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Abstract The latest research has shown that adaptive directional wavelet transform can constitute

edges and textures in images efficiently due to the adaptive directional selectivity. This paper is pri-

marily focused on the application of adaptive directional wavelet transform in conjunction with lin-

ear discriminant analysis (LDA) for capturing the discriminant directional multiresolution facial

features. The intention of this paper is to explore the efficacy of adaptive directional wavelet trans-

form in facial feature extraction and to offer a stepping stone for further research in this direction.

The proposed approach is compared with existing subspace and local descriptor feature extraction

methods. A performance comparison is also demonstrated with existing non-adaptive multiresolu-

tion analysis methods such as discrete wavelet transform (DWT), Gabor wavelet transform (GWT),

curvelets, ridgelets, contourlets, and local Gabor binary pattern. Evaluation of the proposed

approach on famous databases such as ORL, Essex Grimace, Yale, and Sterling face convinces

the effectiveness of the adaptive directional wavelet transform based subspace features.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Face as a biometric pattern has been broadly utilized for
diverse applications such as personality identification, security
checking, suspect pursuit and video surveillance. The primary
assignment of face recognition is to identify the face image

against face images stored in a face database. Face recognition
methods are predominantly influenced by challenges such as
variation in illumination, expression, head pose variation

and occlusion (Jain et al., 2006). Holistic subspace methods
such as principal component analysis (PCA) (Turk and
Pentland, 1991), kernel PCA (Schoelkopf et al., 1997), inde-

pendent component analysis (ICA) (Bartlett et al., 1998), lin-
ear discriminant analysis (LDA) (Belhumeur et al., 1997),
and kernel LDA (Juwei et al., 2003) are successfully used for

facial feature extraction. PCA and LDA are statistical methods
and experience generalization problem in real time environ-
ments. Local binary pattern (LBP) (Ahonen et al., 2006) being
a non-statistical face recognition method outperforms PCA

and LDA-based face recognition methods in terms of recogni-
tion performance and computational simplicity. The short-
coming of LBP-based face recognition methods is their
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sensitivity to noise and a massive length of the feature vectors.
Weber local descriptor (WLD) (Chen et al., 2010) is a simple
but efficient local descriptor compared to LBP. Li et al.

(2013) presented a face recognition method using multiscale
WLD to describe the facial images and modified the original
approach by a non-linear quantization approach to enhance

its discriminative power. In (Lei et al., 2015) an efficient fea-
ture extraction algorithm called discriminant sparse local
spline embedding is proposed. Experimental results are

demonstrated on ORL and Yale face database to explain its
effectiveness for face recognition. Cao et al. (2016) applied a
multi-pose sparse representation algorithm to address face
recognition under pose and illumination variation.

The two-dimensional discrete wavelet transform (DWT)
(Sweldens, 1998; Daubechies and Sweldens, 1998) is an isotro-
pic multiresolution analysis (MRA) method which provides

edge information along the horizontal and vertical directions.
Current interests in the improvement of face recognition meth-
ods have grown in the application of multiresolution analysis

(MRA) methods such as wavelets (Feng et al., 2000; Chien
and Wu, 2002; Muqeet and Holambe, 2016; Abdul Muqeet,
2016), Gabor wavelets (Liu and Wechsler, 2002; Liu, 2004;

Struc and Pavesic, 2009; Vinay et al., 2015), curvelets
(Candes et al., 2007), ridgelets (Do and Vetterli, 2003), con-
tourlets (Do and Vetterli, 2005), and steerable pyramid trans-
form (Simoncelli, 1996). Huang et al. (2015a) proposed a face

recognition technique of taking the joint of pixel-level and
feature-level fusion of top level wavelet subbands. In Huang
et al. 2015b a non-uniform patch based strategy is used for

high-frequency subbands to successfully reflect the structure
of the face image. Nonetheless, due to the isotropic scaling
of DWT, extracted wavelet features do not provide additional

edge relevant information from face images. GWT is computa-
tionally complex due to the convolution of each face image
with different Gabor kernels described by the values of scale

and orientation (Liu, 2004). A fast discrete curvelet based face
recognition method with PCA and LDA as dimensionality
reduction method has been proposed by Mandal et al.
(2009). Curvelet transform is integrated with support vector

machine with particle swarm optimization method for facial
expression recognition system (Tang and Chen, 2013).
Boukabou and Bouridane (2008) applied contourlet transform

on face images of Yale and FERET databases and used PCA
as dimensionality reduction method. Jadhav and Holambe,
2008 applied the radon transform to obtain radon space face

features and then applied wavelet transform on these radon
features to develop a facial expression and illumination invari-
ant face recognition system. Kautkar et al. (2012) applied finite
ridgelet transform (FRIT) to 2D/2.5D face images and used

the fisherfaces as the dimensionality reduction method. Steer-
able pyramid (S-P) transform face recognition framework is
proposed in (El Aroussi et al., 2011). S-P based features pre-

sent better results compared with PCA, LDA and some mul-
tiresolution methods including DWT, GWT, curvelets, and
contourlets. Another multiresolution approach is to combine

Gabor filters with traditional LBP to obtain an efficient local
descriptor called local Gabor binary pattern (LGBP) (Zhang
et al., 2005). The resulting LGBP leads to good results in facial

recognition but at the cost of the large size of the feature
vector.

In all the aforementioned MRA methods, the edge related
directional data from face images is captured in a non-
adaptive way. If this directional data and orientation of the
edges from a face image can be acquired adaptively it will con-
siderably improve the overall performance of the face recogni-

tion method. Multiresolution analysis methods that adaptively
select the filtering direction explicitly via lifting scheme were
proposed by (Chang and Girod (2007), Ding et al. (2007),

Maleki et al. (2012)). These methods extend the present lifting
wavelet transform with better directionality though still retain-
ing its structure and desirable features. Chang and Girod

(2007) proposed a direction adaptive discrete wavelet trans-
form (DA-DWT) which entails the application of the direc-
tional lifting based on the content of the images. Essentially,
the method in Chang and Girod (2007) is proved to be efficient

for image compression and suggests improvement in compar-
ison to traditional lifting based approaches. The other famous
work based on the adaptation of the filtering direction in lift-

ing scheme is proposed by Ding et al. (2007). The principal dif-
ference between the works of Chang and Girod (2007) and
Ding et al. (2007) is that in Chang and Girod (2007) the lifting

wavelet transform is realized simply with one pair of lifting
steps and interpolating Neville filters (Kovacevic and
Sweldens, 2000) are used as the prediction and update filters.

