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a b s t r a c t

A group key agreement (GKA) protocol generates a secret key (session key) shared among the members of
the group, from the contributions made by group members. GKA protocols are expected to satisfy the
property of Implicit Key Authentication (IKA) which assures group members that the key generated by
the protocol is not accessible to any member outside the group. In this article, we propose a technique
to prove the correctness of GKA protocols with respect to IKA. We establish the soundness of our proposal
and also illustrate its application.
Normally IKA property of protocols is established by proving that the protocol satisfies authentication

of participants and secrecy of the session keys. Most formal models would be able to analyze a GKA pro-
tocol with respect to IKA, using the above approach. However analysis of two security properties, namely
authentication and secrecy, would increase the chances of errors. We propose a single condition for ver-
ifying whether the GKA protocol satisfies IKA.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Rapid developments in the field of computer networks and
communications have led to increase in the number of applications
based on the Internet. These applications need to be secure, and
hence utilize security protocols. Security protocols define rules
for communication, to achieve security objectives like authentica-
tion and secrecy. Earlier methods of ascertaining whether a proto-
col achieves its security objectives was by trial and error. The
difficulty in detecting the flaws in security protocols by the above
method is exemplified by the fact that it took seventeen years after
the Needham–Schroeder public key authentication protocol
(Needham and Schroeder, 1978) was proposed, that an attack on
the protocol was discovered by Lowe (1995). Formal modeling
and analysis helps to overcome the above difficulty. Techniques
used for formal modeling and analysis of protocols include BAN
Logic (Burrows et al., 1990), Communicating Sequential Processes
(Schneider, 1996), Spi Calculus (Abadi and Gordon, 1997), Strand
Spaces (Fabrega et al., 1999), Inductive Approach (Paulson, 1997),
Multi-set Re-writing approach (Durgin and Mitchell, 1999) and a
model proposed by Ramanujam and Suresh (2003). All of the above
use symbolic approach toward modeling while Bellare and
Rogaway (1993) use a computational approach.

One of the functions performed by security protocols is to dis-
tribute a shared secret key among members of a group. Key distri-
bution in a group can be done either through a centralized or a
distributed approach. In the centralized approach, a trusted server
that is not a member of the group distributes the key to the mem-
bers of the group. In distributed approach, each group member
computes a shared secret key from the contributions made by each
member of the group. The latter class of protocols is referred to as
key agreement or group key agreement (GKA) protocols (Manulis,
2006). GKA protocols are suitable for peer-to-peer applications
(Amir et al., 2002). A number of key agreement protocols have
been proposed in the literature (Ateniese et al., 2000; Bresson
et al., 2002; Burmester and Desmedt, 1994; Just and Vaudenay,
1996; Kim et al., 2001; Kim et al., 2004; Steer et al., 1990;
Mishra et al., 2014). Most of the GKA protocols are based on Dif-
fie–Hellman (DH) Key Exchange scheme (Diffie and Hellman,
1976).

Key agreement protocols must satisfy the security requirement
of Implicit Key Authentication (IKA) or Key Authentication. IKA is the
property whereby one party is assured that no other party aside from a
specifically identified second party (and possibly additional identified
trusted parties) may gain access to a particular secret key (Menezes
et al., 1996). Normally, IKA property of protocols are established
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by proving that the protocol satisfies authentication of participants
and secrecy of the group key. In this article, we propose a formal
technique for proving the correctness of a group key agreement
protocol with respect to IKA. Strand Spaces framework (Fabrega
et al., 1999) is used in modeling and proving the correctness of pro-
tocols. The reader, if new to Strand Spaces, would find it useful to
go through the references (Fabrega et al., 1999; Herzog, 2003)
before reading the rest of the text.

The organization of the rest of the paper is as follows: Section 2
briefly discusses the challenges involved in modeling and analyz-
ing DH protocols and various models proposed to overcome those
challenges. In Section 3, we present our contributions which
includes tweaking Strand Spaces to our requirements, defining
the notion of correctness of protocols with respect to IKA, and
establishing its soundness. Section 4 highlights the contributions
in our proposal. The proposal is illustrated in Section 5. A compar-
ison of our proposal with existing proposal is presented in
Section 6.
2. Related work

This section presents the state of research on the formal analy-
sis of GKA protocols using Strand Spaces. Since this article is con-
cerned with establishing the IKA properties of GKA protocols
using Strand Spaces, and most GKA protocols are based on DH, this
section presents a survey on the challenges involved in the sym-
bolic analysis of DH protocols and the various approaches adopted
in solving them.

The secrecy of the key exchanged in DH protocol relies on Dis-
crete Logarithm problem being hard. The messages exchanged in
the protocol consist of terms which are elements of abelian group
Z�
p. We will refer to these terms as DH terms. Modeling DH terms is

more challenging as the algebra on terms needs to be considered.
In formal modeling, if a term t1 can be derived from t2, then t1 is

defined as a sub-term of t2, denoted as t1@t2 (Fabrega et al., 1999).
To decide whether a term t remains secret, after execution of a pro-
tocol, it is sufficient to examine if the intruder has access to any
term whose sub-term is t. However in the case of DH terms, rela-
tions like x@a x or a x@ax:y are not valid. Therefore models whose
analysis is based on sub-term relation needs to be modified for
analysis of DH protocols. The following paragraphs present two
modifications to Strand Spaces to overcome this challenge.

