
Journal of King Saud University – Computer and Information Sciences 31 (2019) 403–414
Contents lists available at ScienceDirect

Journal of King Saud University –
Computer and Information Sciences

journal homepage: www.sciencedirect .com
The effect of 3D visualization on mainframe application maintenance:
A controlled experiment
http://dx.doi.org/10.1016/j.jksuci.2017.03.003
1319-1578/� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author at: School of Computer Science and Engineering, VIT
University, SJT 116 A07, Vellore, Tamilnadu, India.

E-mail addresses: Satish.cj@vit.ac.in, satish.cj13@gmail.com (C.J. Satish),
manand@vit.ac.in (A. Mahendran)

1 Address: School of Computer Science and Engineering, SJT 411 A15, VIT
University, Vellore, Tamilnadu, India.

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
.

C.J. Satish ⇑, Anand Mahendran 1

School of Computer Science and Engineering, VIT University Vellore, Tamilnadu, India

a r t i c l e i n f o a b s t r a c t
Article history:
Received 8 September 2016
Revised 18 January 2017
Accepted 12 March 2017
Available online 15 March 2017

Keywords:
Software maintenance
Software engineering
3D software visualization
Software design extraction
Code written in 1960’s and 80’s are still being maintained by large software organizations. Such legacy
systems play a significant role in supporting various data immense applications in banking, manufactur-
ing, retail marketing, health care domains etc. The software maintenance engineer for such large systems
has to undergo not trivial tasks of identifying and understanding relevant parts of system related to the
developer/maintainer goals. As these systems were written before the evolution of software engineering
principles, there is no standard documentation available for such systems and even best coding practices
were not followed during the development of these systems. Hence, maintenance of such systems is a
challenging task for young software engineers who need to spend a lot of time in comprehending the sys-
tem before fixing the errors. The lack of tools that support legacy code comprehension makes the main-
tenance process to be time consuming and tedious. Our research is focused on understanding the impact
of 3D software visualization for change impact analysis tasks on the mainframe during the maintenance
phase. To conduct this research we have constructed a 3D visualization tool which generates a three
dimensional call graph for a system written in COBOL using non immersive virtual reality (VRML). We
have conducted a controlled experiment to test the effectiveness of the tool on subjects performing
change impact analysis tasks. Our results show that subjects who used the tool performed more the tasks
more accurately and faster than the group that did not use the tool.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction their continuity largely because they maintain strict backward
Mainframes play a significant role in today’s enterprise systems
because of their data processing capabilities (Van Geet and
Demeyer, 2010). Studies show that 93% of Finance and Insurance
data and 83% of transactions worldwide is processed using COBOL
on the mainframe (Van Geet and Demeyer, 2008). Mainframes not
only support thousands of concurrent users they are also very reli-
able and secure. They transfer huge quantities of data to other sys-
tems and also manage data in large amounts. Mainframes retain
compatibility for old software. The vast majority of mainframe pro-
grams are still those written in COBOL, with a significant use of
PL/1, Assembler, C and C++ (ATOS, 2007). One the most concerning
factors that impact the mainframe systems are its huge mainte-
nance costs. The legacy systems were developed when software
documentation was not rigorously followed and over the years of
evolution the documentation that is available has become obsolete
without timely updates.

This has led to the evolution of a highly complex system with
inadequate information about the evolution. Software engineers
face the daunting task of understanding the system by analyzing
the code before making the actual changes. The documents are
either out dated or missing and this leads to non availability of crit-
ical information on the architectural evolution for the engineers.
The loss of information there by contributes to the increase in time
with respect to impact analysis (Alaranta and Betz, 2012).

Change control attributes to almost 70% of the project life cycle
costs (Hunt et al., 2008). Software maintenance is turning out to be
a costly task due to poor documentation, lack of user understand-
ing and inadequate user training (Palvia et al., 1995). Understand-
ing the legacy code is one of the major challenges in the field of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2017.03.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jksuci.2017.03.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Satish.cj@vit.ac.in
mailto:satish.cj13@gmail.com
mailto:manand@vit.ac.in
http://dx.doi.org/10.1016/j.jksuci.2017.03.003
http://www.sciencedirect.com/science/journal/13191578
http://www.sciencedirect.com


404 C.J. Satish, A. Mahendran / Journal of King Saud University – Computer and Information Sciences 31 (2019) 403–414
software maintenance. There is a huge need for reducing the time
and effort towards maintenance of systems. Clients can be
provided better services by IT firms at reasonable costs, without
draining a huge portion of their budget on fixing software systems.
Almost half of the time spent on fixing a system is taken up for pro-
gram comprehension in software maintenance (Fjeldstad and
Hamlen, 1979). Prior literature on program comprehension states
that engineers spend 95% of their time trying to understand the
impact of the changes made to the system and only 5% of the time
is spent on support activities(Alaranta and Betz, 2012).