DA-DWT (Chang and Girod, 2007) also does not involve sub-
sample interpolation and next integer samples are considered
which are farther away from the prediction samples. Due to
the improvements offered by adaptive directional lifting

schemes (Chang and Girod, 2007 and Ding et al., 2007) in
image analysis, and their capability in approximating the direc-
tional data, this paper utilizes the concept of direction adaptive

DWT (DA-DWT) Chang and Girod, 2007 to investigate its
efficacy in a face recognition framework.

In this paper, we propose a new face recognition approach

based on DA-DWT and LDA to extract expression, illumina-
tion, and pose invariant discriminant multiresolution features.
To avoid the confusion with the original DA-DWT work

(Chang and Girod, 2007) we will name it as adaptive direc-
tional wavelet transform (ADWT). The contributions of the
proposed approach are: (1) applying the adaptive directional
wavelet transform (ADWT) with the sub-block partitioning

and optimum direction selection as concurrent methods to
acquire improved directional multiresolution facial features
replicated in low frequency subband (2) applying LDA sub-

space to the low frequency subband to obtain reduced dimen-
sion discriminant facial features. Renowned face databases
such as ORL (Available: http://www.uk.research.), Essex Gri-

mace (Available:http://cswww.essex.ac.uk/mv/allfac), Yale
(Available: http://cvc.yale.edu/pro), and Sterling face
(University of Stirling online database) are used for perfor-
mance experimentation purpose. Performance comparison is

investigated by comparing the proposed results with numerous
existing face recognition methods alongside some non-
adaptive multiresolution analysis (MRA) methods. The

remainder of the paper is structured as follows. In Section 2
the proposed face recognition system is described. Experimen-
tal results are presented in Section 3. Section 4 concludes the

paper.
2. Proposed face recognition approach

In this section, we describe the basic proposal of the proposed
approach. The proposed face recognition method is essentially
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composed of three main phases. In the first phase, we apply 2-
D ADWT along with sub-block partitioning algorithm to
extract directional multiresolution features located in low-

frequency approximation LL subband. In the second phase
LDA is applied on the LL subband to obtain most discrimi-
nant multiresolution features. In the final step, classification

using the nearest neighbor classifier is performed and perfor-
mance parameters are derived.

2.1. 2-D adaptive directional wavelet transform (2-D ADWT)

Rectilinear 2-D discrete wavelet transform is effectively imple-
mented using one or two pairs of lifting scheme (Sweldens,

1998) (Daubechies and Sweldens, 1998). The rectilinear lifting
scheme performs the prediction and update operations only in
neighbor horizontal or vertical direction. Owing to the efficient
adaptive filter direction selection, the method in Chang and

Girod (2007) can efficiently approximate directional image fea-
tures. Following the notation given in Chang and Girod (2007)
let X denote an image defined on an orthogonal sampling gridQ ¼ fðm; nÞ22 0 6 m 6 M� 1; 0 6 n 6 N� 1j g.

This sampling grid is composed of 4 subgrids
Q ¼ [Qpq,

with
Q

pq ¼ fðm; nÞ mmode2 ¼ pj ; nmode2 ¼ qg; p; q 2 f0; 1g:
Similar to the rectilinear DWT the input image is first

decomposed into even rows X0 ¼ fX½l0�; l0 2
Q

0 ¼Q
00 [

Q
01g and odd rows X1 ¼ fX½l1�; l1 2

Q
1 ¼

Q
10 [

Q
11g.

The lifting scheme predicts the even rows from the odd rows
resulting in high-pass subband H ¼ fH½l1�g defined on

Q
1.

The resulting high-pass subband is used to update the even

rows in order to produce the approximation low-frequency
subband L ¼ fL½l0�g defined on

Q
0: The 1-D lifting transform

can be expressed as (Chang and Girod, 2007):

H½l1� ¼ gH � X½l1� � PX;l1 ðX0Þð Þ; 8l1 2 P1 ð1Þ

L½l0� ¼ gL � X½l0� � g�1
H �UX;l0ðHÞ� �

; 8l0 2 P0 ð2Þ
where PX;l1 and UX;l0 are the prediction and update functions

respectively taking as input sets of samples in X0 and H respec-

tively. gH and gL are the scaling factors. In the prediction step
described in (1), for each sample in the high-pass subband
H ¼ fH½l1�g, it is desirable to select prediction function PX;l1

that predicts odd rows X½l1� from neighboring even rows X0

such that the magnitude of the high-pass subband H½l1� is min-

imized. In our proposed approach we selected nine possible
candidate directions Nc from which prediction and update
steps can be adaptively performed (Chang and Girod, 2007):