Herzog proposed extensions to Strand Spaces (Herzog, 2003) for
analyzing security protocols based on DH primitive. He overcame
the above problem by defining a term as an ingredient of other, if
it is used in constructing the latter or if it is a sub term. According
to the model, a DH term remains a secret if a security protocol is
silent and conservative. These conditions, which the protocols had
to satisfy to assure the security property, were defined in terms
of ingredient relation. However the model is limited to the secrecy
analysis of two-party DH based protocols. The paper does not for-
malize authentication. Moreover the definition of silent is not
appropriate to group key agreement protocols like AT-GDH-2 pro-
tocols which have been proved to be secure but violate the silent
condition.

Another approach to overcome the above problem was pre-
sented in Pereira (2003) which proposed a model for analyzing Cli-
ques protocols (Ateniese et al., 1998; Ateniese et al., 2000). The
primitive root a was modeled as 1f gKa , where 1 and Ka are keys,
but Ka does not have any inverse. hf gk denotes encryption of hwith
key k. Using the above notation ar is represented as 1f gKa ; r

� �
Ka
.

With this notation, the relation x@a x is valid as h@ hf gk and h@hg
or g@hg. However, it contradicts the intuition that sub-term can
be derived from a term, as deriving r from 1f gKa ; r
� �

Ka
is prevented

as Ka is assumed to have no inverse. The model establishes the
secrecy of term by checking the consistency of a collection of linear
equations. The model is specific to Cliques protocol suite.

Earlier models for analyzing security protocols assumed that
the cryptographic algorithms are perfect, in the sense that it is
impossible to get the knowledge about the plain text from the cor-
responding cipher text, without the knowledge of the key. In such
cases, the algebra of terms was assumed to be free, where only syn-
tactic equivalence between terms were considered. However the
attacker can exploit the algebraic relationships between the terms
leading to attacks. Such attacks would not be captured by free alge-
bra models. A recursive authentication protocol proposed by Bull
(Bull and Otway, 1997) was proved correct using Inductive
Approach (Paulson et al., 1997) assuming that encryption is per-
fect. However an attack on the protocol was discovered when the
protocol was implemented using XOR for encryption, owing to self
cancelation property of XOR (Ryan and Schneider, 1998). Like XOR,
modular multiplication also forms an abelian group and attacks
have been discovered on protocols based on DH protocols, which
exploit the commutative property of modular multiplication. As a
consequence, protocol verification accommodating algebraic prop-
erties of operators were studied. Some attempts at solving the
above issues are presented in the following paragraphs.

Rob and Steve (Delicata and Schneider, 2003) has used CSP
(Hoare, 2004) and rank functions to model DH protocols. The
method uses rank functions to map messages to a set 0;1f g, so that
the messages that an intruder should not get, is assigned a rank of
0 and others are assigned 1. The model overcame the issues due to
commutativity by proposing a normal form for DH terms, so that
messages that are structurally different, but identical in value,
may be assigned the same ranks.

A verification model for DH protocols based on spi-calculus
(Abadi and Gordon, 1997) was presented in Boreale and Buscemi
(2003). To model the commutativity and associativity of abelian
groups, the model uses non-determinism. For example, the opera-
tionmult a1 � . . .ak;akþ1 � . . .anð Þ ! ai1 � . . .� ain , where i1 . . . in
denotes any permutation of 1 . . .n and a1 � . . .� an denotes
a1 � a2 � . . .anð Þ.

The model (Goubault-Larrecq et al., 2005) uses resolution theo-
rem proving with ordering and selection to verify DH based proto-
cols. The protocol and the security conditions are modeled using a
unary function e, with ar being represented as e rð Þ. ar1r2 is repre-
sented as eðr1 � r2Þ, such that eðr1 � r2Þ ¼ eðr2 � r1Þ, to account
for commutativity.

Jonathan Millen and Vitaly Shmaitikov introduced constraint
solving for analysis of security protocols involving ground terms
and for constructed keys in Millen and Shamatikov (2005) and
with modular exponentiation with arbitrary base. The model con-
siders its terms to be in normal form if they cannot be reduced
with respect to a set of reduction rules even after rearranging using
associativity and commutativity. Delaune et al. (2008) generalized
the approach for monoidal equational theories.

It was observed that, while modeling messages communicated
between the principals of protocols, it is necessary to introduce
variables, as a receiving honest principal does not know apriori
the term he will receive. Moreover it is possible that, a message
received by a participant has been sent by an intruder. Therefore,
if the message exchanges are as per the protocol and if there is a
consistent unification of terms such that the attacker is able to
derive the secret from his knowledge, then the protocol is insecure.
Therefore unification problem under equational theory of abelian
groups assumes importance, while modeling DH protocols. How-
ever unification problem of modular exponents under equational
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theory is not always decidable. A summary of decidability results
on unification problem under various equational theories can be
found in Kapur et al. (2003).

Maude-NRL Protocol Analyzer (Santiago et al., 2007) is a tool for
analyzing protocols that satisfy algebraic properties. It performs a
backward narrowing reachability analysis from an attack state to
the initial state. It finds an attack if one exists and whenever it ter-
minates without attacks, it gives a proof of security. However,
there is no guarantee of termination.

Analysis of DH based exponentiation was carried out using Pro-
Verif by Ralf Kusters and Truderung (2009). The protocol and the
intruder were modeled using Horn Theory modulo the algebraic
properties of DH. The model imposed a restriction on exponential
terms of the form st that s should not be of the form a�1 and t
should be a ground term. Horn theory under such a restriction
was called as Exponent Ground Horn Theory. Once the protocol
model is reduced to Exponential Ground Horn Theory it is solved
using Pro-Verif.