The time taken to comprehend a program can be reduced by fol-
lowing stringent documentation practices and using tools that aid
maintenance engineers easily understand the architecture of a given
system. Studies have found that development decisions, effective
processes and tools can reduce the maintenance costs (Hunt et al.,
2008). The use of tools like NDepend, JArchitect,SeeSoft,sv3D,SHri
MP etc. for static code analysis can help in reduction of the costs
by supporting decision management during the software mainte-
nance phase. The comprehension of legacy system architectures
can be successfully achieved by a combination of program analysis
techniques and visualization tools (Zhang, 2003). Pierre Caserta
and Olivier Zendra have summarized the variousmethods available
for visualizing software (Caserta and Zendra, 2011).

Though, there has been a lot of research happening on visualiza-
tion of code, very less amount of work has been done towards visu-
alization of legacy systems using 3D space. There is a significant
need for tools that support visualization of COBOL code since
mainframe-savvy people have become a dying breed and typical
university graduates aren’t familiar with mainframes. These grad-
uates are trained and are interested in the newer object oriented
programming languages like Java and C++ instead of the older lan-
guages (such as COBOL and PL/I) (Van Geet and Demeyer, 2010).
These graduates when recruited for maintenance tasks on the
mainframe are left with the difficult task of learning a new plat-
form and also the comprehension of COBOL code which has
evolved over several years without any adequate documentation.
Hence, maintenance of legacy systems is posing a great challenge
in terms of finding the people with the right skillset and reducing
the costs towards fixing these systems.

In this paper, we propose a tool for generation of a 3D call graph
from given cobol source files. We have elaborated the research
conducted as three parts in this paper. In the first part we have
elaborated on the importance of software visualization and its role
in software maintenance. In the second part we explain the archi-
tecture of our proposed tool and the algorithm behind its imple-
mentation. In the last part we detail the controlled experiment
that we have conducted to analyze the impact of the tool on
change impact analysis tasks during software maintenance. We
conclude with our analysis of the results and future work.

2. Software visualization

Software visualization is a field in computer science that is used
for displaying a software system graphically (Wang et al., 2009).
The impact of UML (Unified Modeling Language) towards compre-
hension of object oriented systems across the globe stresses the
importance of software visualization to a greater extent (Caserta
and Zendra, 2011).

Software visualization is also used in the fields of reverse engi-
neering, reengineering and software maintenance to understand
the complexity of systems. Effective graphical representations
can improve user’s perception capabilities over textual representa-
tions (Card et al., 1998)

Visualization is mostly achieved by mapping the contents of the
source code to a visual model that can be either in 2D or 3D. The
visual models can be in the form of graphs with nodes and edges
representing function calls in the form of a tree structure. They
can be close to real world metaphors like cities, solar system etc.
(Caserta and Zendra, 2011).

The idea behind such models is to give the end user an imme-
diate representation of the system from the required perspective
and there by acquire knowledge within a reduced time frame.
2.1. Visualization in software maintenance

Software visualization is widely applied in software mainte-
nance for program comprehension, metrics and change history
visualization (Caserta and Zendra, 2011). Software Visual Models
can help engineers easily understand the architecture of a given
system and the impact of changes requested on the system.

Software visualization plays a crucial role with respect to
reverse engineering and re engineering large amounts of complex
data in software maintenance(Koschke, 2002). The aim of software
visualization is not to create impressive images but models that
can aid software engineers in program comprehension and reduc-
tion of impact analysis time (Maletic et al., 2001a,b). Engineers can
get an perception of how software is structured and they can easily
understand the program logic and will be able to explain and com-
municate the development (Diehl, 2007). A visual representation of
information will help users to comprehend large amounts of data
(Colin, 2012)

Though many visualization techniques were proposed by
reseachers, the induction of such techniques in the industry has
been very slow. The reason for that may be the attention given
to software maintenance is relatively low when compared to other
phases in software development (Storey et al., 2008)
2.1.1. Significance of call graph visualization for legacy systems
Call graphs reveal the functional dependencies between pro-

grams. The number of incoming calls (NIC) to a program measure
the number of other programs referencing the program. The num-
ber of out going calls(NOC) from a programmeasure the number of
calls made within the program to any other program. These mea-
sures are very important for estimating the impact of the change
in software maintenance. A program with high measure of incom-
ing and outgoing calls will be taking more time to fix as the change
made to that program may impact other programs.

Van Geet and Demeyer (2008) constructed a tool for visualizing
functional dependencies in a COBOL program using a graph. This
knowledge was used for understanding the complexity of COBOL
programs while migrating towards a service oriented architecture.

Khadka et al. (2013a)) identifies visualizing source code and
their dependencies to be one of the techniques in legacy system
understanding. Khadka and his team has also used a call depen-
dency diagram to understand the computationally intensive cobol
modules during the migration process of a legacy application to
Service Oriented Architecture (Khadka et al., 2013b)

Control flow information in a system is visualized using call
graphs. Koschke has identified call graphs to be one the most visu-
alized artifact in software maintenance, reverse engineering and
re-engineering through a research survey. The graphs in software
maintenance are usually large and tackling large graphs is a
research problem. The survey also reveals that many of the partic-
ipants have requested animation and 3D visualization for mainte-
nance, reverse engineering and re-engineering (Koschke, 2002).