PX;l1ðX0Þ ¼
XKp�1

k¼�Kp

cpk � X½l1 � ð2kþ 1Þvi� þ X½l1 þ ð2kþ 1Þvi�ð Þ

ð3Þ

UX;l0 ðHÞ ¼
XKu�1

k¼�Ku

cuk �
X

l1 jl1�ð2Kþ1Þ�vl1¼l0

H½l1� þ
X

l1 jl1þð2Kþ1Þ�vl1¼l0

H½l1�
0
@

1
A

ð4Þ
where 2Kp, and cpk are the length and coefficients of the predic-

tion filter respectively. Similarly 2Ku, and cuk are the length and

coefficients of the update filter respectively.
In the above equations i ¼ 0; . . .Nc � 1 is the direction

index and each candidate should correspond to perform lifting
wavelet transform along a particular direction defined by vi.
The vis are defined such that all l1 þ ð2kþ 1Þvi map to an even
l0 index. From (4) whenever an image sample X½li� is predicted
by cpkX½lo�, L½l0� is updated by cukH½l1�. In the proposed

approach we considered the candidate directions (Chang and
Girod, 2007) with Nc ¼ 9 and v0 ¼ ð0; 1Þ, v1 ¼ ð1; 3Þ,
v2 ¼ ð1; 1Þ, v3 ¼ ð2; 1Þ, v4 ¼ ð3; 1Þ, v5 ¼ ð�3; 1Þ, v6 ¼ ð�2; 1Þ,
v7 ¼ ð�1; 1Þ, v8 ¼ ð�1; 3Þ. These candidate directions corre-
spond to the direction set given as

H ¼ fhjh ¼ 0;�18:43;�45;�63:43;�71:57g ð5Þ
A subsequent second-dimensional lifting step is performed

on columns of L½l0� and H½l1� with a different direction set
ui ¼ ðui;m; ui;nÞ which is defined such that l01 � ð2kþ 1Þui
2 P00 and l11 � ð2kþ 1Þui 2 P10; with k ¼ 0; . . .Kp � 1. The
prediction and update functions are similarly defined as given
in (3) and (4).

The different candidate directions N�
c defined for second-

dimensional lifting are u0 ¼ ð1; 0Þ, u1 ¼ ð3; 2Þ, u2 ¼ ð1; 2Þ,
u3 ¼ ð1; 4Þ, u4 ¼ ð1; 6Þ, u5 ¼ ð1;�6Þ, u6 ¼ ð1;�4Þ,
u7 ¼ ð1;�2Þ, u8 ¼ ð3;�2Þ. The candidate directions in the sec-
ond dimensional lifting corresponds to the direction set given

as,

H� ¼ fh�jh� ¼ 90;�56:31;�26:57;�14:04;�9:46g ð6Þ
We also define symmetrical extension at the boundaries

such as X½�1; 0� ¼ X½1; 0� to account for the samples locations
not defined in P (Chang and Girod, 2007). For face
recognition problem we proposed to use prediction filter

coefficients with eight vanishing moments i.e. Kp ¼ 4

with cp0 ¼ cp�1 ¼ 1225=2048, cp1 ¼ cp�2 ¼ �245=2048, cp2 ¼
cp�3 ¼ 49=2048, and cp3 ¼ cp�4 ¼ �5=2048, and update filter

coefficients with eight vanishing moments i.e. Ku ¼ 4 with
cu0 ¼ cu�1 ¼ 1225=4096, cu1 ¼ cu�2 ¼ �245=4096, cu2 ¼ cu�3 ¼
49=4096, and cp3 ¼ cp�4 ¼ �5=4096. In our proposed approach

we used (8,8) interpolating wavelet (Kovacevic and Sweldens,
2000) as opposed to the original work in (Chang and Girod,
2007) where the prediction and update filters with (6,6)
interpolating filters are used. We selected these (8, 8) interpo-

lating wavelet (Kovacevic and Sweldens, 2000), as they result
in the best verification performance in our experiments. The
interpolating filters also hold linear phase characteristics

(Kovacevic and Sweldens, 2000) which extend their texture dis-
crimination potential and hence can be effectively utilized in
facial feature extraction. Rather than continually making a

prediction and update process in the horizontal or vertical
direction, the 2-D ADWT chooses a direction, and the predic-
tion and update processes are performed in these directions to
reduce the energy summation of the prediction error (ESPE).

The value of ESPE accounts for the amount of variance
present in the high-frequency subband. While a sample is pre-
dicted from neighboring samples, each candidate direction is

checked and the direction with the smallest ESPE is finally
selected.

2.2. Sub-block partitioning and direction estimation from face
image

The main function of the proposed approach is to approximate

significant directional information from face images. To
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successfully achieve this locally, it is essential to adaptively
partition the face image into variable size blocks of apparent
edge related directional details. In our experiments for face fea-

ture extraction, a sub-block partitioning scheme (Chang and
Girod, 2007) is used to partition the face image in non-
overlapping blocks and filtering directions may be selected

from each block based upon the minimum value of the ESPE.
The features which are oriented in these directions are esti-
mated as dominant multiresolution facial features. The predic-

tion and update lifting steps as given in (3) and (4) are carried
out in this selected direction within this local sub-block. The
task of selection of such sub-block and the corresponding opti-
mal direction is executed effectively by sub-block partitioning

algorithm as mentioned in Algorithm 1. Sub-block partition-
ing is controlled by the value of the Lagrangian multiplier.
This value is wisely selected for different face database as men-

tioned in Section 3.3. As mentioned in (Chang and Girod,
2007) for image compression the filtering directions are
selected to reduce the distortion in the reconstructed image,

whereas for face recognition we selected the filtering directions
to reduce the variance in the high-frequency subbands. This
adaptation significantly concentrates entire image energy in

low-frequency subband and in turn reduces the energy of
high-frequency subbands. Fig. 1(a) shows the resulting parti-
tions and selected directions for 2-D DWT and Fig. 1(b) shows
the resulting partitions and direction for 2-D ADWT on the

sample face image of Sterling face database. Note that even
though the direction is selected block-wise, filtering in the pre-
diction and update step extends across block boundaries

(Chang and Girod, 2007) as shown in Fig. 1(b).
Algorithm 1. Sub-block partitioning algorithm. For all the images

available in the database do step 1 to step 7.
Input
 Face image, initialize sub-block size Sini, value of the

Lagrangian multiplier k.

Output
 High-pass and low-pass wavelet subbands.
Step 1
 Block partition each face image X defined on the

sampling grid P is evenly partitioned into non-

overlapping sub-blocks, each sub-block denoted by Nb of

size Sini.
Step 2
 If Sini P 4 then partition Nb into

2� 1; 1� 2; 2� 2; 4� 1; 1� 4; 4� 2; 2� 4; 4� 4 sub-

blocks.
Step 3
 For each sub-block Nb calculate the filtered directional

response Rb along each direction h.