Schmidt et al. (2012) proposed a symbolic model for analyzing
DH protocols. The protocol and the adversary are modeled using
multi set term re-writing. The model considers DH exponents to
form an abelian group. However the model does not support addi-
tion of exponents.

The decidability of secrecy for protocols based on DH was
proved to be NP Complete (Chevalier et al., 2008). They defined a
set of re-write rules which were confluent modulo associativity
and commutativity with respect to multiplication.

Dougherty and Guttman (2013) has proposed a re-writing the-
ory for analyzing DH based protocols. The paper recognizes that
the exponents in DH scenario forms a finite field, where as previ-
ous symbolic approaches considered the algebraic properties of
abelian group. They also established that secrecy was decidable
for light weight Diffie–Hellman protocols (Dougherty and
Guttman, 2014). The algebraic properties of fields is being used
by protocols like MQV (Blake-Wilson and Menezes, 1999;
Krawczyk, 2005).

Models presented above would be able to verify IKA by sepa-
rately verifying that the protocols satisfy authentication and
secrecy. This approach has been used in Herzog (2003) and
Pereira (2003). However, two separate verifications increase the
chances of errors. In this paper, we propose a single condition for
proving correctness of GKA protocols with respect to IKA. It would
be sufficient to verify the proposed condition instead of verifying
authentication and secrecy separately. Although many models
have used Strand Spaces representation for protocols, the tech-
niques for analysis were different from that of Strand Spaces. We
represent the protocol using Strand Spaces with some modifica-
tions and analyze the property using the conventional Strand
Spaces approach, i.e., partial order theory. Our proposal is a unified
approach to solve the same problem, but using a single verification
step. The proposal is presented in the following section:
3. Framework for proving IKA

This section presents our proposal for proving IKA property of
GKA protocols. We briefly present Strand Spaces (Fabrega et al.,
1999; Herzog, 2003) and the proposed extensions. After adapting
Strand Spaces to our requirements we present the notion of cor-
rectness, establish the soundness of the proposal and illustrate
the proposal on sample GKA protocols.
3.1. Strand Spaces with the proposed Extensions

Since our proposal is an extension of Strand Spaces, we have
interleaved our proposal within the necessary Strand Spaces
literature. We have made modifications to the representation of
protocol using Strand Spaces. An extension has also been made
to the penetrator model. The major modification has been in the
term algebra.

Strand Spaces (Fabrega et al., 1999) provide a framework to
model protocols and prove the correctness of protocols. Failure
to prove the correctness gives insight into possible flaws in proto-
cols. The model uses a graphical representation to show the causal
precedence relationships between terms.

Let the set T represent all possible terms that can be sent and
received in a protocol. The trace of all activities performed by an
instance of a principal (or penetrator) is represented as a strand
(Fabrega et al., 1999). If a protocol is considered as a collection of
roles played by participants, the strands can be modified as role
strands i.e. strands with parameters. An instance of the protocol
results by binding the parameters. Similar representation have
been used by Millen and Shamatikov (2005) and Song (1999).
We use the following notation to differentiate between a parame-
ter and its instance: the instance of a parameter x is represented as
x<numeral>.

For verification of IKA property of protocols, we propose that
the trace parameters be bound only if the messages are signed
by their respective senders, as signature identifies sender and
assures integrity of the message.

Each strand consists of a sequence of nodes connected by the
symbol ‘)’. s; ih i denotes ith node on strand s. Each node represents
action taken by a principal. The action can be that of ‘send’ or ‘re-
ceive’. If a principal sends a term t from node n1, and the same is
received by node n2, then term n1ð Þ ¼ þt and term n2ð Þ ¼ �t and
node n1 is connected to node n2 by the symbol ‘!’ (Fabrega
et al., 1999).

The set of nodes along with the set of edges, ! [ ), form a
directed graph. A finite, acyclic, subgraph of the above directed
graph is called a bundle if: for all the receiver nodes in the bundle,
the corresponding sender nodes must also be in the bundle and for
all nodes present in the bundle, their immediate causal predeces-
sors must also be present in the bundle (Fabrega et al., 1999).

If C �! [ ), then the symbol ‘�C ’ means the reflexive,
transitive closure of C. Suppose B is a bundle. Then �B is a partial
order relation and every non-empty subset of nodes in B has �B

minimal members. It has been proved in Fabrega et al. (1999) that
if C#B is a set of nodes such that 8m;m0;unsigned mð Þ ¼
unsigned m0ð Þ ) m 2 C iff m0 2 Cð Þ and if n is a �B minimal member
of C, then the sign of n is positive.

In the following section, we present the penetrator model used
in this article.

3.1.1. Penetrator model
In Strand Spaces, the capability of penetrator is represented by a

set of penetrator strands, as shown below:

� M – Text message: hþti where t 2 T
� F – Flushing a message h�gi
� R – Fresh Nonces: hþri where r 2 RP , set of nonces known to
penetrator.

� C – Concatenation: h�g;�h;þghi
� S – Separation into components: h�gh;þg;þhi
� K – Key: hþKi where K 2 KP , set of keys known to the
penetrator.