Lei and his team has constructed a routine interaction diagram
to identify routines that always interact together to perform a sys-
tem functionality. Such a diagram helped the team towards
decomposing a legacy system for migration (Lei et al., 2005). Call
graph visualization thus plays an important role in understanding
legacy systems during the maintenance and migration process.



FTP Mainframe 
Server 

Extrac�on Folder 
(.txt Files) 

Code Parser Func�on List 
File 

VRML Model 
Builder 

Model.wrl 
File 

Fig. 1. Proposed Tool Architecture.

C.J. Satish, A. Mahendran / Journal of King Saud University – Computer and Information Sciences 31 (2019) 403–414 405
2.2. 2D versus 3D visualization

2D Graphical representation is a traditional and simple way for
visualization. It is presented as a simple xy plot. Treemaps, Seesoft,
Shrimp views UML are some examples of 2D visualization tech-
niques (Caserta and Zendra, 2011). 2D visualization does not
require higher hardware requirements as that of a 3D visualization.
The learning curve for users in 2D Visualization is lesser than that
of a 3D Visualization as 3D Visualization has much complex inter-
faces and interactions. Navigation in the 2D space is much simpler
than 3D as it is difficult for the users to navigate without being lost
in a 3D space.2D visualizations are cheaper to build than 3D visu-
alizations which are complex, complicated and involve high com-
putation (Xiaohua, 2003). The important drawback of 2D
visualization is that for large systems the picture gets highly com-
plex with lot of nodes and interconnections. Such a cluttered image
may be difficult and very confusing for an engineer to understand
(Caserta and Zendra, 2011).

In the last decade with the advancement of technology a lot of
research has been done towards the utilization of 3D models in
software visualization. 3D technique is used to give a real world
representation of the software artifacts. The information density
is greater in 3D presentations when compared to the 2D ones
(Robertson et al., 1993). In the case of a 3D visualization an extra
dimension is given in terms of depth which improves the space
usage. It gives greater information density and it facilitates percep-
tion of the human visual system. It has the capability of user inter-
actions like (zoom, rotate, displays in any angle). Thus, 3D
visualization makes it easier to view large applications where in
the intersection of edges of the nodes will be lesser when com-
pared to that of a 2D version of the model

2.3. Advantages of 3D visualization

Metaphors that are closer to the real world can be created using
3D visualizations (Alfredo et al., 2009). With the advancement of
hardware and software the trend is to experiment new 3D visual-
izations. The interactions with a 3D model can performed with lit-
tle effort (Caserta and Zendra, 2011). The human visual systems
perception is facilitated by the 3D presentations (Diehl, 2007).
The density of information provided in a 3D representation is
higher than a 2D representations (Alfredo et al., 2009). It is basi-
cally a composition of multiple 2D views into a single 3D view.
The 3D tools focus on different levels of abstractions and this helps
engineers to understand how the software works from different
perspectives (Alfredo et al., 2009).

2.4. VRML in 3D visualization

3D Visualization of COBOL code has been achieved using VRML
(Virtual Reality Modeling Language). Non-immersive virtual reality
and animated 3-dimensional graphics on the Internet is achieved
by using VRML. Integration of 3D geometric modeling functions
into Web-browsers is enabled by VRML (Wang et al., 2009). In
the early 1990’s Internet was comprised of 2-dimensional web
sites; however, with the introduction of VRML 1.0 and now VRML
2.0, virtual reality and animated 3-dimensional web sites are now
possible.

A wider range of a user’s perceptual senses and their ability to
easily navigate through the visual representation is possible using
VRML (Maletic et al., 2001a,b). It is not only the navigation flexibil-
ity, additional attributes like shape, size, color add more informa-
tion to the users perception once when the user get used to the
conventions of a given visualization (Igor and Cottam, 2002). The
advantage of VRML is that the models can be viewed using a brow-
ser and hence all the models generated are internet ready and can
help in collaborative maintenance and knowledge transition for
geographically distributed teams
3. Proposed 3d visualization tool

The proposed system aims at establishing a static 3D call graph
model for COBOL programs using virtual reality modeling lan-
guage. It receives the file having the function source code from
the end user and establishes all functions and sub functions called
by that function as a 3D model using VRML. The detailed architec-
ture is given in Fig. 1.
3.1. Proposed tool architecture

A batch job scheduled on the mainframe transfers all the source
code files from the mainframe server to an extraction folder as. txt
files on the windows system using a file transfer protocol. The
function name for which the call graph should be constructed is
given as an input to the code parser. The code parser extracts all
the function calls by scanning the CALL keyword from the text files
by starting the scan from the main function file.

It establishes the levels of the functions in the hierarchy and
writes the details to a function list file. The model builder extracts
the function hierarchy details from the function list file and builds
the model .wrl file which contains the code for the three dimen-
sional call graph model.
3.2. Code parser

The code parser will scan the files recursively starting from the
main file given as input, to establish the levels of the functions in
the call hierarchy and writes the function names and hierarchies
to a text file (function list file). The code parser will ignore recur-
sive functions calls. The establishment of function levels is shown
in Fig. 2.

