5.2.4. These area
estimation results are then used for comparison between hybrid
and conventional heterogeneous FPGA architectures. Although
we have used metrics of 65 nm processing technology for area



Table 3
Area comparison of memristor-transistor and pure transistor based basic building blocks of heterogeneous FPGA.

Hybrid approach Transistor approach Area gain (%)

Component Input Output No. of comps Area ðum2Þ No. of comps Area ðum2Þ
2 � 1 MUX 2 1 4 0.0225 6 0.039 42
NOR gate 2 1 4 0.0195 4 0.026 25
NOT gate 1 1 2 0.0097 2 0.013 25
AND gate 2 1 8 0.039 8 0.052 25
Buffer 1 1 4 0.0195 4 0.026 25
D flip-flop 1 1 24 0.166 24 0.221 25
CLB 4 1 104 0.578 216 1.469 60
Half adder 2 2 16 0.078 16 0.104 25
Full Adder (1-bit) 3 2 38 0.185 38 0.247 25
Mult (16 � 16) 32 32 1856 9.048 1856 12.06 25
Adder (20 + 20) 41 21 760 3.705 760 4.94 25
Mult (18 � 18) 36 36 2320 11.31 2320 15.08 25

524 U. Farooq et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 514–527
calculation of basic building blocks of FPGA, similar trends hold for
smaller processing technologies and memristors show even more
encouraging results with shrinking processing technologies
(Sarwar et al., 2013; Vourkas et al., 2014).

6.2. Architecture level area comparison

For area comparison between two heterogeneous FPGA archi-
tectures, we use two sets of open core benchmarks in this work.
Benchmark specifications of two sets are already given in Tables
1 and 2 respectively. These benchmarks are placed and routed on
two heterogeneous FPGA architectures using the flow of Section 5
and respective area estimation is performed using area values of
individual cells in the area model of Section 5.2.4. Fig. 17 shows
logic area comparison between conventional and hybrid heteroge-
neous FPGAs for benchmarks of SET I. It can be seen from this fig-
ure that hybrid architecture gives better logic area results as
compared to conventional FPGA architecture for all the bench-
marks of SET I. In this figure, first nine columns give individual
logic area comparison while last column gives average area com-
parison which shows that, on average, hybrid FPGA requires 58%
less logic area as compared to conventional FPGA architecture for
SET I benchmarks. Although individual logic area gain of hybrid
CLB is 60% compared to conventional CLB, the smaller area gain
of hybrid multiplier compared to conventional multiplier leads to
overall smaller logic area gain for hybrid architecture.

Routing area of FPGA is normally further divided into buffer
area and switch area. Switch area comprises the area of all the con-
figurable switches in the routing interconnect whereas buffer area
comprises the area of all the buffers in the architecture. Buffers in
the architecture are inserted at regular intervals to maintain the
signal strength that traverse long distances in the architecture.
Fig. 18 shows the buffer area comparison between hybrid and
Fig. 17. Logic area comparison between conventional and hybrid heterogeneous
FPGAs for SET I benchmarks.
conventional FPGA architecture. Since individual hybrid buffer cell
area gain is 25% over conventional buffer cell, the overall buffer
area gain for hybrid architecture is also 25% compared to the buffer
area of conventional FPGA architecture.

Switch area in an FPGA normally comprises the sum of area of
configurable switches and configuration memory cells. In a con-
ventional FPGA, configuration memory cells are comprised of
SRAMs whereas memristors act as configuration memory cells in
hybrid FPGAs (Wang et al., 2010). A single memristor is around
90% smaller in area as compared to a single bit SRAM cell. How-
ever, when coupled with configuration overhead, this area gain
might be reduced (Sarwar et al., 2013). Furthermore, configuration
memory cells make 35% of total routing area of an FPGA architec-
ture. Although multiplexers form the major part of switch area of
FPGA and their area gain is small (i.e. 42%), huge area gain of con-
figuration memory leads to a significant switch area gain. Fig. 19
shows switch area comparison between conventional and hybrid
FPGA and it can be seen from this figure that hybrid FPGAs require,
on average, 60% smaller switch area compared to conventional
FPGAs.

Although buffer area gain of hybrid FPGA is smaller (i.e. 25%) as
compared to switch area gain (i.e. 60%), but switch area makes 94%
of routing area of FPGA; hence leading to an overall routing area
gain of 59% for hybrid FPGA as compared to conventional FPGA.
Routing area comparison results are shown in Fig. 20. Finally, the
total area comparison results of conventional and hybrid FPGA
for set I benchmarks are shown in Fig. 21. It can be seen from this
figure that hybrid FPGA requires, on average, 59% smaller area
compared to conventional FPGA.