� E – Encryption: h�K;�h;þ hf gKi
� D – Decryption: h�K�1;� hf gK ;þhi
� r – Signing: �K;�h;þ h½ 	K

� �
where K 2 KSig . KSig is the set of

keys which are used by participants to sign messages.
� X – Extraction of plaintext from signatures: � h½ 	K ;þh

� �
� H – Hashing: �g;þhashðgÞh i



Fig. 2. Strand Space representation of one session of Man-In-Middle attack on
Diffie–Hellman Key Exchange.
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� FF – Fresh Diffie–Hellman value: þaph i
� Exp – h�as1 ...si�1 :siþ1 ...sn ;�si;þasi, where s1 . . . sn represents permu-
tation of factors of s and si is known to the penetrator.

The strands M, R, K and FF represent penetrator’s ability to
guess a text, nonce, key and Diffie–Hellman term respectively.
Strand C allows the penetrator to concatenate two received terms
g and h. Similarly, strand S models the penetrator’s ability to sep-
arate concatenated term gh into components g and h. E represents
the ability of penetrator to encrypt a known term h with a known
key K and D represents his ability to decrypt an encrypted term
with a key known to the penetrator. The strand r and X represents
penetrator’s ability to sign a message with a key known to the pen-
etrator and extract plain text from signature respectively. Penetra-
tor’s ability to Hash is represented by H strand. F represents the
penetrator’s ability to delete a message from the protocol.

In addition, we introduce the Exp strand which models the abil-
ity of the penetrator to perform Diffie–Hellman exponentiation.
Exp strand models the ability of the penetrator to exponentiate a
received term as1 ...si�1 :siþ1 ...sn using an integer si. Since s1 . . . sn are fac-
tors of s, in any permutation, exponentiation results in as, i.e. the
Diffie–Hellman terms are normalized with respect to associativity
and commutativity. This would mean that the terms aða:bÞ ¼ aðb:aÞ

and aða:bÞ:c ¼ aa:ðb:cÞ. The idea is similar to the one used in Boreale
and Buscemi (2003).

To illustrate the penetrator model, consider an arbitrary proto-
col in which participant A sends the message t1; t2; t3 to participant
B. The message is a concatenation of terms t1; t2 and t3. The Strand
Spaces with strands of A and B, along with attacker realizing the
action of replacing t2 in the message by t02 is modeled as in
Fig. 1. Strand S separates t1; t2; t3 to three components t1; t2 and
t3. Node F deletes the term t2, and strand M introduces a term t02.
Strand C represents the concatenation of t1; t02 and t3.

Fig. 2 represents the session of the penetrator with the initiator,
A, during Man-in-Middle attack on two-party Diffie–Hellman Key
Exchange, using Strand Spaces. The message aa sent from A to B
is captured by the penetrator. The penetrator generates a random
integer c using R and computes ac by exponentiating a, using the
Exp strand and sends it back to A. The penetrator computes aac

by exponentiating aa using the Exp Strand.
The penetrator strands that we are considering in this model are

similar to the ones in Herzog (2003). Herzog (2003) had an addi-
tional f strand which gave the penetrator the ability to compute
Diffie–Hellman terms from other terms using probabilistic polyno-
Fig. 1. Strand Space representation of replacement of a term in a message by
attacker.
mial time algorithm. Herzog (2003) used f strand to establish a
relationship between computational and formal domains. Since
we assume that Diffie–Hellman problem is hard, FF and Exp
strands are sufficient to model the capabilities of the penetrator
with respect to Diffie–Hellman primitive.

The major extensions proposed to the Strand Spaces are in the
Term Algebra of the model, which is discussed below:
3.1.2. Term algebra
Let set T consists of all messages transmitted during the run of

the protocol (Herzog, 2003). The set T can be classified into four
mutually disjoint subsets namely:

� A# T , set containing predictable text messages
� K# T , set containing Keys
� R# T , set containing nonces
� D# T , set containing Diffie–Hellman terms.

The set A would consist of names of principals and any other
text values as needed to model the protocol, the set K consists of
keys for encryption, decryption and signature, R represents the
set of nonces and D consists of elements of the form a x where a
is the generator of a finite cyclic group G and x is a natural number
less than the order of the group. New terms can be built from the
existing terms using the following functions (Herzog, 2003):

� encrypt : K � T ! T . Function encrypt performs encryption on a
plain text element of T using a key from K, resulting in a cipher
text which is also an element of T. Strand Spaces assumes that
two distinct plain texts or two distinct keys cannot produce
same cipher texts on encryption.

� concat : T � T ! T. Function concat performs the concatenation
of terms from T and the resulting term is also an element of
set T. It is assumed that if two strings resulting from the con-
catenation of two pairs of sub-strings are equal, then the corre-
sponding sub-strings must also be equal.

� exponent : D� Zþ ! D, where Zþ is set of positive integers less
than the order of the group. If a x 2 D and t 2 Zþ then
exponent a x; tð Þ ! axt 2 D. This is similar to DH operation
defined in Herzog (2003) using more explicit representation.

� hashing : T ! K. hashing is a one way function which converts a
term of T to an atomic key. We assume that the hash operation
is injective. The assumption is valid as hash functions are
expected to provide collision resistance which is assured by
injectivity.

� signature : T � K ! T . signature is a function similar to encryp-
tion. It signs the term of T by a key known only to the partici-
pant who signs.
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It is assumed that a key, text or random term cannot be created
from concatenation or encryption. These assumptions are collec-
tively referred to as free algebra assumptions (Fabrega et al.,
1999). Encryption of a term M by an encryption key K is denoted
by Mf gK . Signature of a term M by a signature key K is denoted
by the notation M½ 	K .