The code parser writes the function level and function name to
the function list text file as shown in Table 1 below.
3.3. VRML model builder

The VRML model builder module is responsible for writing out
the .wrl file for the model which is later visualized using a VRML
enabled browser. The generated .wrl file can be viewed using Cor-
tona 3D viewer 6.0 on the Internet Explorer
3.3.1. Algorithm – VRML model builder
The model builder retrieves all the records from the function list

file and loads them to a function details structure. The structure
contains the following data members.



Main 
Func�on 

Test1 Test2 

Test3 Test4 Test5 Test6 

Level 0 

Level 1 

Level 2 

Fig. 2. Sample Function Call Hierarchy.

Table 1
Function List File Data.

Table 2
First Batch Data.

Fig. 3. Plotting Level 1 Node.

Fig. 4. Plotting Child Node.

406 C.J. Satish, A. Mahendran / Journal of King Saud University – Computer and Information Sciences 31 (2019) 403–414
� Function level – A number to denote the level of the function in
the call graph hierarchy

� Function name – Character array to store the function name
� X – A number to store the x coordinate value
� Y – A number to store the y coordinate value
� Z – A number to store the z coordinates value

It then reads the records in batches from the function details
structure as shown in Table 1. The first batch read from the struc-
ture will have the following records as shown in Table 2.

For every function in the first batch the following is performed
� If the function level is 1 then the function is plotted as a node at
default location as shown below
X axis = 0, Y axis = 0 and Z axis = 0 i.e. (0, 0, 0)

� The function location (XYZ Coordinates) is written to the func-
tion details structure for the respective function

� The function name is also retrieved from the file and written at
the location (0, 0, 1) such that the name is visible on the node as
shown in Fig. 3.

� The location values for X Y and Z axis is written to the function
details structure for the corresponding function name.

For each subsequent functions read from the first batch

� If current function level > previous function level. Then the pre-
vious function becomes the parent node to the current function.

� The parent node location is retrieved from the function details
structure and the child node location is determined by subtract-
ing a fixed distance (the distance between two nodes in the
graph is taken as 3) from the Y-axis of the parent node.

� Function TEST3 has a function level 2 whereas function TEST1
has a function level 1 and hence TEST3 is the child node of
TEST1.

� The location of TEST1 is (0, 0, 0) and the location of child node is
derived by subtracting 3 from the y-axis that is (0,�3,0) and is
plotted as shown in Fig. 4

� If previous function level is equal to current function level than
the previous function is the sibling of the current function.

� The sibling node location is retrieved from the function details
structure and the current function is plotted at a location by
adding the fixed distance 3 to the x-axis of the sibling node.

� The location of TEST3 is (0,�3,3) and the location of TEST4 is
(3,�3, 0). The node is plotted as shown in Fig. 5 below



Fig. 5. Plotting Sibling Node.

Table 3
Function List File Data.

Table 4
Function List File Data (repeating functions).

Table 5
Tool Feedback Analysis Table.

Quality Attributes Survey Results –Positive Feedback

Product Usefulness 95%
Ease of Use 85%
Ease of Learning 85%
Satisfaction 90%

Fig. 7. Call Graph for repeating functions.

C.J. Satish, A. Mahendran / Journal of King Saud University – Computer and Information Sciences 31 (2019) 403–414 407
If previous function level is greater than the current function
level (as highlighted in red in Table 3) then the following steps
are performed

� The corresponding sibling node of the current node is found by
traversing the function details structure in the reverse until it
reaches its sibling node which is at the same level. The function
details structure is traversed in the reverse from function TEST2
until it reaches its sibling node i.e. TEST3. The location of TEST2
is computed as number of nodes between TEST2 and TEST3 ⁄ 3
+ x axis location of TEST3. The location is computed such that
the child nodes of TEST2 does not overlap on the child nodes
of TEST3. The graph plotted for the above scenario is shown in
Fig. 6 below
Fig. 6. Plotting Sibling Node.
There can be functions that are repeatedly being called by func-
tions from different batches. For the given batches in the table 4
below, function TEST4 (shown in italics) is being called more than
once from Batch1 and Batch2 by two different functions

Before writing the node TEST4 the function details structure is
scanned to check if the function is already written. If it is written
then the location of the current function is retrieved and an arrow
mark is drawn between the retrieved location and the previous
function. The node is plotted as shown in Fig. 7 below

3.4. User interaction capabilities with the model

The model created by the VRML Model Builder is viewed using
Cortona3D Viewer. The viewer offers users the walk, fly and exam-
ine navigation modes. Each navigation mode has several options
like plan, pan, turn and roll. The camera motion and its orientation
in the 3d space are determined by the combination of navigation
modes and options. The viewer display windowwith its entire nav-
igational buttons is shown in Fig. 8.

The walk navigation mode in combination with the plan option
as shown in Fig. 9 is used for moving forward and backward in the
3d space. The walk navigation mode in combination with pan



Fig. 8. VRML 3D Viewer with Navigation options.

Fig. 9. Walk + Plan Navigation Mode.

Fig. 10. Walk + Pan Navigation Mode.

Fig. 11. Walk + Turn Navigation mode.

Fig. 12. Fly + Pan Navigation Mode.