Step 4
 Calculate the energy summation of the prediction error

from the filtered directional responses Rb;h, denoted as

ESPEðNh
bÞ ¼ fjjPM

i¼1

PN
j¼1Rb;hði; jÞjj2 þ kDhg.Dh is the

number of bits spent on signaling the selection of

directions. M and N are the size of the respective sub-

blocks.
Step 5
 For each sub-block Nb calculate the optimal direction

along which the minimum value of energy summation

of prediction error is obtained

hb ¼ argminhfESPEðNh
bÞg.
Step 6
 Apply the prediction and update lifting steps in the

selected sub-block in the selected direction obtained in

Step 5 and Step 6.
Step 7
 Obtain the high-pass and low-pass wavelet subbands as

given in (1) and (2).
2.3. Feature extraction

The feature extraction process of the proposed approach utiliz-
ing 2-D ADWT also involves some parameter settings like the
selection of the size of each sub-block and value of the Lagran-

gian multiplier k which controls the complexity of sub-block
partitioning. The optimal size of each sub-block Sini and value
of the Lagrangian multiplier k influence the performance of
our proposed approach which is discussed in detail in Sec-

tion 3.3. The direction adaptation along with lifting-based
wavelet implementation considerably concentrates entire
image energy in low-frequency subband and reduces the energy

of high-frequency subbands. In our proposed approach we
selected two decomposition levels for all the face databases.
Fig. 2 illustrates the process-flow of the proposed face recogni-

tion approach. We selected the top-level lowest frequency sub-
band LL as the extracted multiresolution feature, as it
represents the main structure of a face image and consists of

maximum energy as compared to other subbands.

2.4. Dimensionality reduction and classification

Thus selecting the low-frequency LL subband reduces the

dimension of the original image of a size which is represented
as a vector from 1� 16384 to 1� 1024. To again reduce the
dimensionality of the feature vector and to achieve discrimi-

nant features LDA (Belhumeur et al., 1997) is applied. LDA
is a popular discriminant method which measures the
between-class scatter normalized by the within-class scatter

(Belhumeur et al., 1997). Given the set of feature vectors
F ¼ ½f1; f2; . . . ; fn�, obtained from the previous step each
belonging to one of the N classes fc1; c2; . . . ; cNg, the
between-class and within-class scatter matrices

P
b and

P
w

are defined as follows (Belhumeur et al., 1997):

X
b

¼
XN
i¼1

ni � li � lð Þ � li � lð ÞT ð7Þ

X
w

¼
XN
i¼1

X
fj2ci

fj � li

� �
fj � li

� �T
; ð8Þ

where N is the total number of classes, li is the mean of the

classes ci, ni is the number of samples in ith class, and l stands
for global mean. LDA drives a transformation matrix W

which maximizes the ratio (Belhumeur et al., 1997):

JðWÞ ¼ argmax W

WT
P

bW
�� ��
WT

P
wW

�� �� ð9Þ

This ratio is maximized when W consists of eigenvectors wi

of the matrix
P�1

w

P
b (Belhumeur et al., 1997):

X�1

w

X
b

wi ¼ kiwi; i ¼ 1; 2; :::;N� 1 ð10Þ

To avoid singularity issues, while computing
P�1

w , LDA

subspace is implemented in PCA subspace (Belhumeur et al.,

1997). The implementation of LDA over 2-D ADWT multires-
olution features provides the most discriminant class-specific
features. Then the resultant features are finally set for classifi-

cation. A simple nearest neighbor (NN) classifier is used to



Figure 1 (a) Sub-block partitioning structure and the selected directions for 2-D DWT (b) Sub-block partitioning structure and the

selected directions for 2-D ADWT.
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perform the face verification process. In our experiments, we
used cosine distance measure for PCA and KPCA-based meth-
ods (Struc and Pavesic, 2009; Vinay et al., 2015) and the Eucli-

dean distance measure for LDA-based methods to compute
the distance between the resulting feature vectors and the
probe image feature vector.

3. Experimental results and discussion

In this section, we evaluate the performance of the proposed

approach using four databases, Olivetti Research Laboratory
(ORL), Essex Grimace, Yale face, and Sterling face databases.
The experiments were carried out in Matlab 2014a, on a 64-bit

I3, 2.13 GHz processor, with 2 GB RAM. The effectiveness of
this method is compared in terms of performance parameters
like false acceptance rate (FAR), false rejection rate (FRR),
and verification accuracy against some existing popular sub-

space face recognition methods such as PCA (Turk and
Pentland, 1991), wavelet-based PCA (WPCA) Feng et al.,
2000, KPCA (Liu, 2004), LDA (Belhumeur et al., 1997),

wavelet-based LDA (WLDA) (Chien and Wu, 2002), and
KLDA (Juwei et al., 2003). We also compared the perfor-
mance of the proposed approach against some local descriptor

methods such as LBP (Ahonen et al., 2006), and WLD (Li
et al., 2013). Additionally a performance comparison is also
provided against some famous non-adaptive directional mul-
Figure 2 Process-flow diagram of the propo
tiresolution analysis methods used for face recognition such
as Gabor fisher classifier (GFC) (Liu and Wechsler, 2002), cur-
velet transform (Mandal et al., 2009), contourlet transform

(Boukabou and Bouridane, 2008), ridgelet transform
(Kautkar et al., 2012), and LGBP (Zhang et al., 2005). In
the preliminary experiments, we selected the values of param-

eters essential for performing the proposed approach for get-
ting better results as indicated in Section 3.2. These
parameters include the optimal initial block size for each face

image and value of the Lagrangian multiplier. The following
sets of experiments were carried out

1. Testing the performances of methods in facial expression

variations.
2. Testing the performances of methods in illumination

variations.