Some of the definitions of Strand Spaces (Fabrega et al., 1999;
Herzog, 2003) that would be used to explain our proposal is pre-
sented next.

The Terms that can be derived from the existing terms are
called sub-terms.

Sub-term relation is the smallest relation defined inductively by
the following rules (Fabrega et al., 1999):

� a @ a.
� a @ bf gk if a @ b.
� a @ bc if a @ b or a @ c.

A set of terms, such that h is a sub term of any term in the set, is
called the ideal of h. Ideals have been defined in Herzog (2003) as
follows: If K 0 #K , a K 0-Ideal of T is a subset I of T such that for all
h 2 I; g 2 T and k 2 K 0; hg 2 I, gh 2 I; hf gk 2 I and h½ 	k 2 I. The
smallest K 0-Ideal that contains h is denoted as IK 0 h½ 	. All terms in
IK 0 h½ 	 has h as a sub-term.

The entry point and origination of a term is defined in Fabrega
et al. (1999) as follows: A node n is defined as an entry point for
a set of unsigned terms I iff term nð Þ ¼ þt for some t 2 I and
whenever n0 precedes n on a strand, term n0ð Þ R I (Fabrega et al.,
1999).

A term t originates at a node n iff the node n is an entry point to
the set t0 : t@t0f g (Fabrega et al., 1999).

Herzog (2003) defined ingredient relation on terms to capture
the notion of the terms that can either be derived from other terms
or those that are used in building other terms.

X is an ingredient of Y, written X 
 Y , if:

� X ¼ Y , or
� if Y ¼ hash Y 0� �

, then X 
 Y 0

� if Y ¼ gab, then X 
 ga or X 
 gb

� if Y ¼ Y 0� �
K , then X 
 Y 0or X 
 K

� if Y ¼ Y 0� 	
K , then X 
 Y 0or X 
 K

Similar to origination for sub-term relation, arise has been
defined (Herzog, 2003) for ingredient relation as follows:

Arise: A term t arises on a node n iff n is an entry point to the set
I ¼ t0 : t 
 t0f g (Herzog, 2003).

In the following paragraphs, the proposed extensions to Strand
Spaces are presented. We modify the ingredient relation so as to
develop the framework for proving IKA:

Modified Ingredient Relation: The modified ingredient relation,
denoted by <, is defined as the smallest non-empty relation defined
inductively by the following properties:

1. m < h () m < hash hð Þ
2. m < h _m < k () m < hf gk
3. m < h _m < k () m < h½ 	k
4. m < g _m < h () m < gh
5. m < gs1 _ . . . _m < gsn () m < gs where s1; . . . ; sn are factors

of s.

The modified ingredient relation is different from ingredient
relation (Herzog, 2003). In addition to the implication defined in
Ingredient relation, Modified Ingredient relations include their
converse too. This is valid because, if a pair of terms related by
the ingredient relation imply the presence of another pair of terms
related by the same relation, then the presence of the latter pair
would imply the former, as the set is built inductively. Moreover,
Relation 1 holds as the hash function is assumed to be injective
and hashing results in an atomic value. Relations 2;3;4 hold due
to the free algebra assumptions about encryption and concatena-
tion functions. Relation 5 holds as the elements of the form gs

belong to cyclic group. These relations are essential for the correct-
ness of our proofs.

It may be noted that equality is not included in the modified
ingredient relation. This is because including equality can lead to
ambiguous relations such as the one below:

� hash mð Þ < hash mð Þ ) hash mð Þ < m

To account for equality of terms, we propose a constituent rela-
tion between terms and denote it by �. The relation is defined as
follows:

Constituent: The constituent relation holds if and only if modi-
fied ingredient relation holds or the case that the two terms are
identical holds, but not both. Formally,

� m � n () m ¼ nð Þ � m < nð Þ

Similar to the definition of arise (Herzog, 2003) for ingredient
relation, we define rise for constituent relation.

Rise: A term t rise on a node n iff n is an entry point to the set
I ¼ t0 : t � t0f g.

The following lemma relates the partial order structure of the
bundle and the constituent relation between the terms.

Lemma 1. Suppose B is a bundle, t 2 T and n 2 B is a �B minimal
element of S ¼ m 2 C : t � termðmÞf g. Then t rises on node n.
Proof. Since n is a member of S; t � termðnÞ. If a node n0 precedes n
on the same strand, then n0 2 B, as bundle is backward closed on
‘)’. By minimality property of n; t¤term n0ð Þ. The proof is similar
to the proof relating origination and minimal node in Fabrega
et al. (1999).

It has already been proved in Fabrega et al. (1999) that minimal
node of a subset of the bundle is positive. This notion along with
the above lemma prove that the node on which a term t riseswould
be positive.

We next propose a formal condition which when satisfied
assures that the protocol satisfies IKA property.

3.2. Notion of correctness of IKA:

In this section we propose a single correctness condition which
can be used for verification of IKA. Formally, we establish the fol-
lowing implication:

� Correctness Condition ) IKA

The proposal is based on the following assumptions: GKA pro-
tocols using DH primitive are based on three related assumptions
namely discrete logarithm assumption, computational Diffie–Hell-
man assumption and Decisional Diffie Hellman assumption. Con-
sider a cyclic group with generator a and order q. Discrete
logarithm problem assumes that, it is computationally infeasible
to compute a knowing aa, where a is a random integer less than
q. Similarly, computational Diffie–Hellman assumption states that,
it is computationally infeasible to compute aab, knowing a;aa and
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ab, where a; b are random integers less than q. Decisional Diffie–
Hellman assumes indistinguishabilty between a; aa; ab; aab.
Diffie–Hellman key Exchange Scheme and ElGamal Encryption
algorithm are both based on the above assumptions. In addition
to the above mentioned assumptions, our method is applicable
only to those protocols that satisfy the following condition:

3.2.1. Secrecy condition:
Secrecy condition ensures that the regular participants do not

transmit the session key in a form from which penetrator can
deduce the key. The condition is satisfied by all GKA protocols.

