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According to several works, low-level approach is an effective and efficient solution for detecting source
code plagiarism. Instead of relying on source code tokens, it compares the executable form of given code;
that form only contains semantic-preserving tokens and is resistant to various plagiarism attacks.
However, to our knowledge, an issue about statically linearizing abstract method (i.e. replacing each
abstract method invocation with its respective invoked method content without considering invocation
semantic) has not been handled comprehensively. Such issue, at some extent, will generate inaccurate
plagiarism detection result when handling object-oriented source codes. This paper aims to solve such
issue locally per plagiarism-suspected pair. It will generate all possible linearization pair alternatives
and select the correct one through IR-based similarity. According to our evaluation regarding the reversed
number of mismatched token, the number of false positive, and the number of process, proposed tech-
nique is more effective and efficient when compared to state-of-the-art and combinatoric technique.
In addition, it is also observed that each IR mechanism used in proposed technique has its own exclusive
benefit for selecting the correct linearized forms.
� 2018 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction inaccurate plagiarism detection result. One of the issues is about
Low-Level structure-based Approach (LLA) is one of source code
plagiarism detection approaches that relies on executable form to
determine similarity. Instead of comparing source code token
sequences directly (Karnalim, 2016a), it compiles both source
codes and quantifies similarity degree based on resulted low-
level token sequences. According to several works (Karnalim,
2016a, 2017a, b; Rabbani and Karnalim, 2017), this approach out-
performs a popular approach that relies on source code token
sequence similarity in terms of effectiveness and efficiency.

In the matter of scope, some LLAs (Karnalim, 2016a, 2017a, b)
are able to handle object-oriented codes; they consider object-
oriented aspects such as class, method, and attributes. However,
some object-oriented issues are still handled naively, resulting
linearizing abstract method invocation: without considering the
whole program semantic, each abstract method invocation should
be linearized while some of themmay be derived to more than one
alternative due to polymorphism.

This paper proposes a technique for solving aforementioned
issue. Different with previous techniques (Karnalim, 2016a,
2017a, b), our proposed technique keeps the semantic of linearized
abstract method invocation. Our proposed technique works for
each plagiarism-suspected pair in twofold. First of all, it will enlist
all possible linearization alternatives in combinatoric manner.
Afterward, it will select the correct linearization pair based on
the highest information-retrieval-based similarity degree.

2. Related works

Source code plagiarism in an activity of using existing work
without properly citing the original author (Cosma and Joy,
2008). It is an emerging issue in Computer Science (CS) major
due to high submission frequency (Kustanto and Liem, 2009) and
detection difficulty (Rabbani and Karnalim, 2017). Hence, to handle
the issue, several source code plagiarism detection approaches
have been proposed (Lancaster and Culwin, 2004).

Generally speaking, there are three kinds of approach for
detecting source code plagiarism: attribute-based, structure-
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based, and hybrid approach (Al-Khanjari et al., 2010). First,
attribute-based approach determines similarity based on source
code attributes (e.g. the number of branching and line of code).
To determine plagiarism-suspected pairs, this approach is usually
featured with either Information Retrieval (IR) (Flores et al.,
2016; Ganguly et al., 2017; Cosma and Joy, 2012) or machine learn-
ing (Ohmann and Rahal, 2015; Bandara and Wijayarathna, 2011)
technique. Second, structure-based approach determine similarity
based on source code structure; each source code is converted to
intermediate representation and compared to each other to deter-
mine plagiarism-suspected pairs. Third, hybrid approach combines
the former two approaches to enhance either the effectiveness (El
Bachir Menai and Al-Hassoun, 2010; Engels et al., 2007) or effi-
ciency (Burrows and Tahaghoghi, 2007; Mozgovoy et al., 2007).

Among these approaches, structure-based approach is the most
widely-used approach in the domain of source code plagiarism
detection. This approach has been used in numerous studies
(Duric and Gasevic, 2013; Karnalim, 2017a, c; Lim et al., 2011; Fu
et al., 2017; Zhao et al., 2015; Brixtel et al., 2010) while some of
the studies are about the development of major source code plagia-
rism detection system (Prechelt et al., 2002; Schleimer et al., 2003;
Wise, 1996). We believe that such phenomenon is natural since
structure-based approach is more effective than attribute-based
approach (Duric and Gasevic, 2013; Prechelt et al., 2002) and
hybrid approach is impractical to be implemented (it requires
the implementation of both attribute-based and structure-based
approach at once).