Area comparison results for SET II benchmarks are shown in
Figs. 22–26. It can be seen from Fig. 22 that just like SET I bench-
marks, hybrid FPGA gives on average 56% logic area gain for SET
II benchmarks. The reason for slightly smaller logic area gain
Fig. 18. Buffer area comparison between conventional and hybrid heterogeneous
FPGAs for SET I benchmarks.



Fig. 23. Buffer area comparison between conventional and hybrid heterogeneous
FPGAs for SET II benchmarks.

Fig. 22. Logic area comparison between conventional and hybrid heterogeneous
FPGAs for SET II benchmarks.

Fig. 19. Switch area comparison between conventional and hybrid heterogeneous
FPGAs for SET I benchmarks.

Fig. 20. Routing area comparison between conventional and hybrid heterogeneous
FPGAs for SET I benchmarks.

Fig. 21. Total area comparison between conventional and hybrid heterogeneous
FPGAs for SET I benchmarks. Fig. 25. Routing area comparison between conventional and hybrid heterogeneous

FPGAs for SET II benchmarks.

Fig. 26. Total area comparison between conventional and hybrid heterogeneous
FPGAs for SET II benchmarks.

Fig. 24. Switch area comparison between conventional and hybrid heterogeneous
FPGAs for SET II benchmarks.

U. Farooq et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 514–527 525



Fig. 27. Generic area comparison between conventional and hybrid heterogeneous
FPGAs for SET I and SET II benchmarks.

526 U. Farooq et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 514–527
compared to SET I benchmarks is increased number of HBs in SET II
benchmarks. As we can see from Table 3 that hybrid HBs have
smaller gain (i.e. 25%) as compared to hybrid CLBs (i.e. 60.4%), so
an increased number of HBs result in smaller logic area gain of
Fig. 22. Furthermore, it can be observed from Figs. 23, 24 that buf-
fer area and switch area comparison give similar results for SET II
benchmarks as observed for SET I benchmarks. It can be seen from
these figures that average buffer area gain, switch area gain for
hybrid FPGA is 25%, 60% respectively. These trends eventually lead
to routing area, total area results of Figs. 25, 26 respectively where
hybrid FPGA requires, on average, 60% smaller routing area and
59% smaller total area as compared to conventional FPGA.

Different area comparison results for individual netlists of SET
I and SET II are shown in Figs. 17–26. Results shown in these fig-
ures indicate that hybrid FPGA significantly outperforms conven-
tional FPGA. Apart from individual netlist results, we present
combined area comparison results for SET I and SET II also. We
know that FPGAs are pre-fabricated devices and if an FPGA satis-
fies the requirements of largest benchmark of a set then it can
satisfy the requirements of other benchmarks of the suite too.
Keeping this in mind, we define generic FPGA architecture for
SET I and SET II benchmarks respectively. These generic FPGAs
can place and route all the benchmarks of their respective sets
and their corresponding area results are shown in Fig. 27. It can
be seen from this figure that similar to previous results, hybrid
FPGA gives 58% area gain for SET I and 59% area gain for SET II
benchmarks respectively.

7. Conclusion

In this work, a comprehensive area comparison between a novel
memristor-transistor hybrid heterogeneous FPGA and conven-
tional heterogeneous FPGA is presented. Basic building blocks of
hybrid heterogeneous FPGA are designed using HSPICE and their
area is estimated using 180 nm processing technology. Area com-
parison between hybrid and conventional transistor-only blocks
shows that hybrid blocks require significantly less area as com-
pared to conventional blocks and their area gain ranges from 25%
to 60%. Apart from individual block level comparison, we also per-
form complete architecture level comparison between hybrid and
conventional heterogeneous FPGA architectures. For this purpose,
we implement a complete exploration flow which is generalized
in nature and gives complete experience both for conventional as
well as hybrid FPGA architecture. This flow starts with the hard-
ware description of the benchmark under consideration, trans-
forms it into netlist, performs place&route on the target
architecture, and eventually terminates with the area estimation
of the architecture. The uniqueness of the proposed flow lies in
the fact that it is completely built using state-of-the-art, open
source tools and offers huge potential for future research on CAD
flow for reconfigurable architectures. For experimental purpose,
we use two sets of open core benchmarks. These benchmarks are
placed and routed on the two architectures under consideration
using the proposed exploration flow. Experimental results show
that hybrid FPGA architecture produces much better area results
as compared to conventional FPGA architecture. Comparison anal-
ysis shows that hybrid FPGA requires, on average, 58%, 59%, 59%
less logic area, routing area, total area for SET I benchmarks respec-
tively and these gain are 56%, 60%, and 59% for SET II benchamrks.
References

Almurib, H., Kumar, T., Lombardi, F., 2014. A memristor-based lut for FPGAs. In:
2014 9th IEEE International Conference on Nano/Micro Engineered and
Molecular Systems (NEMS), pp. 448–453.