Formally we state the condition as follows: No regular node is
an entry point to IKP kg

� 	
, where IKP kg

� 	
is the smallest KP-ideal con-

taining kg ;KP is the set of keys known to the penetrator and kg is
the computed group key.

A node n is defined as an entry point to a set of unsigned terms I
iff term nð Þ ¼ þt for some t 2 I and whenever n0 precedes n on a
strand, term n0ð Þ R I (Fabrega et al., 1999). We define a predicate
EPðn; IÞ, read as node n is an entry point to set I, to represent entry
point as follows:

EP n; Ið Þ ¼def 9t : t 2 I; term nð Þ ¼ þtð Þ^
8n0 : n;n0 2 C : n0 )� n : term n0ð Þ R I


 �

where C is a bundle, and n0 )� n denotes n0 preceding n with zero or
more nodes in between.

Based on the above predicate, the secrecy condition can be for-
mally stated as follows: 8n 2 N n NP

�:EP n; IKP kg
� 	� ��

. A protocol
satisfies secrecy condition whenever the above condition is true.

Consider the case when the Secrecy Condition is violated i.e. a
regular node n being an entry point to set IKP kg

� 	
. Then

term nð Þ 2 IKP kg
� 	

. All elements of set IKP kg
� 	

are such that the pen-
etrator can deduce the group key from them. This would be violat-
ing the secrecy of the group key trivially.

Under the assumption stated above, a GKA protocol satisfies IKA
property if it satisfies the following condition:

3.2.2. Correctness condition
A protocol satisfies IKA property, if no constituent of the com-

puted key rises on a penetrator strand.
To formulate the correctness condition, we define predicates.

We stated that a term t is said to rise on node n iff n is an entry
point to the set J ¼ t0 : t � t0f g, a set of all terms for whom t is a
constituent. We define a predicate RISE t;nð Þ, read as t rises on
the node n, as follows:

RISE t;nð Þ ¼def EP n; Jð Þ
Let E be the set containing all constituents of the group key

kg ; E ¼ t : t � kg
� �

. If NP represents the set of penetrator nodes in
a bundle, the correctness condition stated above can be formally
stated as follows:

8a : a 2 E;8n : n 2 NP;:RISE a; nð Þ½ 	 ! IKA ð1Þ
In the following section we establish the soundness of our

proposal.

3.3. Soundness of proposal

In mathematical logic a proof system is sound if a formula can
be deduced from a set of axioms, then the formula is a valid conse-
quence of the set of axioms. Verification of security protocols
requires a framework (proof system) for expressing the protocols
(axioms) and a correctness condition (formula) corresponding to
the property being verified. The soundness of the framework is
established by proving that whenever the condition is proved then
the property holds, for all protocols.

We have proposed a framework for representing protocols and
a correctness condition to be satisfied to guarantee that the proto-
col satisfies IKA. The proposed framework is sound if whenever the
condition is proved then IKA has to be satisfied for any protocol.

IKA property of protocols has been established by proving that
the protocols satisfy authentication and secrecy Pereira (2003), i.e.
Authentication ^ Secrecy ! IKA. To prove that the proposed
Correctness Condition ! IKA, it is enough to prove that
Correctness Condition ! Authentication ^ Secrecy or formally

8a : a 2 E;8n : n 2 NP ;:RISE a;nð Þ½ 	
! Authentication ^ Secrecy

To prove the above implication, assume that authentication
fails. This allows penetrator to introduce terms of his choice into
the protocol. Then at least one constituent of the key would rise
in penetrator strand and hence the correctness condition is
violated.

On the other hand assume that the secrecy is violated, i.e. com-
puted group key is not a secret, then there are two possibilities
which are analyzed below:

1. The penetrator originates the key. As every key is a constituent
of itself, the condition is violated trivially.

2. Key originates on the regular node and penetrator can deduce
the key. In such a case, the corresponding term would be an ele-
ment of IKP kg

� 	
and a regular node would be an entry point for

IKP kg
� 	

, which is prevented by Secrecy Condition defined in
Section 3.2.1.

This establishes the soundness of our proposal. Before illustrat-
ing the proposal, the contributions of this paper are summarized
below:

4. Contributions

1. A single correctness condition to verify the IKA property of GKA
has been proposed. This reduces the chances of errors that
might occur if IKA were to be verified by verifying authentica-
tion and secrecy separately. To define the correctness condition,
the following modifications were made to Strand Spaces:
(a) Normally, terms received in a protocol are represented by

variables. It is proposed that whenever a message is signed
by the sender, the variable has to be bound to the ground
terms.

(b) The ingredient relation was defined in Herzog (2003) as a
conditional. It was modified to a bi-conditional so that the
proof holds.

(c) To avoid the ambiguity arising from the presence of equality
in ingredient relation, a new relation namely constituent
was proposed, which was used to define the correctness
condition in Section 3.2.2.

2. The soundness of proposal has been established.
3. The proposal has been illustrated on two sample protocols.

In the following section we illustrate our proposal on Simplified
TLS and SAT-GDH protocol.