3. Testing the performances of methods for pose variations.

3.1. Face databases

To investigate the usefulness of the proposed approach for
expression, illumination, and pose variation we considered

well-known databases such as ORL, Essex Grimace, Yale,
and Sterling face. The ORL database (Available: http://www.
uk.research) consists of 10 dissimilar face images of 40 distinct
sed approach (ORL database face image).
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persons. There are variations in the capture time, lighting,
head position, facial expressions such as eyes open or closed,
smiling or not smiling and facial particulars such as glasses

or no glasses. All images consist of 256 gray levels with a
resolution of 112� 92 pixels captured in a dark consistent
background. For experimentation, the face images are resized

to a resolution of 128� 128 pixels (Fig. 3). The Essex Grimace
database (Available:http://cswww.essex.ac.uk/mv/allfac)
consists of 20 face images each for 18 persons inclusive of male

and female, captured against a plain background with a fixed
camera. Each image is of resolution size 180� 200 pixels.
Face images comprise of grimaces, slight variation in
illumination and head scale, major variation in expression.

For experimentation, we converted the RGB images to grays-
cale images and resized to 256� 256 pixel resolution (Fig. 4).
The Yale face database (Available: http://cvc.yale.edu/pro)

includes face images of 15 persons. There are 11 face images
for each person with illumination and facial expression
variations. All the images are resized to 128� 128 pixel

resolution (Fig. 5). Sterling face database (University of
Stirling online database) consists a total of 312 monochrome
images of 18 females and 17 males, in 3 different poses and

expressions. Each face image is of resolution 269� 369. For
experimentation purpose, we consider 33 subjects with 9
images for each subject and each image is resized to a
256� 256 pixel resolution (Fig. 6).
Figure 3 Sample face im

Figure 4 Sample face images
3.2. Performance measures

The performance of the proposed approach is assessed by eval-
uating the error rates. The error rate obtained by rejecting
authentic users with respect to different values of threshold

(Th) is called false rejection rate (FRR), and accepting impos-
ter users with respect to different values of threshold (Th) is
called false acceptance rate (FAR). False rejection (FR) only
occurs when an authentic user is rejected when the classifica-

tion test fails to recognize correctly i.e., say Euclidean distance
(ED) is greater than their corresponding threshold, i.e.,

FR ¼ fEDI
i > Thig, where superscript I denotes the intra-

class comparisons. The final FRR is computed by counting

the number of EDI
i greater than Thi denoted as

CntðEDI
i ;ThiÞ. It is expressed as,

FRR ¼
Yk
i¼1

Cnt EDI
i > Thi

� �
Nk

ð11Þ

where Nk is the total number of intra-class comparisons. The

false acceptance (FA) occurs when during the classification
the ED is less than or equal to the corresponding threshold,

i.e., FR ¼ fEDE
i 6 Thig, where superscript E denotes the

inter-class comparisons.

The final FAR is computed by counting the number of EDE
i

to be less than or equal to Thi denoted as CntðEDE
i ;ThiÞ. It is

expressed as,
ages of ORL database.

of Essex Grimace database.



Figure 5 Sample face images of Yale face database.

Figure 6 Sample face images of Sterling face database.
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FAR ¼
Yk
i¼1

CntðEDI
i 6 ThiÞ

Mk

ð12Þ

where Mk is the total number of inter-class comparisons. The
genuine acceptance rate (GAR) is a measure to calculate the
percentage of genuine users authenticated by the system and

can be defined as,

GARðThiÞ ¼ 1� FRRðThiÞ ð13Þ
A low value of FAR and FRR is often enviable but as the

FAR increases FRR decreases, this is due to the uneven distri-

bution of genuine and impostor user scores. Thus equal error
rate (EER) is calculated for different values of threshold to find
an optimum balance between FAR and FRR. The EER is con-

sidered as the point where FARðThiÞ ¼ FRRðThiÞ: For a given
threshold ðThiÞ, the average error is defined as
0:5:½FARðThiÞ þ FRRðThiÞ�: If Av is the minimum average

error for different thresholds, then verification accuracy is
defined as

Verif � Acc ¼ ð100� AvÞ% ð14Þ
In our experimentation, we followed the work of (Jin et al.,

2004) for the FAR and FRR computations. For the FAR test,
the first image of each face is matched against the first image of
all other faces and the same matching procedure is repeated for
subsequent face images. For FRR test, each image of each face

is matched against all other images of the same face. It is desir-
able to reduce the intra-class and inter-class variations in the
face recognition method. In this paper, receiver operating
curve (ROC) (Jonsson et al., 2002) is generated to illustrate
the discrimination capability of the proposed approach.

ROC plots the genuine acceptance rate (GAR) as opposed to
the false acceptance rate (FAR).

3.3. Selection of optimal parameters

To obtain the optimal value of the Lagrangian multiplier k
and the optimal value of initial sub-block size Sini, we consid-

ered two distinctive sub-block sizes such as 8� 8 and
16� 16, and estimated the recognition accuracies for three
different values for the Lagrangian multiplier as proved in
Table 1. Thus for k ¼ 5 and sub-block size as 8� 8 we

achieved higher verification accuracies for ORL and Essex
Grimace databases. For Yale database and Sterling face
database, with k ¼ 3 and sub-block size as 8� 8 we achieved

higher verification accuracies. We preferred these values in
our proposed approach to acquire dominant feature vectors.
For our experiments, the scaling factors as mentioned in (1)

and (2) are selected as gH ¼ 0:7912 and gL ¼ 1:3061 (Chang
and Girod, 2007).

We additionally provided a comparison with diverse direc-

tion sets to prove the effectiveness of selected direction set with
(8, 8) vanishing moments prediction and update filters. We



Table 1 Selection of sub-block size and Lagrangian multiplier for databases.

Database k ¼ 3 k ¼ 5 k ¼ 7

8 � 8 16 � 16 8 � 8 16 � 16 8 � 8 16 � 16

ORL 98.39 98.84 99.58 99.08 99.17 98.84

Essex Grimace 98.43 98.13 99.32 98.58 98.72 98.38

Yale 99.41 99.19 98.64 99.31 99.09 98.09

Sterling faces 99.06 97.59 98.86 97.76 97.74 98.07

Table 2 Comparison of different directions set with respect to

EER values.