408 C.J. Satish, A. Mahendran / Journal of King Saud University – Computer and Information Sciences 31 (2019) 403–414
option as shown in Fig. 10 is used for moving left and right in the
3d space.

The walk navigation mode in combination with turn option is
used for changing the angle of the camera in the 3d world. The
fly navigation mode in combination with plan option is used for
moving the camera forward of downward towards its longitudinal
axis. The navigational modes are shown in Figs. 11 and 12.
3.4.1. Editing the VRML model
The complexity of the model can be reduced by editing the

function list file and rerunning the VRML model builder. The user
can eliminate unwanted batches and focus only on the batches
needed by editing the function list file. The function list file batches
shown in Table 8 are edited to hold only the first two batches. The



Fig. 13. Model with Four Batches.

Fig. 14. Edited Model with two batches.

C.J. Satish, A. Mahendran / Journal of King Saud University – Computer and Information Sciences 31 (2019) 403–414 409
model generated before editing and after editing the function list
file is shown in Fig. 13 and 14. The complexity of a generated
model can be reduced by this approach and the users can analyze
only the needed batches rather than analyzing the call graph for
the entire system
4. Validation

In this section we detail the controlled experiment carried out
to investigate the following research questions
4.1. Research questions and measures

4.1.1. Research question 1
Does the use of the COBOL visualization tool reduce the manual

effort needed with respect to change impact analysis? Here we
seek an evidence of reduction in the time taken for understanding
the call hierarchy among COBOL modules and understanding the
impact of change to a given module in the hierarchy.
4.1.2. Measure
The Manual effort here refers to the time taken for establishing

the call graph for a given system. It also includes the time taken by
the user to manually navigate through all the files and construct
the call graph and identify the number of modules that can have
an impact on the given module.

4.1.3. Research question 2
Is there a significant difference in task accuracy when perform-

ing maintenance tasks using the visualization tool?

4.1.4. Measure
Task accuracy for both the groups is calculated using precision.

The precision for is calculated by dividing the number of students
who completed the tasks correctly by the total number of students
in each group. The precision measure helps in identification of the
impact of the tool on the group’s results.

4.1.5. Research question 3
How far the user perceptions are enhanced with the use of the

3d call graph model? Is the tool enhancing the user experience on
the maintenance task?

4.1.6. Measure
Here the user experience with the usage of the tool is recorded.

The users will be rating their experiences on the tool from different
perspectives like ease of use, ease of learning, satisfaction with
respect to model generation and edition.

4.2. Subjects

The subjects comprised of 40 computer science students who
have completed their software engineering and software project
management courses. All the students were in the final year of
their graduation. The students had an in-depth knowledge on soft-
ware maintenance and the change management process. The stu-
dents were randomly assigned to two groups (Vz-Group and no-
Vz group). Each group had 20 members in it. The Vz group will
be using the visualization tool to complete the activities whereas
the no-Vz group will be performing the task manually without
using any tools.

None of the students were having any kind of training or expe-
rience on COBOL or Mainframes. We have chosen subjects who had
no prior experience in COBOL or Mainframes so as to test the effec-
tiveness of the tool in aiding an inexperienced user. The purpose of
this visualization tool is for aiding graduates who are assigned such
maintenance tasks in the industry without any prior experience.

4.3. Activity

The following activity was assigned to students in both the
groups.

Construction of the call graph using the sample test files and to
identify the following (The list of test functions used is listed in
Table 8)

� Establishing the number of functions that are calling functions
for function TEST28

� Establishing the number of functions that are called by the
Function TEST50

4.4. Experimental set up

4.4.1. Hypothesis formulation
Our experiment has one dependent variable (the use of the

visualization tool) and two treatments (Vz [use of visualization



Table 8
Function List File Data for 50 Functions-Used for result validation
in Section 4.

Function Level Function Name

410 C.J. Satish, A. Mahendran / Journal of King Saud University – Computer and Information Sciences 31 (2019) 403–414
tool], no-Vz [visualization tools are not used]). Our experiment has
two dependent variables

TCA – Time taken to complete the activity
DP – Precision of the completed activity
Null Hypotheses:
H0: l [TCA] Vz � l [TCA] no-Vz

H0:DP Vz = DP no-Vz

Alternate Hypotheses:
H1: l [TCA] Vz � l [TCA] no-Vz

H1: DP Vz – DP no-Vz

The experiment was conducted using test files containing
COBOL programs. Each Test file had one COBOL program. There
were 50 Text files used in this experiment. The programs were cho-
sen such that each program is either calling or being called by
another program. All possible conditions were considered like a
program calling multiple other programs and a program being
called by multiple programs to simulate the complexity in real
world applications

4.4.2. Experimental procedure

� All Subjects were given a brief introduction on how program
calls are established in COBOL programs. They were shown a
Table 7
Vz Group Observations.

Serial Number Time Taken to
Complete Activity (Min)

1 20
2 15
3 10
4 30
5 15
6 25
7 12
8 15
9 20
10 10
11 27
12 20
13 15
14 22
15 14
16 20

Table 6
Vz Group Observations.