Low-Level structure-based Approach (LLA) is a structure-based
approach which defines plagiarism-suspected pair based on the
similarity of low-level token sequence (i.e. executable file’s token
sequence) (Karnalim, 2016). Despite its rare practical use consider-
ing only few studies discuss it, several works (Karnalim, 2016a,
2017a, b; Rabbani and Karnalim, 2017) prove that LLA is more
effective and efficient than a popular approach that relies on
source code token sequence similarity. It is true that utilizing
LLA limits the input to compilable source codes only. However,
we would argue that such limitation is not a big issue; most
undergraduate students are encouraged to submit compilable
source codes. Moreover, if there is a need to handle the uncompi-
lable ones, it is possible to use source-code-token-sequence-based
approach as an alternative in addition to LLA (Rabbani and
Karnalim, 2017).

When classified based on their target programming language,
existing LLAs can be classified into two categories:.NET-targeted
and Java-targeted LLA..NET-targeted LLA is focused on.NET pro-
gramming languages such as C# by relying on Common Intermedi-
ate Language (CIL) to determine similarity (Rabbani and Karnalim,
2017). To date, there are three existing works about .NET-targeted
LLA (Juričić, 2011; Juričić et al., 2011; Rabbani and Karnalim, 2017)
where the most salient difference between them is about applied
similarity algorithm. Levenstein distance, Rabin-Karp Greedy-
String-Tiling, and adaptive local alignment are applied in Juričić
(2011), Juričić et al. (2011), and Rabbani and Karnalim (2017)
respectively. On the other, Java-targeted LLA is focused on Java pro-
gramming language by relying on Bytecode to determine similarity
(Karnalim, 2016a). There are four existing works about Java-
targeted LLA:

� A work proposed in Ji et al. (2008). It is the 1st LLA that targets
Java programming language.

� A work proposed in Karnalim (2016a). It is extended from Ji
et al. (2008) by incorporating several additional features such
as instruction generalization, instruction interpretation, and
recursion handling.

� A work proposed in Karnalim (2017a). It is a successor of
Karnalim (2016a) with three additional features: flow-based
token weighting, argument removal heuristic, and invoked
method removal.

� A work proposed in Karnalim (2017a). It is a successor of
Karnalim (2016a) with a naive mechanism to linearize abstract
method invocation.

Since LLA utilizes adapted string matching algorithm to deter-
mine similarity, it is natural for each LLA to linearize given exe-
cutables to token sequences before comparison. Some of them
(Juričić, 2011; Juričić et al., 2011; Rabbani and Karnalim, 2017) lin-
earize it naively by considering the whole executable’s tokens as a
long sequence while the others (Karnalim, 2016a, 2017a, b; Ji et al.,
2008) linearize it locally per method. We would argue that the lat-
ter linearization technique will generate more accurate result since
it considers more contextual features.

While linearizing given executables to token sequences locally
per method, each method invocation will be replaced with its
respective invoked-method’s content to provide more accurate
result. It will raises an issue when an abstract method invocation
is being linearized: each abstract method invocation may have
more than one invoked-method’s contents due to polymorphism.
It is true that applying pseudo-execution toward given executables
may solve the issue. However, we would argue that applying such
execution is considerably impractical; providing program input
(which is required for pseudo-execution) for each programming
task is inconvenient. Further, processing time for conducting
pseudo-execution may be high for complex source codes; its pro-
cessing time is proportional to how the program works in real
environment.

Several attempts have been done for linearizing abstract
method invocation in LLA. The simplest technique is to ignore
any abstract method invocations (Karnalim, 2016a, 2017b).
Another technique is to concatenate all linearization alternatives
as a replacement of abstract method invocation (Karnalim,
2017a). It is true that both techniques, at some extent, solve the
issue about linearizing abstract method invocation. However, we
would argue that their approach may generate misleading plagia-
rism detection result; they indirectly change the semantic of given
token sequences.