Database Direction set with

nine directions

with interpolated

samples Ding

et al. (2007)

Direction

set

with five

directions

Maleki et al.

(2012)

Direction set

with nine

directions and

(8,8)

vanishing

moments

proposed

approach

ORL 0.67 0.52 0.42

Essex

Grimace

0.94 1.23 0.68

Yale 1.04 0.68 0.59

Sterling face 2.17 1.89 0.94
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compared it with the nine directions given in (Ding et al.,

2007), and five directions given in (Maleki et al., 2012) with
respect to performance parameters. Compared to these direc-
tions, the nine directions with interpolating Neville filters with

(8, 8) vanishing moments achieve higher performance results as
specified in Table 2.

3.4. Experimental results

3.4.1. Testing the performances of the methods in facial

expression variations

The first set of experiment compares the performance of the
proposed approach with some popular existing face recogni-
tion methods for face images with facial expressions. In this

experiment, we consider ORL and Essex Grimace face data-
base images. Face verification experiment conducted on
ORL face database images resulted in 2200 genuine attempts

and 156,400 impostor attempts. While for Essex Grimace data-
base, face verification results in 3780 genuine attempts and
122,760 impostor attempts.

(a) Subspace and local descriptor methods

To emphasize the discriminant strength of the proposed

approach, a performance comparison with PCA, KPCA,
KLDA, wavelet-based PCA (WPCA), LDA, wavelet-based
LDA (WLDA), LBP, and WLD is shown in Table 3 for

ORL and Essex Grimace databases. Considering the number
of face images in these databases, the maximum length of
the feature vector after dimensionality reduction for PCA,

KPCA, and WPCA is 399 for ORL, and 359 for Essex Gri-
mace database. The maximum feature vector length after
dimensionality reduction for LDA, KLDA, and WLDA for
ORL, and Essex Grimace database is 39, and 17 respectively.

For LBP-based face recognition method, we apply rotation
invariant uniform pattern riu2 with 16 pixels in a circle of
radius 2. The rectilinear 2-D DWT only considers the horizon-

tal and vertical directions and consequently fails to approxi-
mate edges with prominent directional features which are
neither horizontal nor vertical. This distributes the energy of

such directional features in the high-frequency subband.
Because of 2-D ADWT method and its associated adaptive
directional selection process, these prominent directional edge
features are approximated effectively. The optimal sub-block

size and the Lagrangian multiplier value are elegantly decided
in selecting a sub-block with essential directional features.
Additionally, considering direction set given in (5) for the

first-dimensional lifting and considering direction set given in
(6) for the second-dimensional lifting cover a wide area of
image pixels for capturing the directionality of face image

characteristics. Accordingly, the adaptive directional selectiv-
ity and related prediction and update operations performed
alongside these directions reduce the energy in high-
frequency subband and concentrate maximum energy in low-

frequency subband. Application of LDA on this low-
frequency subband additionally provides most discriminant
multiresolution features. For ORL database LBP provides

close verification accuracy of 99.35% but with higher inter-
class and intra-class variations as compared to our proposed
approach. For Essex Grimace database WLD provides close

verification accuracy of 99.12%. Thus for the expression vari-
ant databases, our proposed method improves the face verifi-
cation accuracy as compared to subspace and local

descriptor methods.
The effectiveness of the proposed approach is depicted in

terms of ROC curve shown in Figs. 7(a) and 8(a) for ORL
and Essex Grimace database respectively. It is clearly evident

from ROC curve that our proposed approach is capable of
capturing inter-class and intra-class variations and thus excels
as compared to existing state-of-the-art methods.

(b) Non-adaptive multiresolution analysis methods

We additionally compared the proposed approach with
some famous non-adaptive multiresolution analysis face recog-
nition methods such as GFC, curvelets, ridgelets, contourlet,

and LGBP. It is observed from the experimental results as
depicted in Table 4 that the proposed approach yields superior
performance against existing MRA based face recognition
methods for expression variant face images. The length of

the feature vector is presented in Table 4 before performing
dimensionality reduction.



Table 3 Performance comparison with subspace and local descriptor methods for ORL and Essex Grimace database

Method ORL Essex Grimace

FAR (%) FRR (%) Verification accuracy (%) FAR (%) FRR (%) Verification accuracy (%)

PCA Turk and Pentland (1991) 0.51 3.77 97.86 6.16 12.33 90.76

KPCA Liu (2004) 0.42 3.46 98.06 2.56 5.19 94.82

WPCA Feng et al. (2000) 0.16 1.91 98.97 7.22 10.39 96.13

LDA Belhumeur et al. (1997) 0.69 1.86 98.72 1.59 7.69 91.20

WLDA Chien and Wu (2002) 0.51 1.32 99.08 0.29 2.14 98.78

KLDA Juwei et al. (2003) 0.26 1.82 98.96 0.95 2.49 98.28

LBP Ahonen et al. (2006) 0.38 0.91 99.35 1.23 3.31 97.73

WLD Li et al. (2013) 0.63 1.18 99.09 0.29 1.46 99.12

Proposed approach 0.38 0.46 99.58 0.29 1.09 99.32

Figure 7 ROC curves for ORL database (a) Subspace and local descriptor methods. (b) Non-adaptive multiresolution analysis methods.
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GFC is computationally complicated owing to the convolu-
tion of each face image with several Gabor wavelet kernels at

many scales and directions (Chien and Wu, 2002). Mandal
et al. (2009) required two subbands of fast discrete curvelet
transform to form the feature vector for ORL, and Essex Gri-

mace database, however, in our proposed approach we consid-
ered only the top level low-frequency LL subband for ORL,
and Essex Grimace databases. Additionally, the LDA not only

provides the dimensionality reduction but also provides the
discriminant features from LL subband. All these MRA face
recognition methods (GFC, curvelet, ridgelet, contourlet, and
LGBP) require multiple orientations and scales to describe