Serial Number Time Taken to Complete
Activity (Min)

1 3
2 3
3 2
4 4
5 3
6 3
7 2
8 2
9 3
10 2
11 5
12 4
13 4
14 3
15 4
16 5
17 3
18 4
19 4
sample file with a call statement. The subjects were given an
introduction on the significance of mainframe systems and
the crucial role of maintenance engineers in maintaining such
systems

� All subjects were given detailed instructions on the activity they
need to complete and the questionnaires that they need to fill
for the completed task.

� The subjects of Vz group were asked to install Cortona 3D
viewer for viewing VRML Models. They were given sample
VRML models two days before the experiment so that they
are accustomed to the viewer and model analysis techniques.

� Vz Group subjects were given copies of the visualizer tool and
were given a demo on the programs and generation of models
using the visualizer before the start of the experiment.

� All subjects performed the assigned tasks and recorded the time
using the questionnaires. The subjects were also briefly
interviewed on problems they faced when they were trying
the complete the activities. Vz group subjects were interviewed
3 TEST5
3 TEST6
3 TEST7
2 TEST2
3 TEST8
3 TEST9
3 TEST10
2 TEST3
3 TEST11
3 TEST12
3 TEST13
2 TEST4
1 TEST1
3 TEST18
4 TEST21
4 TEST22
4 TEST23
3 TEST19
3 TEST20
2 TEST15
2 TEST16
3 TEST24
3 TEST25
3 TEST26
2 TEST17
1 TEST14
5 TEST34
5 TEST35
3 TEST30
3 TEST31
2 TEST28
3 TEST36
4 TEST39
4 TEST40
3 TEST37
3 TEST38
2 TEST29
1 TEST27
3 TEST43
5 TEST48
5 TEST49
5 TEST50
4 TEST45
4 TEST46
4 TEST47
3 TEST44
2 TEST42
1 TEST41
0 Main



C.J. Satish, A. Mahendran / Journal of King Saud University – Computer and Information Sciences 31 (2019) 403–414 411
on the usefulness of the tool and suggestions for further
improvement of the tool
4.4.3. Data gathering
Data gathering was done using questionnaire. Subjects were

asked to record the time after the completion of the activity. The
Vz group was also asked to rate the experience of using the tool.
The users gave a rating between 1 and 5 for the below mentioned
categories.

� Product Usefulness
� Ease of Use
� Ease of Learning
� Satisfaction

Any other feedback was recorded in a brief interview with the
users at the end of all activities.
5. Results

5.1. Research question 1

To understand whether the tool improves the performance of
one group over the other we have used independent two samples
t test. We had to remove the results of four students from no-Vz
group and one student from Vz group because of the wrong out-
puts arrived by these students. The time recorded by these two
groups is given in Tables 6 and 7.

XVz: Mean of Vz group = 3.3
n1: Number of observations in Vz group = 19
s1: Standard Deviation in = 0.94
Xno-Vz: Mean of no-Vz group = 18.1
n2: number of observations in no-Vz Group = 16
s2: Standard Deviation = 5.89
a = 0.05
Fig. 15. Call Graph f
t ¼ Xvz � Xno�vzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2p

1
n1
þ 1

n2

� �r

s2p ¼ ðn1 � 1Þs21 þ ðn1 � 1Þs22
n1 þ n2 � 2

t ¼ 3:3�18:6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16:20 1

19þ 1
16ð Þp ¼ �11:50

Degrees of freedom = n1 + n2 � 2 = 33
Rejection Region t > 1.692 or t < �1.692

Since the calculated t value falls inside the rejection region the
Null hypotheses is rejected and we concluded the performance of
the Vz group with respect to the completion of the activity is better
than the no-Vz group. The T test led to a positive conclusion that
the tool plays an important role in the reduction of time with
respect to understanding the architecture of an existing system

5.1.1. Research question 2
The research was focused on assessing the quality of the results

by the two groups. We have used precision to compare the results.
Precision is calculated as shown below

5.1.2. Precision
DP = Number of students who completed the task correctly/to-

tal number of students

Precision for Vz group is 19/20 = 95%
Precision for no-Vz group is 16/20 = 80%

This concludes that the precision of the activity increases with
the usage of the tool.

5.1.3. Research question 3
The survey on the product quality attributes received as a

feedback from no-Vz group is given in Table 5. Majority of the
or 50 Functions.



Fig. 16. Call Graph – Closer View.

412 C.J. Satish, A. Mahendran / Journal of King Saud University – Computer and Information Sciences 31 (2019) 403–414
users in no-Vz group were satisfied with the support of the tool.
Many students felt that the tool drastically reduced the time
taken for construction of the call graph and identification of all
the modules that a module impacts. The students were also
impressed with the amount of navigational flexibility they
achieve in a virtual reality environment when compared to that
of a 2D environment.
Fig. 17. Call Graph – Rotated View.
The concept of program visualization in virtual reality made the
concept of change impact analysis an interesting task and aided the
Vz group towards the completion of the task with a lesser time and
greater accuracy. However a few students felt that the navigation
to be a little harder with so many plotted nodes and they had to
repeat the process of searching a node from the beginning as they
sometimes felt lost and confused in the 3D space.
Fig. 18. Call Graph – Node View.