Aslam, M.H., Farooq, U., Awais, M.N., Bhatti, M.K., Shehzad, N., 2016. Exploring the
effect of lut size on the area and power consumption of a novel memristor-
transistor hybrid FPGA architecture. Arab. J. Sci. Eng. 41, 3035–3049.

Batas, D., Fiedler, H., 2011. A memristor spice implementation and a new approach
for magnetic flux-controlled memristor modeling. IEEE Trans. Nanotechnol. 10,
250–255.

Beauchamp, M., Hauck, S., Underwood, K., Hemmert, K., 2006. Embedded floating-
point units in FPGAs. In: Proceedings of the 2006 ACM/SIGDA 14th International
Symposium on Field Programmable Gate Arrays. ACM, New York, NY, USA, pp.
12–20.

Betz, V., Rose, J., Marquardt, A. (Eds.), 1999. Architecture and CAD for Deep-
Submicron FPGAs. Kluwer Academic Publishers, Norwell, MA, USA.

Bi, Z., Zhang, Y., Xu, Y., 2012. Memristor Working Condition Analysis Based on SPICE
Model. Springer, Berlin Heidelberg, pp. 242–252.

Biolek, D., Biolkova, V., Biolek, Z., 2009. Spice model of memristor with nonlinear
dopant drift. Radioengineering.

Biolek, D., Ventra, M.D., Pershin, Y.V., 2013. Reliable spice simulations of
memristors, memcapacitors and meminductors. Radioengineering 22, 945–968.

B. University of California, 1992. Berkeley logic synthesis and verification group,
berkeley logic interchange format (blif). http://vlsi.colorado.edu/vis/blif.ps.

Chua, L., 1971. Memristor-the missing circuit element. IEEE Trans. Circuit Theory
18, 507–519.

Cong, J., Xiao, B., 2011. mrFPGA: a novel FPGA architecture with memristor-based
reconfiguration. In: 2011 IEEE/ACM International Symposium on Nanoscale
Architectures (NANOARCH), pp. 1–8.

DeHon, A., 2001. Rent’s Rule Based Switching Requirements. System Level
Interconnect Prediction Workshop.

Dijkstra, E.W., 1959. A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271.

El-Slehdar, A., Fouad, A., Radwan, A., 2015. Memristor based n-bits redundant
binary adder. Microelectron. J. 46, 207–213.

Farooq, U., Aslam, M., 2015. Design and implementation of basic building blocks of
FPGA using memristor-transistor hybrid approach. In: Fifth International
Conference on Innovative Computing Technology (INTECH), pp. 142–147.

Farooq, U., Parvez, H., Mehrez, H., Marrakchi, Z., 2011. Exploration of heterogeneous
FPGA architectures. Int. J. Reconfig. Comput. 2011. 2:1–2:18.

Farooq, U., Bhatti, M.K., Aslam, M.H., 2016. A novel heterogeneous FPGA
architecture based on memristor-transistor hybrid approach. In: 2016
International Conference on Design and Technology of Integrated Systems in
Nanoscale Era (DTIS). IEEE, pp. 1–6.

Fey, D., 2014. Using the multi-bit feature of memristors for register files in signed-
digit arithmetic units. Semicond. Sci. Technol. 29, 104008.

Guckert, L., Swartzlander, E.E., 2017. Mad gates memristor logic design using driver
circuitry. IEEE Trans. Circuits Syst. II: Express Briefs 64, 171–175.

Hamdioui, S., Xie, L., Nguyen, H.A.D., Taouil, M., Bertels, K., Corporaal, H., Jiao, H.,
1718. Memristor based computation-in-memory architecture for data-
intensive applications. In: Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1718–1725.

Jamieson, P., Rose, J., 2006. Enhancing the area-efficiency of FPGAs with hard
circuits using shadow clusters. IEEE International Conference on Field-
Programmable Technology (ICFPT), 1–8.

Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P., 1983. Optimization by simulated
annealing. Science 220, 671–680 .

Kuon, I., Tessier, R., Rose, J., 2008. FPGA architecture: survey and challenges. Found.
Trends Electron. Des. Autom. 2, 135–253.

Kvatinsky, S., Kolodny, A., Weiser, U., Friedman, E., 2011. Memristor-based imply
logic design procedure. In: 2011 IEEE 29th International Conference on
Computer Design (ICCD), pp. 142–147.

Kvatinsky, S., Wald, N., Satat, G., Kolodny, A., Weiser, U., Friedman E., 2012. Mrl
memristor ratioed logic. In: 2012 13th International Workshop on Cellular
Nanoscale Networks and Their Applications (CNNA). IEEE, pp. 1–6.