Information Retrieval is a technique to obtain relevant informa-
tion from a collection based on given information need (Croft et al.,
2010). It is frequently used to mitigate processing time while
maintaining resulted accuracy. From Software Engineering per-
spective, it has been used in several tasks. First, it mitigates the
number of compared-to-be source codes for plagiarism detection
(Burrows and Tahaghoghi, 2007; Mozgovoy et al., 2007). Second,
it retrieves relevant software artifacts (e.g. source code Stolee
et al., 2016; Vinayakarao et al., 2017; Karnalim, 2018; Lu et al.,
2015 and executable file Karnalim and Mandala, 2014; Karnalim,
2016b) in a no time. Third, it enables software reuse by either pro-
viding relevant information (Thummalapenta and Xie, 2007;
Lemos et al., 2007; Ye and Fischer, 2002) or source code examples
about how to use API or libraries (Holmes and Murphy, 2005;
Sindhgatta, 2006; Niu et al., 2017). Fourth, it enables user to keep
track about developed software (Borg et al., 2014).
3. Methodology

In response to the gap defined on related works, an effective lin-
earization technique which holds the semantic of token sequence
is proposed. At first, it will generate all possible linearization pair
alternatives in combinatoric manner regarding derived methods’
content per abstract method invocation (one method content per
invocation generates one alternative). Later the best alternative
will be heuristically defined using Information Retrieval (IR) mech-
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anism. Each of those phases is called as generation and selection
phase respectively.

Generation phase generates all possible linearization pair alter-
natives. These alternatives are derived in combinatoric manner by
propagating given token sequences in regard to replacing abstract
method invocation with their respective derived methods’ content.
For efficiency reason, this phase will accept all method-scoped
low-level token sequence pairs from both original and plagiarized
code at once. In general, this phase consists of four sub-phases (see
Fig. 1):

1. For each code (either original or plagiarized code), abstract
methods with their respective derived methods will be enlisted
using method proposed in Karnalim (2017a). Such method will
remodel class/interface relation as a graph, sort them in ascend-
ing order using Topological sort (Sedgewick and Wayne, 2011),
and enlist derived methods for each abstract method from
sorted class/interface entities (starting from the first to the last
entity). Further example of this sub-phase can be seen in
Karnalim (2017a).

2. Each abstract method invocation in declared methods will be
replaced with the content of its derived method. If an abstract
method has more than one derived method, given sequence will
be propagated to several sequence alternatives where each
alternative will be exclusively assigned with the content of
one derived method. For instance, suppose we have a sequence
with two abstract method invocations; the first one has two
derived methods while the latter one has three derived meth-
ods. Given sequence will be propagated to 2 � 3 sequence alter-
natives since each invocation will propagate given sequence or
Fig. 1. Generation phase from proposed methodology.
sequence alternative regarding to its number of derived
methods.

3. Index-like representation for each linearization sequence alter-
native will be generated. It stores all tokens with their occur-
rence frequency in key-value format. The representation
resulted from this sub-phase will be passed to selection phase
for mitigating comparison time.

4. Each sequence alternative will be paired with each alternative
from another token sequence. It will generate N ⁄M lineariza-
tion pair alternatives; N and M refer to the number of alterna-
tive for the first and second sequence respectively. For
instance, if a sequence has 6 sequence alternatives and another
sequence has 4 alternatives, it will generate 6 � 4 pair alterna-
tives that will be passed to selection phase.

Selection phase determines which linearization pair alternative
is the correct one. Different with generation phase, it is conducted
locally per method pair. In general, this phase consists of two sub-
phases (see Fig. 2):

1. Similarity degree for each linearization pair alternative will be
measured using IR mechanism; one sequence from the pair will
act as a query toward another sequence based on their index-
like representation. Two IR mechanisms are proposed in this
work: smoothed boolean and vector space model retrieval.
Smoothed boolean retrieval refers to boolean retrieval (Croft
et al., 2010) that returns approximate similarity degree instead
of the boolean one. Such similarity is resulted from (1); A and B
are distinct tokens from both sequences. On the other hand,
vector space model retrieval refers to a widely-used retrieval
model which determine similarity based on occurrence propor-
tion (Croft et al., 2010).

2. Correct linearization pair will be selected based on the highest
IR-based similarity degree. If such degree is resulted from two
or more alternatives, the first-measured pair alternative will
be selected as the result.