5. Illustration of the proposal

5.1. Proving IKA property of Simplified TLS protocol

A simplified form of TLS protocol was presented in Herzog
(2003). The protocol is similar to conventional DH key exchange
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combined with entity authentication. Standard representation of
the protocol, quoted from Herzog (2003), is as follows:

1. A ! B : A
2. B ! A : B ab

� 	
KB

3. A ! B : aa½ 	KA
T1ABf gK 0

4. B ! A : T2ABf gK 0

where A;B are unique identifiers for Client and Server respectively,
T1; T2 are tags to distinguish message 3 from 4, K 0 is a symmetric
key created by hashing aab, where a is the generator of a cyclic
group G of order q and a; b < q. It has been proved that the sym-
metric key K 0 remains secret and that mutual authentication is
assured by this protocol (Herzog, 2003). Strand Space representa-
tion of the protocol is shown in Fig. 3.

To prove that the protocol satisfies IKA property, consider the
session key aab. Since the messages exchanged are signed, the
instance of session key can be considered as aa0b0 . To prove that
the protocol satisfies IKA, we must show that no constituent of
aa0b0 rises on penetrator strand.

Proposition 1. Assume a0 and b0 are not known to the penetrator.
aa0 and ab0 are the constituents of the key aa0b0 . Neither aa0 nor ab0

rise on penetrator node.
Proof. Consider a bundle B consisting of nodes
s1;1h i; s2;1h i; s2;2h i; s1;2h i; s1;3h i; s2;3h i; s2;4h i; s1;4h i. Let
F ¼ n 2 B : aa0 � term nð Þf g. F is non-empty as we have nodes like
s1;3h i and so minimal node exists and is positive. We examine each
of the penetrator strands for possible occurrence of the minimal
node with aa0 as its constituent.

� M,R,K,FF – These nodes correspond to guessing a text term, a
key and a DH term and hence will not be considered.

� C – h�g;�h;þghi – aa0 – gh as concatenation cannot create a
DH term.Therefore, if aa0 � gh then aa0 � g or aa0 � h.

� S – h�gh;þg;þhi – If aa0 � g or aa0 � h then aa0 � gh.
� E – h�K;�h;þ hf gKi – aa0 – hf gk as encryption cannot create a
DH term.Therefore, if aa0 � hf gk then aa0 � h or aa0 � K.

� D – h�K�1;� hf gK ;þhi – If aa0 � h then aa0 � hf gk.
Fig. 3. Strand Space representation of two-party key agreement protocol.
� r – �K;�h;þ h½ 	K
� �

– aa0 – h½ 	K as signing cannot create a DH
term. Therefore, if aa0 � h½ 	K then aa0 � h or aa0 � K.

� X – � h½ 	K ;þh
� �

– If aa0 � h then aa0 � h½ 	K .
� H – �h;þhashðhÞh i – aa0 – hash hð Þ as hashing cannot create a
DH term.Therefore, if aa0 � hash hð Þ then aa0 � h.

� Exp– h�as1 ...si�1 :siþ1 ...sn ;�si;þasi – If aa0 � as then
aa0 � as1 ...si�1 :siþ1 ...sn .

It can be observed that, in none of the above cases aa0 is a con-
stituent of positive node. Hence, there is no penetrator strand
where aa0 can arise. The proof for ab0 is symmetric and so the pro-
tocol assures IKA. Thus Simplified TLS protocol satisfies the correct-
ness condition and hence IKA is assured. h

Simplified TLS protocol was a two-party protocol. In the follow-
ing section we analyze a GKA protocol.
5.2. Proving IKA property of SAT-GDH protocol

Authenticated Group Diffie–Hellman (AGDH-2) protocol is a
GKA protocol proposed by Ateniese et al. (2000). The protocol
failed to provide IKA and a new protocol, AT-GDH was proposed
and proved to satisfy IKA property (Pereira, 2003). Even a simpler
version of AT-GDH protocol, referred to as Simplified AT-GDH pro-
tocol (SAT-GDH) hereafter, would satisfy the IKA property (Pereira,
2003). SAT-GDH protocol is presented below:

Let U ¼ fU1 . . .Ung be a set of n users wishing to share a key Kn.
The group of users agree on a cyclic group G and generator a. G is a
cyclic subgroup of Z�

p of order q, such that qj p� 1ð Þ, where p; q are
prime. Each group member Ui selects a new secret random value
ri 2 Z�

q during each session of the protocol.
Each Ui selects an ri and sends a message which is a sequence of

iþ 1ð Þ elements of group G. U1 initiates the protocol by sending
a;ar1 to U2 signed by U1’s private key. Each receiver Uj exponenti-
ates all the received terms by rj and inserts the last term of the

received message as the jth term in message, signs the message
by his private key, KRj and sends to Ujþ1. Un exponentiates all the
received terms with rn and uses the last term as its key. The
remaining n� 1ð Þ terms signed by Un is broadcast to all users. A
graphical representation of SAT-GDH protocol is shown in Fig. 4.
The protocol is quoted (Pereira, 2003) below using standard
notation:

� Round i 1 6 i < nð Þ
�Ui ! Uiþ1 : a
r1 ...ri
rj jj 2 1; i½ 	;ar1 ...ri

� 
KRi

� Round n
�Un ! All Ui : a
r1 ...rn

ri ji 2 1;n½ 	
n o

KRn

:

� Upon receipt of the above, every Ui computes:

Kn ¼ aðr1 ...rnri
Þ:ri ¼ aðr1 ...rnÞ
Fig. 4. Representation of SAT-GDH protocol for three participants.