the face feature vectors effectively (El Aroussi et al., 2011).
They have a weakness in terms of high computational costs
due to consideration of the large size of feature vectors for

achieving a better performance. Moreover, these methods do
not offer adaptation in selecting a direction along a sub-
block of pixels. The LGBP method provides close verification

accuracy to our proposed method, but the size of the feature
vector is as high as 151,040. 2-D ADWT locally adapts the fil-
tering directions given in (5) and (6) to face features oriented
along edges. Adaptation of filtering directions along such fea-
tures can be achieved by aligning the direction of wavelet

transform with the direction of these features. In addition lift-
ing structure also guarantees perfect reconstruction and the
generated multiresolution decomposition image is also similar

to that of 2-D DWT. The proposed approach achieves utmost
verification accuracy with reduced feature vector size as com-
pared with other multiresolution analysis methods. This indi-

cates the robustness of the proposed approach against
expression variation, as depicted in ROC curves as shown in
Fig. 7(b) for ORL database and in Fig. 8(b) for Essex Grimace
database.

3.4.2. Testing the performance of the methods in illumination

variations

The Yale database is considered to investigate the effectiveness
of the proposed method for illumination and expression vari-
ation on face images. For the Yale face database the genuine

attempts are 990 and the impostor attempts are 25,575. Illumi-
nation variation in face images increases intra-class variations
i.e. FRR significantly and the face recognition method reacts



Figure 8 ROC curves for Essex Grimace database (a) Subspace and local descriptor methods. (b) Non-adaptive multiresolution analysis

methods.

Table 4 Performance comparison with different multiresolution analysis methods for ORL and Essex Grimace databases

Method ORL Essex Grimace

FAR

(%)

FRR

(%)

Verification

accuracy (%)

Length of

feature vector

FAR

(%)

FRR

(%)

Verification

accuracy (%)

Length of

feature vector

GFC Liu and Wechsler (2002) 0.54 1.09 99.18 10,240 0.29 1.48 99.11 10,240

Curvelet + LDA Mandal et al.

(2009)

0.62 1.27 99.05 5079 0.95 1.22 98.91 12,729

Ridgelet + LDA Kautkar et al.

(2012)

0.58 0.86 99.28 18,432 0.29 1.35 99.18 75,536

Contourlet + LDA Boukabou

and Bouridane (2008)

0.77 1.23 99.00 5079 0.29 1.75 98.98 8192

LGBP Zhang et al. (2005) 0.31 0.71 99.48 151,040 0.38 1.63 98.98 151,040

Proposed approach 0.38 0.46 99.58 1024 0.29 1.08 99.32 4096

Table 5 Performance comparison with subspace and local descriptor methods for Yale database.

Method FAR (%) FRR (%) Verification accuracy (%)

PCA Turk and Pentland (1991) 6.94 27.17 82.95

KPCA Liu (2004) 4.25 23.94 85.91

WPCA Feng et al. (2000) 10.15 24.65 82.60

LDA Belhumeur et al. (1997) 1.26 2.93 97.91

WLDA Chien and Wu (2002) 0.82 1.92 98.63

KLDA Juwei et al. (2003) 0.65 2.22 98.57

LBP Ahonen et al. (2006) 1.25 2.83 97.96

WLD Li et al. (2013) 0.68 0.91 99.21

Proposed approach 0.68 0.50 99.41
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with this to decrease the inter-class variations i.e. FAR. Com-
parative results for this database are illustrated in Table 5 and

in Fig. 9(a) for subspace methods. Performance comparison
for non-adaptive MRA methods is illustrated in Table 6 and
in Fig. 9(b).
(a) Subspace and local descriptor methods

Considering the number of face images in this database, the
maximum length of the feature vector after dimensionality

reduction for PCA, KPCA, and WPCA is 164, while for



Figure 9 ROC curves for Yale database (a) Subspace and local descriptor methods. (b) Non-adaptive multiresolution analysis methods.

Table 6 Performance comparison with different multiresolution analysis methods for Yale database.

Method FAR (%) FRR (%) Verification accuracy (%) Length of feature vector

GFC Liu and Wechsler (2002) 0.65 1.01 90.17 10,240

Curvelet + LDA Mandal et al. (2009) 1.07 1.72 98.61 5079

Ridgelet + LDA Kautkar et al. (2012) 0.71 0.91 99.19 18,432

Contourlet + LDA Boukabou and Bouridane (2008) 0.89 1.31 98.90 5079

LGBP Zhang et al. (2005) 0.65 0.61 99.37 151,040

Proposed approach 0.68 0.51 99.41 1024

Local appearance-based face recognition 171
LDA, KLDA, and WLDA the maximum feature vector length
is 14. For LBP-based face recognition method, similar setting

is applied. The PCA, KPCA, and WPCA methods do not give
good results for illumination variant face images, as these
methods represent faces with their principal components, but

there exists a large variation between the images of the same
person due to illumination which severely affects the principal
components. The illumination variations mainly affect the

high-frequency component of the image and could be detected
in the detail high-frequency subbands of the conventional
wavelet transform. The conventional 2-D DWT only considers
the horizontal and vertical directions and consequently fails to

approximate edges which are neither horizontal nor vertical. 2-
D ADWT effectively captures the directional edge features
from face images due to the nine different candidate directions.

These directions and the accompanied 2-D ADWT structure
are adequate to reap all the essential illumination and expres-
sion relevant information from the face images. The proposed

method outperforms subspace and local descriptor methods
with the highest verification accuracy of 99.41%. The second
highest verification accuracy of 99.20% is obtained by WLD.