SIMðA;BÞ ¼ 2 � jAnBj=ðjAj þ jBjÞ ð1Þ
It is important to note that our proposed technique can also be

applied for solving similar issue on source code level; with some
modifications, it can linearize abstract method invocation from
source code token sequence. Further, it can also be used to accuse
plagiarism; linearized token sequences can be used to address
which source code parts are suspected as plagiarism fragments.
4. Evaluation

4.1. Evaluation preliminaries

Dataset used in this evaluation consists of 261 method-scoped
source code pairs. Each of these pairs is exclusively assigned to
either controlled and empirical dataset based on its implemented
plagiarism attack.

Controlled dataset exploits the characteristic of proposed
approach. It consists of 24 main method pairs which plagiarism
attack theoretically favors proposed approach in terms of effective-
ness and efficiency. To provide clearer analysis, original code for
each pair is defined as simple as possible. On the first half cases,
original code is a main method which only prints Hello World once.
On the others, original code is a plagiarized form from the first half
cases. Six plagiarism attacks are considered in this dataset:

� Replacing statements with a Standard Method Invocation (SMI).
Plagiarized code is generated by replacing a Hello World print
statement with a method invocation; the content of given



Fig. 2. Selection phase from proposed methodology.
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method is a print statement. This attack will generate 1 case
(C01).

� Replacing statements with an Abstract Method Invocation
(AMI). Plagiarized code is generated by replacing a Hello World
print statement with an abstract method invocation; given
abstract method has been derived to a concrete method that
has a print statement. This attack will generate 1 pair (C02).

� AMI where given abstract method is defined in Depth structure
(AMID). Plagiarized code is generated in similar fashion as in
AMI except that given abstract method has been passed to N
classes. This attack will generate 4 pairs (C03-C06). Each pair
will be assigned with a unique N, starting from 2 to 5
respectively.

� AMI where given abstract method is defined in Breadth struc-
ture (AMIB). Plagiarized code is generated in similar fashion
as in AMI except that given abstract method has been derived
to N concrete methods and only one of them has the correct
print statement. This attack will generate 4 pairs (C07-C10).
Each pair will be assigned with a unique N, starting from 2 to
5 respectively.

� AMI where given abstract method is defined in Depth and
Breadth structure (AMIDB). Plagiarized code is generated in
similar fashion as in AMID except that each passing generates
2 derived classes. This attack will generate 2 pairs (C11 and
C12). Each pair will be assigned with a unique N, starting from
1 to 2 respectively. N will work in similar manner as in AMID.

� Verbatim Copy (VC). Plagiarism code is copied exactly as it is
from original code. The original code itself will be taken from
plagiarized code generated by previous attacks (C01-C12)
respectively. This attack will generate 12 pairs (C13-C24).

Different with controlled dataset, empirical dataset represents
real plagiarism cases; each plagiarized method is generated as a
part of removing a design pattern from a code without changing
its flow (an implementation of advanced plagiarism attack). It con-
sists of 237 method pairs that are enlisted from dataset proposed
in Karnalim (2017a).

Four approaches will be considered in our evaluation. All of
them are derived from unweighted LLA proposed in Karnalim
(2017b) by adding an abstract method linearization mechanism
at the end of its extraction phase. The first two approaches use
our proposed technique; each approach is exclusively assigned
with one proposed IR mechanism. These approaches are labeled
as Smoothed-boolean-Retrieval Combinatoric approach (SRC) and
Vector-space-model-Retrieval Combinatoric approach (VRC)
respectively. On the other, the last two approaches are the baseli-
nes to evaluate the impact of our proposed approach. These
approaches are labeled as Naive Approach (NA) and Combinatoric
Approach (CA). First, NA uses technique proposed in Karnalim
(2017a). It concatenates the content of all derived methods as a
replacement of an abstract method invocation. To our knowledge,
this approach is the only work which addresses exactly-similar
problem as ours. Second, CA uses only generation phase from our
proposed technique. To determine correct linearization pair, it uti-
lizes in-depth comparison phase on Karnalim (2017b) (which is
normally used after the correct linearization pair is selected); a pair
with the highest similarity degree will be considered as the correct
one. This approach is used to measure the benefit of selection
phase from our proposed technique.