Table 1
Comparison of security properties of protocols.

Protocol Secrets of participants Secrecy Authentication IKA

Two-party DH Short-term keys U � �
Simplified TLS Short-term keys,

Signature Keys
U U U

GDH-2 Short-term keys U � �
A-GDH-2 Short-term keys, Long

term keys shared with
the Group Controller

U � �

SAT-GDH-2 Short-term keys,
Signature Keys

U U U
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The fact that SAT-GDH protocol satisfies IKA can be proved by
adapting the proof for AT-GDH protocol (Pereira, 2003). The strat-
egy is to prove that protocol satisfies authentication and that the
computed group key remains secret. Authentication is proved
using authentication tests proposed in Guttman and Fabrega
(2000) and secrecy is proved as in Fabrega et al. (1999). Strand
Space representation of the protocol is shown in Fig. 5.

As in the case of simplified TLS protocol, for SAT-GDH protocol
to satisfy IKA, it has to be proved that no constituent of ar10 r20 r30

should arise on penetrator node.

Proposition 2. Assume r10 ; r20 and r30 are not known to the
penetrator. ar10 ;ar20 ;ar30 ;ar10 r20 ;ar10 r30 and ar20 r30 are constituents
of the key ar10 r20 r30 . The constituents of the key do not rise on
penetrator node.
Proof. Let B represent a SAT-GDH bundle consisting of
s1;1h i; s2;1h i; s2;2h i; s3;1h i; s3;2h i; s2;3h i. Let F ¼ n 2 B : ar10 �f
term nð Þg. F is non-empty as we have nodes like s1;1h i and so min-
imal nodes exist and are positive. We examine each of the penetra-
tor strands for possible occurrence of the minimal node with ar10 as
its constituent.

� M,R,K,FF – These nodes correspond to guessing a text term, a
key and a DH term and hence will not be considered.

� C – h�g;�h;þghi – ar10 – gh as concatenation cannot create a
DH term. Therefore, if ar10 � gh then ar10 � g or ar10 � h.

� S – h�gh;þg;þhi – If ar10 � g or ar10 � h then ar10 � gh.
� E – h�K;�h;þ hf gKi – ar10 – hf gK as encryption cannot create a
DH term. Therefore, if ar10 � hf gK then ar10 � h or ar10 � K.

� D – h�K�1;� hf gK ;þhi – If ar10 � h then ar10 � hf gK .
� r – �K;�h;þ h½ 	K

� �
– ar10 – h½ 	K as signing cannot create a DH

term. Therefore, if ar10 � h½ 	K then ar10 � h or ar10 � K.
� X – If ar10 � h then ar10 � h½ 	K .
� H – �h;þhashðhÞh i – ar10 – hash hð Þas hashing cannot create a
DH term. Therefore, if ar10 � hash hð Þ then ar10 � h.

� Exp – h�as1 ...si�1 :siþ1 ...sn ;�si;þasi – If ar10 � as then
ar10 � as1 ...si�1 :siþ1 ...sn .

It can be observed that in all the above cases ar10 is not a
constituent of a positive node. Hence there is no penetrator strand
where ar10 can arise. The proof for ar20 ;ar30 ;ar10 r20 ;ar10 r30 and ar20 r30

is similar and so the protocol assures IKA. The generalization of the
Fig. 5. Strand Space representation of three-party SAT-GDH protocol.
proof for n participants is a straight forward extension of the above
proof. Thus SAT-GDH protocol satisfies IKA. h
A comparison of the security properties satisfied by Two-party
DH protocol (Diffie and Hellman, 1976), Simplified TLS (Herzog,
2003), GDH-2 (Ateniese et al., 1998), A-GDH-2 (Ateniese et al.,
1998), SAT-GDH-2 (Pereira, 2003) protocols are shown in the
Table 1.

6. Discussion

Our work extends the proposals made in Herzog (2003). In this
section, we compare our proposals with that of Herzog (2003).

The correctness condition that we have defined under Sec-
tion 3.2.2 is similar to that of Herzog (2003). However the corre-
sponding property being verified is IKA in our proposal, whereas
it is Secrecy in Herzog (2003). This is achieved as we make use of
parametric strands and the values are bound to the parameters
whenever the terms are signed.

The correctness condition proposed in Herzog (2003) is for two
party Diffie–Hellman based protocols, whereas our proposal is
applicable for group key agreement protocols.

Similarly, the secrecy condition can be compared to the defini-
tion of silent protocols of Herzog (2003). But the definition of silent
protocols (Herzog, 2003) cannot be applied to SAT-GDH or similar
protocols, whereas they do satisfy secrecy condition. Hence our
model can be used for analysis of such protocols too.

7. Conclusion

In this article, we have proposed a technique to verify the cor-
rectness of Implicit Key Authentication property of group key
agreement protocols. Normally IKA property of protocols are estab-
lished by proving that the protocol satisfies authentication of par-
ticipants and secrecy of the group key. We have defined a single
correctness condition exclusively for IKA. The proposed technique
is based on conventional Strand Spaces analysis i.e. partial order-
ing. We have illustrated our proposal on a simple protocol based
on TLS and simplified version of AT-GDH protocol. The soundness
of our proposal has been established. The proposal enhances the
ability of Strand Spaces model without sacrificing its existing
capabilities.
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