Kvatinsky, S., Belousov, D., Liman, S., Satat, G., Wald, N., Friedman, E., Kolodny, A.,
Weiser, U., 2014. Magic memristor aided logic. IEEE Trans. Circuits Syst. II:
Express Briefs 61, 895–899.

http://refhub.elsevier.com/S1319-1578(17)30296-3/h0010
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0010
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0010
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0015
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0015
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0015
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0025
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0025
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0040
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0040
http://vlsi.colorado.edu/vis/blif.ps
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0050
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0050
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0065
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0065
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0070
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0070
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0080
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0080
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0090
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0090
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0095
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0095
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0110
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0110
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0115
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0115
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0130
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0130
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0130


U. Farooq et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 514–527 527
Luu, J., Kuon, I., Jamieson, P., Campbell, T., Ye, A., Fang, W.M., Rose, J., 2009. VPR 5.0:
FPGA CAD and architecture exploration tools with single-driver routing,
heterogeneity and process scaling. FPGA, 133–142.

Mane, P.S., Paul, N., Behera, N., Sampath, M., Ramesha, C.K., 2014. Hybrid cmos –
memristor based configurable logic block design. in: 2014 International
Conference on Electronics and Communication Systems (ICECS), pp. 1–5.

Marquart, A., Betz, V., Rose, J., 1999. Using cluster-based logic block and timing-
driven packing to improve FPGA speed and density. In: Seventh International
Symposium on FPGA, Monterey, pp. 37–46.

McMurchie, L., Ebeling, C., 1995. Pathfinder: a negotiation-based performance-
driven router for FPGAs. In: ACM International Symposium on Field-
Programmable Gate Arrays. ACM Press, New York, NY, USA, pp. 111–117.

Pangracious, V., Mehrez, H., Beltaief, N., Marrakchi, Z., Farooq, U., 2013. Exploration
environment for 3d heterogeneous tree-based FPGA architectures (3d ht-FPGA).
In: 2013 International Conference on Reconfigurable Computing and FPGAs
(ReConFig), pp. 1–6.

Pershin, Y., Di Ventra, M., 2010. Practical approach to programmable analog circuits
with memristors. IEEE Trans. Circuits Syst. I: Reg. Papers 57, 1857–1864.

Rák, Á., Cserey, G., 2010. Macromodeling of the memristor in spice. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 29, 632–636.

Sarwar, S., Saqueb, S., Quaiyum, F., Rashid, A.-U., 2013. Memristor-based nonvolatile
random access memory: hybrid architecture for low power compact memory
design. IEEE Access 1, 29–34.
Scaramuzzo, J., 2014. The flash transformed data center. In: Fifth Annual Non-
Volatile Memories Workshop.

Sentovich, E., Singh, K., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj, H.,
Stephan, P., Brayton, R.K., Sangiovanni-Vincentelli, A.L., 1992. SIS: a system for
sequential circuit analysis. Technical Report UCB/ ERLM92/41. University of
California, Berkeley.

Strukov, D., Mishchenko, A., 2010. Monolithically stackable hybrid FPGA. In: 2010
Design, Automation Test in Europe Conference Exhibition (DATE 2010), pp.
661–666.

Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S., 2008. The missing memristor
found. Nature 453, 80–83.

Underwood, K., Hemmert, K., 2004. Closing the gap: CPU and FPGA trends in
sustainable floating-point BLAS performance. In: 12th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines, 2004. FCCM 2004, pp.
219–228.

Vourkas, I., Sirakoulis, G.C., 2014. Incorporating memristors in currently established
logic circuit architectures: design considerations and challenges. In: workshop
on Memristor Technology, Design, Automation and Computing (MemTDAC)
affiliated with the HiPEAC 2014 conference.

Wang, W., Jing, T., Butcher, B., 2010. FPGA based on integration of memristors and
cmos devices. In: Proceedings of 2010 IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 1963–1966.

Williams, R., 2008. How we found the missing memristor. IEEE Spectrum 45, 28–35.

http://refhub.elsevier.com/S1319-1578(17)30296-3/h0135
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0135
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0135
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0160
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0160
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0165
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0165
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0170
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0170
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0170
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0190
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0190
http://refhub.elsevier.com/S1319-1578(17)30296-3/h0210

	On the comparison of memristor-transistor hybrid and transistor-only heterogeneous FPGAs&z.star;
	1 Introduction
	2 Background and related work
	3 Reference FPGA architecture
	4 Proposed hybrid building blocks
	4.1 Spice memristor model
	4.2 Building block design and simulation

	5 Exploration flow
	5.1 Benchmark selection and netlist conversion
	5.2 Architecture exploration
	5.2.1 Placer
	5.2.2 Router
	5.2.3 Resource optimization
	5.2.4 Area model


	6 Experimental results and analysis
	6.1 Component level area comparison
	6.2 Architecture level area comparison

	7 Conclusion
	References