All approaches will be evaluated in regard to three metrics: the
reversed number of mismatched token, the number of false posi-
tive, and the number of process. First, the Reversed number of Mis-
matched Token (RMT) measures how far a particular approach
affects resulted similarity degree. It is calculated based on (2)
where MT(A,B) refers to the number of mismatched tokens. This
metric has been commonly used in related works about LLA
(Karnalim, 2016a, 2017a, b) for measuring effectiveness (despite
the use of different terminology); higher RMT refers to higher sim-
ilarity degree.

RMTðA;BÞ ¼ MTðA;BÞ � �1 ð2Þ
Second, the number of false positive measures howmany incor-

rect linearization pair alternatives that are resulted from a partic-
ular approach. NA merges all alternatives as one big sequence
which is neither true nor false positive. Hence, it is expected that
NA is excluded from evaluation regarding to this metric.

Last, the number of process measures how much time a partic-
ular approach will take for completing its task. It will be calculated
according to a simplified Time-Complexity-like Equation (TCE) for
linearizing abstract methods in one method-scoped low-level pair
and comparing selected pair to determine similarity. The latter
phase is involved for fairness purpose; as it is known that the latter
phase is exclusively used by CA to determine the correct lineariza-
tion pair. It is true that execution time can be calculated empiri-
cally. However, we would argue that such approach is not
suitable for our dataset; each method only generate a small num-
ber of process and empirical time measurement may be inaccurate
for that kind of method.



Fig. 3. The reversed number of mismatched token toward controlled dataset.

Fig. 4. Rank distribution based on the reversed number of mismatched token
toward empirical dataset.
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TCE for involved approaches are defined as follows:

� TCE for NA (see (3)) is defined based on TCE for comparing two
token sequences using RK-GST algorithm in (4); lim(A) and lim
(B) are linearized token sequences generated by NA.

� TCE for CA (see (5)) is defined in similar manner as in NA except
that it tries all linearization pair alternatives instead of concate-
nating tokens to two long sequences; N refers to the number of
linearization pair alternatives.

� TCE for SRC (see (6)) is defined by summing TCE for three core
steps: indexing, retrieving, and comparing. First, indexing step
converts each linearization sequence alternative to index form;
its TCE can be seen in (7) where na and nb refer to the number of
linearization sequence alternative for both sequences respec-
tively. Second, retrieving step selects the correct linearization
pair alternative using smoothed boolean retrieval; its TCE
(which is based on time complexity to perform such retrieval)
can be seen in (8) where n refers to the number of linearization
pair alternative. Third, comparison step is aimed to compare
two token sequences from correct linearization pair alternative
(i.e. Ac and Bc).

� TCE for VRC (see (9)) is defined in similar manner as in SRC
except that its retrieving step is based on vector space model.
TCE for VRC’s retrieving step can be seen in (10) where n refers
to the number of linearization pair alternative.

TNðA;BÞ ¼ TSðlinðAÞ; linðBÞÞ ð3Þ

TSðA;BÞ ¼ ðmaxðjAj; jBjÞÞ3 ð4Þ

TCðA;BÞ ¼
Xn

i¼1

TSðAi;BiÞ ð5Þ

TSðA;BÞ ¼ TIðA;BÞ þ TSRðA:BÞ þ TSðAc;BcÞ ð6Þ

TIðA;BÞ ¼
Xna

i¼1

jAij þ
Xnb

i¼1

jBij ð7Þ

TSRðA;BÞ ¼
Xn

i¼1

maxðjAij; jBijÞ ð8Þ

TVðA;BÞ ¼ TIðA;BÞ þ TVRðA:BÞ þ TSðAc;BcÞ ð9Þ

TVRðA;BÞ ¼
Xn

i¼1

ðjAij þ jBij þminðjAij; jBijÞÞ ð10Þ

According to the fact that there will be numerous results from
empirical dataset due to its high number of cases, empirical results
will be analyzed only based on rank distribution instead of real val-
ues. For each case, involved approaches will be ranked according to
targeted evaluation metric in a particular order (descending order
for the reversed number of mismatched token and ascending order
for other two metrics). If several approaches generate similar met-
ric, then these approaches will be assigned with same rank.