C.J. Satish, A. Mahendran / Journal of King Saud University – Computer and Information Sciences 31 (2019) 403–414 413
The function list file (Table 8) on given as an input to VRML
Model builder generated the 3D call graph model as shown in
Fig. 15. The call graph closer view, rotated view and node view is
shown in Figs. 16–18.

6. Threats to validity

A description on the several threats that can have an impact on
the validity of our results

6.1. Internal validity

Internal validity is the process of establishing a relationship
between the uses of the visualizer with the reduction in change
impact analysis time. All subjects were randomly assigned to the
two groups and the test materials distributed to the two groups
were the same. Both the groups had same level of expertise and
exposure to software maintenance concepts. The briefing to all
the subjects was done using the same facilitator in order to reduce
the impact of the training on the outcomes. The subjects who were
not able to complete the tasks correctly were removed from the t
test analysis to have comparable results.

6.2. External validity

External validity relates to the generalization of results. Our
experiment was limited to test files that were linked to each other
by the CALL keyword for function call in COBOL programs. As this is
in sync with the real world mainframe applications, the reduction
of time is possible as per the results achieved in our experiment.
The usage of the tool and the change impact analysis time was
tested using students who are new to mainframes and COBOL pro-
gramming. Therefore the results on the reduction of call graph
comprehension will be better for experienced engineers in the
industry. Thus our choice of test files and subjects reduces the
threat to external validity of our study.

7. Conclusion

One of the major motivations of this research was to improve on
visualizations provided for legacy systems. Moreover, this is an
attempt towards understanding the impact of 3Dmodels for legacy
system understanding. The research has yielded positive results
and we have found that the subjects using the tool were 15% more
accurate than then subjects not using the tool. The user experience
feedback on the tool was also encouraging and it clearly estab-
lishes the fact that the presence of such a tool will enhance the pro-
ductivity of maintenance engineers.

The call graph is generated for the function that is supplied as
input to the code parser program and this helps the end user to
have a control over the functions for which the model needs to
be generated. The end user can also simplify the visualization by
directly deleting the number of batches from the function list file
and rerunning the VRML model builder program. This enables
the user to reduce the complex nature of the views and enable fur-
ther exploration of batches independently.

The model is achieved by running two C++ programs and
viewed on the Internet Explorer using Cortona 3D Viewer. This is
a major advantage as there is no need for installation of licensed
packages or tools for visualization. The time taken for the system
to generate the model is less than a few seconds and moreover
the model is around 11 KB for a system that has 50 functions to
be part of it. These models can be viewed using a browser and
hence they can be viewed and distributed by geographically dis-
tributed teams without any additional effort.
The performance of the system has been stable for around 50
functions. The given research and experimental approach has
proved that analyzing a sample system that has 50 or more func-
tions on the mainframe and generating a call graph will take about
15 min to half an hour manually. This time will further increase for
industry standard applications as we have only used test functions
in our experiments. Moreover engineers may not be motivated to
do this manual tedious work during the impact analysis phase
and there are a lot of chances that results of the impact analysis
can be error prone.

The proposed model helps with the reduction of time and error
towards understanding the architecture and impact of changes
needed on the system. This approach will definitely help engineers
towards understanding complex legacy systems. The reduction in
time taken to understand a system during impact analysis will lead
to reduction in cost of the maintenance.
8. Future work

This system is applied only for COBOL programs. The builder
will not be able to map recursive functions in the system. Future
work can be with respect to extending the model builder for
inclusion of metrics such as nodes with higher fan-in and fan-
out can be denoted with a specific color. The model can be further
revised to show the parameters being passed between function
calls. The dependency of functions based on JCL’s is not resolved
here and a model with such a perspective can be plotted to help
maintenance engineers get a better understanding of the legacy
systems.
References

Alaranta, M., Betz, S., 2012. Knowledge problems in corrective software
maintenance–A case study. In: Proc. 45th Hawaii International Conference on
System Science (HICSS), pp. 3746–3755.

Teyseyre, Alfredo R., Campo, Marcelo R., 2009. Overview of 3D software
visualization. IEEE Transactions on visualization and Computer Graphics, 15.

ATOS – White paper on Mainframes in Perspective a classic going strong.
Card, S., MacKinlay, J., Shneiderman, B. (Eds.), 1998. Readings in Information

Visualization: Using Vision to Think. Morgan Kaufmann.
Caserta, P., Zendra, O., 2011. Visualization of the Static Aspects of Software: A

Survey. IEEE Trans. Visualization Comput. Graphics 17, 913–933.
Colin, Ware, 2012. Information Visualization: Perception for Design. Elsevier.
Diehl, S., 2007. Software Visualization: Visualizing the Structure, Behaviour, and

Evolution of Software. Springer.
Fjeldstad, R., Hamlen, W., 1979. Application program maintenance study: Report to

our respondents. In: GUIDE 48, Philadelphia, PA.
Hunt, B., Turner, B., McRitchie, K., 2008. Software Maintenance Implications on Cost

and Schedule. In: Aerospace Conference, pp. 1–6.
Igor, Rojdestvenski, Cottam, Michael, 2002. Visualizing metabolic networks in

VRML. Proceedings of the Sixth International Conference, USA, on Information
Visualization (IV’02).