(b) Non-adaptive multiresolution analysis methods

The illumination variations mainly affect the high-

frequency component of the image and could be detected in
the detail high-frequency subbands of the conventional wavelet
transform. The similar is factual for curvelets, ridgelets, and
contourlets where additional detail high-frequency subband

may be considered for capturing illumination variant features.
However, the accumulation of the detail high-frequency sub-
bands along with the low-frequency subband increases the fea-

ture vector size and the computational time. The nine
directions as given in (5) and (6) for the first and second-
dimensional liftings are adequate to reap all the essential

illumination and expression relevant information from the face
images. The consideration of farther away integer samples is
very beneficial in extracting the sharp image details and
provides energy compaction in the low-frequency subband

and preserves the local details of illumination variant features.
Hence, even for illumination variant face images our
proposed method only considers the low-frequency subband

with reduced feature vector length and still manages to give
the best results compared to state-of-the-art non-adaptive
multiresolution analysis methods as depicted in Table 6 and

Fig. 9(b).

3.4.3. Testing the performance of the methods for pose variations

Sterling face database is considered to examine the efficacy of

the proposed method for pose variation in face images. For the
Sterling face database, the genuine attempts are 1485 and the
impostor attempts are 85,833. Due to the pose variations

and facial expressions, the intra-class variations may be greater
than the inter-class variations. Comparative results for this



Table 7 Performance comparison with subspace and local descriptor methods for Sterling face database.

Method FAR (%) FRR (%) Verification accuracy (%)

PCATurk and Pentland (1991) 11.33 40.47 74.10

KPCALiu (2004) 7.97 42.02 75.00

WPCAFeng et al. (2000) 10.28 41.41 74.16

LDA Belhumeur et al. (1997) 1.22 3.43 97.68

WLDAChien and Wu (2002) 0.49 3.57 97.96

KLDAJuwei et al. (2003) 0.55 1.48 98.98

LBP Ahonen et al. (2006) 0.75 2.15 98.55

WLD Li et al. (2013) 1.18 2.76 98.03

Proposed approach 0.67 1.21 99.06

Figure 10 ROC curves for Sterling face database (a) Subspace and local descriptor methods. (b) Non-adaptive multiresolution analysis

methods.
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database are illustrated in Table 7 and in Fig. 10(a) for sub-
space methods. Performance comparison for non-adaptive
MRA methods is illustrated in Table 8 and in Fig. 10(b).

(a) Subspace and local descriptor methods

Considering the number of face images in this database,

the maximum length of the feature vector after dimensional-
ity reduction for PCA, KPCA, and WPCA is 296, while for
LDA, KLDA, and WLDA the maximum feature vector

length is 32. The PCA, KPCA, and WPCA methods do
not give good results for head pose variant face images, as
different face images with the same pose may also have

appearance dissimilarity due to expression. We can see
greater inter-class and intra-class variations in PCA, KPCA,
and WPCA methods. Performance improvement could be
noticed in LDA, KLDA, WLDA, LBP and WLD, but still

less compared to our proposed approach. The proposed
method outperforms subspace and local descriptor methods
with the highest verification accuracy of 99.06%. The second

highest verification accuracy of 98.98% is obtained with
KLDA.
(b) Non-adaptive multiresolution analysis methods

In Sterling face database every subject has a different
expression and pose condition. GFC, curvelets, contourlets,
ridgelets, and LGBP irrespective of providing multiresolution

features lack the adaptive directional selectivity which is the
key advantage of the proposed approach. Pose variant discon-
tinuities correspond mainly to the high-frequency component

of the image. To capture pose variant features more subbands
need to be considered to form the feature vector, however, the
size of the feature vector and consequently the computational
complexity will be increased. The nine directions given in (5)

and (6) for the first and second-dimensional liftings are ade-
quate to reap all the essential expression and pose relevant
information from the face images. The consideration of farther

away integer samples is very beneficial in extracting the sharp
image details and provides energy compaction in the low-
frequency subband and preserves the local details of expression

and poses variant features. Thus the performance verification
results support the fact that the proposed approach can over-
come the pose variation difficulties in face recognition. Hence,
even for pose variant face images our proposed approach only



Table 8 Performance comparison with different multiresolution analysis methods for Sterling face database.

Method FAR (%) FRR (%) Verification accuracy (%) Length of feature vector

GFC Liu and Wechsler (2002) 0.66 2.69 98.32 10,240

Curvelet + LDA Mandal et al. (2009) 0.95 2.02 98.52 12,729

Ridgelet + LDA Kautkar et al. (2012) 0.61 2.63 98.38 75,536

Contourlet + LDA Boukabou and Bouridane (2008) 0.71 2.83 98.23 8192

LGBP Zhang et al. (2005) 1.16 0.94 98.95 151,040

Proposed approach 0.67 1.21 99.06 4096

Figure 11 Computational time for ORL face image (128� 128).
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considers the low-frequency subband with reduced feature vec-

tor length and still manages to give the best results compared
to state-of-the-art non-adaptive multiresolution analysis
methods.

3.5. Computational complexity

The proposed method also has a comparable computational

time for feature extraction compared with different methods.
Fig. 11 shows the computation time to process the ORL data-
base face image of size 128� 128 pixel resolution and to pro-

duce the features. The LGBP method has the highest
computation time.

4. Conclusion

In this paper, a new face recognition approach is introduced
using 2-D adaptive directional wavelet transform (2-D
ADWT) and LDA subspace method. The 2-D ADWT is

explored here for the first time for face recognition problem.
In the proposed approach, 2-D ADWT performs an adaptive
selection of best lifting direction and utilizes integer pixels to

perform prediction and update step according to the local
characteristics between the pixels. In this work, we selected
nine directions with eight vanishing moments for both predic-

tion and update filters. A sub-block partitioning method is
applied to locate the sub-block with the optimal direction
where the lifting wavelet transform is performed. Experimental

results are investigated on ORL, Essex Grimace, Yale, and
Sterling face databases. The proposed approach significantly
improves the verification performance in comparison with
state-of-the-art methods which includes subspace, local
descriptor, and non-adaptive multiresolution methods. Perfor-
mance results in terms of FAR, FRR, and verification accu-
racy evidently illustrate the superiority of the proposed
approach even for appearance variations due to expression,

illumination, and pose.
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