4.2. Evaluation regarding the reversed number of mismatched token

According to resulted RMT on controlled dataset (see Fig. 3), it is
clear that no approaches generate zero RMT. Further observation
shows that original and plagiarized code on these cases are not
exactly similar to each other; plagiarized code either employs
additional instructions or removes some instructions from original
code. It is important to note that such phenomenon is also applied
on empirical dataset. However, it is not explicitly shown on Fig. 4
since given figure does not show resulted RMT directly.

Among involved approaches, NA is the least effective approach
in terms of RMT. As seen on Fig. 3, it generates lower RMT than
other approaches on C07-C12. Further, it even gets the fewest
number of 1st rank on empirical dataset according to Fig. 4. Such
ineffectiveness is caused by NA’s linearization technique; it con-
catenates unrelated method content to given sequence, reducing
resulted RMT. In contrast, CA is the most effective approach in
terms of RMT. It is always assigned with the highest RMT for con-
trolled dataset (see Fig. 3) and gets the most number of 1st rank on
empirical dataset (see Fig. 4). Such finding is natural since CA tries
all possible combinations in order to generate the most accurate
result.

As seen in Fig. 4, it is interesting to see that CA is assigned as the
2nd rank on some cases from empirical dataset; it is coincidentally
outperformed by NA as a result of changing the semantic of origi-
nal token sequences. However, this finding cannot be claimed as
CA’s drawback; different with NA, CA holds sequence semantic
while linearizing method invocation.

IR-based similarity, at some extent, can be used as a replace-
ment of sequence-based minimum matching similarity (Prechelt
et al., 2002) (i.e. an in-depth comparison algorithm used by
Karnalim, 2017c) to select the correct linearization pair; SRC and
VRC (which utilize IR-based similarity) generate similar RMT as
CA (which utilizes sequence-based minimum matching similarity)
on most cases from controlled and empirical dataset (see Figs. 3
and 4).

When compared to each other, IR-based approaches show sim-
ilar characteristics on most cases (see Figs. 3 and 4). They only dif-
fer on two conditions: when both token sequences share similar
token proportion and when the tokens from a sequence is a subset
of another sequence. The former condition will favor VRC (which
uses vector space model retrieval) while the latter one will favor
SRC (which uses smoothed boolean retrieval).



Fig. 5. The number of false positive toward controlled dataset.
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4.3. Evaluation regarding the number of false positive

Since involved approaches do not consider the semantic of
abstract method invocation, it is expected that they generate false
positives when comparing two identical sequences with more than
one linearization pair alternative; all linearization pair alternatives
will be assigned with the highest possible similarity degree regard-
less of used similarity mechanism. Fig. 5 shows such issue on C19-
C24.

Among involved approaches, CA generates the largest number
of false positive; it generates all alternatives without providing a
proper heuristic to select the correct one. Fig. 5 explicitly shows
such issue on C07-C12 and C19-C24. Further, such issue is also
shown on Fig. 6 where CA is assigned with the fewest number of
the 1st rank. CA is only able to generate no false positives on cases
with one linearization pair alternative; numerous number of 1st
rank assigned to CA on empirical dataset (see Fig. 6) are resulted
from such phenomenon. It is important to note that CA’s number
of false positives can become extremely large. For instance, on a
case about abstract factory’s main method from empirical dataset,
CA generates 34.012.223 false positives while SRC and VRC (i.e.
other approaches) only generate 11.665 and 1.297 false positives
respectively.
Fig. 6. Rank distribution based on the inversed number of false positive toward
empirical dataset.

Fig. 7. The number of process
Different with CA, IR-based approaches (i.e. SRC and VRC) gen-
erates lower number of false positive; it can be clearly seen on
Figs. 5 and 6. Their IR technique is able to distinguish correct pair
from other alternatives as long as that pair generates the highest
IR-based similarity degree. Nevertheless, it is important to note
that IR-based approaches are not always able to select the correct
linearization pair alternative; their IR-based similarity does not
consider token order while such order may be the only thing that
could distinguish correct linearization pair. Manual observation
toward the result of empirical dataset shows that such issue occurs
on 14 and 15 cases respectively for SRC and VRC.