Khadka, Ravi et al., 2013a. A structured legacy to SOA migration process and its
evaluation in practice. 2013 IEEE 7th International Symposium on the
Maintenance and Evolution of Service-Oriented and Cloud-Based Systems
(MESOCA). IEEE.

Khadka, Ravi et al., 2013b. Migrating a large scale legacy application to SOA:
challenges and lessons learned. 2013 20th Working Conference on Reverse
Engineering (WCRE). IEEE.

Koschke, Rainer, 2002. Software visualization in software maintenance, reverse
engineering, and re-engineering: a research survey. J. Software Evol. Res.

Lei, Wu, Sahraoui, Houari, Valtchev, Petko, 2005. Coping with legacy system
migration complexity. 10th IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS’05). IEEE.

Maletic, J.I., Leigh, J., Marcus, A., 2001a. Visualizing Software in an Immersive Virtual
Reality Environment. Proceedings of ICSE’01 Workshop on Software
Visualization, Toronto, Ontario, Canada, pp. 49–54.

Maletic, J.I., Leigh, J., Marcus, A., Dunlap, G., 2001b. Visualizing Object Oriented
Software in Virtual Reality. Proceedings of International Workshop on Program
Comprehension (IWPC01), Toronto, Canada, pp. 26–35.

Palvia, P., Patula, A., Nosek, J., 1995. Problems and issues in application software
maintenance management. J. Inf. Technol. Manage. V I (3), 17–28.

Robertson, G., Card, S.K., Mackinlay, J.D., 1993. Information visualization using 3D
interactive animation. Comm. ACM 36 (4), 57–71.

http://refhub.elsevier.com/S1319-1578(17)30070-8/h0005
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0005
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0005
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0010
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0010
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0020
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0020
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0025
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0025
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0030
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0035
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0035
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0045
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0045
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0050
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0050
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0050
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0055
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0055
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0055
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0055
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0060
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0060
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0060
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0065
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0065
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0070
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0070
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0070
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0075
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0075
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0075
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0080
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0080
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0080
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0085
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0085
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0090
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0090


414 C.J. Satish, A. Mahendran / Journal of King Saud University – Computer and Information Sciences 31 (2019) 403–414
Storey, M.A., Bennett, C., Bull, R.I., German, D.M., 2008. Remixing Visualization to
Support Collaboration in Software Maintenance. Proceedings Frontiers of
Software Maintenance(FoSM 2008), Beijing, China, pp. 139–148.

Van Geet, J., Demeyer, S., 2008. Lightweight visualizations of cobol code for
supporting migration to SOA. Electron. Comm. Eur. Assoc. Software Sci. Technol.
8. http://journal.ub.tu-berlin.de/index.php/eceasst/issue/view/17.

Van Geet, Joris, Demeyer, Serge, 2010. Reverse Engineering on the Mainframe:
Lessons Learned from ‘‘In Vivo” Research. IEEE Computer Society.
Wang, Haopeng, Zhao, Kai, Liu, Bing, Binru, Chen, 2009. Research on VRMLModeling
for Web-Based Virtual Product Development. Networking and Digital Society,
2009. ICNDS ’09. International Conference on, 1, pp. 7–12.

Xiaohua, Xian, 2003. 2D & 3D UML-Based Software Visualization for Object-
Oriented Programs Diss. Concordia University.

Zhang, K., 2003. Software Visualization: From Theory to Practice. Springer Inc.

http://refhub.elsevier.com/S1319-1578(17)30070-8/h0095
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0095
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0095
http://journal.ub.tu-berlin.de/index.php/eceasst/issue/view/17
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0105
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0105
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0105
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0110
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0110
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0110
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0115
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0115
http://refhub.elsevier.com/S1319-1578(17)30070-8/h0120

	The effect of 3D visualization on mainframe application maintenance: �A controlled experiment
	1 Introduction
	2 Software visualization
	2.1 Visualization in software maintenance
	2.1.1 Significance of call graph visualization for legacy systems

	2.2 2D versus 3D visualization
	2.3 Advantages of 3D visualization
	2.4 VRML in 3D visualization

	3 Proposed 3d visualization tool
	3.1 Proposed tool architecture
	3.2 Code parser
	3.3 VRML model builder
	3.3.1 Algorithm – VRML model builder

	3.4 User interaction capabilities with the model
	3.4.1 Editing the VRML model


	4 Validation
	4.1 Research questions and measures
	4.1.1 Research question 1
	4.1.2 Measure
	4.1.3 Research question 2
	4.1.4 Measure
	4.1.5 Research question 3
	4.1.6 Measure

	4.2 Subjects
	4.3 Activity
	4.4 Experimental set up
	4.4.1 Hypothesis formulation
	4.4.2 Experimental procedure
	4.4.3 Data gathering


	5 Results
	5.1 Research question 1
	5.1.1 Research question 2
	5.1.2 Precision
	5.1.3 Research question 3


	6 Threats to validity
	6.1 Internal validity
	6.2 External validity

	7 Conclusion
	8 Future work
	References