When compared with SRC, VRC is assigned as the 1st rank on
more empirical cases (see Fig. 6); on some cases, correct lineariza-
tion pair is only distinguishable when token proportion (i.e. VRC’s
exclusive feature) .
4.4. Evaluation regarding the number of process

Despite its simple TCE, NA generates a large number of process
on cases that involve numerous derived methods; it generates long
compared-to-be token sequences as a result of naive linearization,
resulting more processes on comparison phase. This drawback can
be explicitly seen on C07-C12 from Fig. 7; NA generates the highest
number of process. However, further observation toward both con-
trolled and empirical dataset shows that the impact of such draw-
back is insignificant; NA’s resulted number of process is still
comparable to IR-based approaches (i.e. SRC and VRC) on most
cases.

Similar with NA, CA also generates a large number of process on
cases that involve numerous derived methods. However, the cause
of such issue is the existence of enormous generated pair alterna-
tives instead of long compared-to-be token sequences. CA’s com-
parison will be executed for each alternative once, resulting

M � N comparisons where each comparison takes ðmaxðjAj; jBjÞÞ3
processes (M and N are the number of alternatives for both
sequences while A and B are compared-to-be token sequences
for each pair alternative). This drawback can be explicitly seen
toward controlled dataset.



Fig. 8. Rank distribution based on the inversed number of process toward empirical
dataset.
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on C19-C24 from Fig. 7 where the highest number of process is
generated by CA. Further, it is also shown on a case about abstract
factory’s main method from empirical dataset; CA takes 193 tril-
lions processes while other approaches take at most 1.63 billions
processes.

Despite their drawback showed on Fig. 7, NA and CA are faster
than IR-based approaches when handling cases with only one lin-
earization pair alternative; both approaches do not involve alterna-
tive selection phase, resulting fewer processes. This benefit can be
explicitly seen from the result of empirical dataset given on Fig. 8;
both NA and CA are assigned with the 1st rank on most cases since
these cases are featured with only one pair alternative each.

When compared to SRC, VRC takes the largest number of pro-
cess; it generates slightly more processes on controlled dataset
(see Fig. 7) and is assigned with lower rank on empirical dataset
(see Fig. 8). Such finding is natural since VRC’s TCE has higher com-
plexity than SRC’s.

When perceived from real execution time toward the whole
empirical dataset, CA takes the longest processing time (47 h), fol-
lowed by NA (2 h), VRC (5 min), and SRC (5 min). Hence, it can be
stated that CA is the most impractical approach while VRC and SRC
are the most practical ones.

5. Conclusion and future work

In this paper, an IR-based technique for linearizing abstract
method invocation in plagiarism-suspected source code pairs has
been proposed. According to our evaluation, four findings can be
deducted. Firstly, proposed technique leads to more accurate pla-
giarism result. It generates higher reverse number of mismatched
token (i.e. an accuracy measurement) than state-of-the-art tech-
nique (Karnalim, 2017a). Further, it does hold the semantic of
token sequence and it is as effective as a combinatoric technique
(which tries all possible linearization pair alternatives) on most
cases. Secondly, proposed technique is effective to remove false
positives; only few false positives share similar or higher IR-
based similarity degree than the correct one. Thirdly, proposed
technique is more efficient in terms of processing time on cases
with numerous derived methods. Finally, each IR mechanism has
its own benefit for linearizing abstract method.

For future work, we plan to strengthen our findings by evaluat-
ing proposed approach on real plagiarism cases taken from object-
oriented programming course. In addition, we also plan to incorpo-
rate attribute-based approach to enhance the accuracy of proposed
approach.

6. Threats to validity

In general, two threats of validity should be considered toward
the result of this work. First, this result cannot be generalized to all
attacks regarding abstract method in object-oriented environment.
We try to mitigate this threat by enlisting possible attacks in con-
trolled dataset. Further, we also use source codes with advanced
object-oriented techniques to exploit more possible attacks in
empirical dataset. However, it is still possible that some attacks
are not covered in our datasets. Second, since our proposed tech-
nique has not been used in real environment, its characteristics
may be different in real environment. We try to mitigate this threat
by utilizing evaluation metrics related to real environment. How-
ever, it is still possible that external factors from real environment
affect the characteristics of proposed technique.
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