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Neural Network (NN), hybrid NN methods and Rotation Forest (RF) ensemble classifier are preferred in
pattern analysis owing to their ability for finding efficient solutions on different problems. NN architec-
ture usually includes backpropagation type algorithms in which error is exposed to fluctuations. Hybrid
NN methods are generally designed to improve the classification performance of NN. Scout Particle
Swarm Optimization (ScPSO) is one of these optimization algorithms including the effective parts of
Particle Swarm Optimization (PSO) and Artificial Bee Colony Optimization (ABC). Moreover, RF algorithm
usually indicates the same performance as in hybrid NN methods, although it is comprised of Decision
Tree (DT) classifiers. At this point, our paper investigates whether RF using the hybrid NNs can outper-
form other ensemble classifiers in binary-medical pattern classification, or not. With this intention,
PSO, ABC and ScPSO are placed in NN algorithms instead of back propagation, and hybrid methods
(PSO-NN, ABC-NN and ScPSO-NN) are realized. As a result, RF (PSO-NN), RF (ABC-NN) and RF (ScPSO-
NN) architectures are obtained. Classification Accuracy (CA), Area Under Curve (AUC), Sensitivity,
Specificity, F-measure, Gmean and Precision metrics are used for a statistical performance comparison,
and a test based on 2-fold cross validation method was realized on five medical datasets.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Breast Cancer (BC) continues to be the most common tumor-
based illness in females (Li et al., 2014). For this reason, diagnosis
of breast cancer must be detected during its early stages in order to
prevent the patient deaths (Shieh et al., 2014). Parkinson disease
(PD) is the second most pervasive-neurodegenerative illness in
elderly people. According to the diagnosis at an early pre-clinical
phase, progression of PD can be taken under control (Trible and
Riedere, 2008). The harm originating from diabetes increases
slowly during the preliminary stages of the disease, but can cause
complications if early diagnosis does not occur (Castro-Rios et al.,
2014). Liver-based disorders cause the mortality to increase on
worldwide. Herein, alcohol consumption is fully related to liver cir-
rhosis and liver cancer (Rehm et al., 2013). The death rate con-
nected to alcohol-based liver disorder can be decreased if early
detection of the disease takes place. Besides, heart disease gives
rise to heart attacks that result in death.

The information mentioned above presents only one important
solution for saving lives. That solution is the early diagnosis of dis-
ease. Herein, Computer Aided Diagnosis systems (CADs), that
reveal the disease, establish an important place in medical
decision-making stage. As a result, software experts try to offer
new algorithms and systems to diagnosis of various diseases.

Biomedical pattern classification has an important role in CAD
systems. In biomedical pattern classification, a sufficient classifica-
tion process can be carried out via hybrid architectures. There are
many skillful classifier systems found in literature, but higher
classification performance is generally obtained by utilizing from
complex or hybrid classification structures.

Je and Je (2011) generated Gene Expression Programming (GEP)
based ensemble classifiers (GEP-A and GEP-B) and tested the
techniques on WBC and PID datasets. GEP-B generally preceded
others on various trials that achieved 97.21% (WBC) and 78.12%
(PID) classification accuracies. Kim et al. (2011) generated a
weight-adjusted voting algorithm for classifier ensembles. In their
study, the whole architecturewas named asWAVEwhichwas com-
prised of a weight vector of classifiers and a weight vector of
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instances. WAVE achieved 96.24% and 82.71% classification accura-
cies onWBC and HS datasets, respectively. Li et al. (2011) proposed
a fuzzy-based non-linear transformation method (Proposed
Method? PM) and placed it into Support Vector Machine (SVM)
architecture. PM-SVM (Gauss) achieved 75.36% and 70.85% classifi-
cation accuracies on PID and BLD, respectively. Ozcift and Gulten
(2011) used different classifiers as the base classifiers of Rotation
Forest algorithm. By usingWEKA, 30 different classifiers (NN, logis-
tic, Naïve Bayes etc.) were stated in RF. On average, RF ensembles
succeeded 74.47%, 80.49% and 87.13% classification accuracies for
PID, HS and PD datasets, respectively. Aldape-Pérez et al. (2012)
generated Associative Memory-based Classifiers (AMBC) that
include a learning phase, a learning reinforcement phase and a clas-
sification phase. In their study,WEKA simulation programwas used
for comparing the proposed method with others. By using a %50–%
50 training-test split, AMBC obtained classification accuracies of
65.40% (BLD), 70.57% (PID) and 83.33% (HS). Couellan and Wang
(2015) proposed a bi-level stochastic gradient algorithm for the
training of SVMs. In their study, Bi-level SVM was compared to
cross validation SVM on PID andWBC datasets by using 5-fold cross
validation. Bi-level SVM obtained 96.50% (WBC) and 75.07% (PID)
classification accuracy rates. Hsieh et al. (2014) designed a PSO
based Fuzzy Hyper-Rectangular Composite Neural Network
(PFHRCNN) that applies PSO to adjust the rules formed by trained
HRCNN during stable recognition performance. PFHRCNN obtained
82.4% classification accuracy on PD, and 96% on WBC. Tan et al.
(2014) usedModifiedMicro Genetic Algorithm (MmGA) as the opti-
mizer of ensembles, and designed theMmGA-based ensemble opti-
mizer. This method achieved 97.21% and 83.68% classification
accuracies on WBC and HS, respectively. Zhang and Suganthan
(2014) modified the Random Forest algorithm with an ensemble
of feature spaces. Consequently, proposed structure gained more
diversity for better classification performance. On WBC dataset,
Random Forest ensemble obtained 97.16% classification accuracy.
Li and Leng (2015) produced Support Alternating Multi-Conlitron
Algorithm (SAMA) originating from SVMs. For better linear classifi-
cation, alternating multi-conlitrons were used in SAMA. In their
study, Li and Leng tested SAMA on HS, PID and PD datasets by using
10-fold cross validation. As a result, classification accuracies were
acquired at 66.96% (HS), 81.84% (PD) and 68.57% (PID). Shi et al.
(2015) handled Kernel Entropy Component Analysis (KECA) and
improved KECA by using a fuzzy set theory. Consequently, Fuzzy
Robust KECA (FR-KECA) was obtained, with which classification
accuracies were 70.44% on BLD and 78.12% on PID. Tao et al.
(2015) designed Minimum Class Spread Constrained SVM
(MCSSVM) that is more efficient than SVM. MCSSVM was tested
on BLD and PID datasets which obtained classification accuracies
of 69.52% and 76.11%, respectively. Xiang et al. (2015) formed a
hybrid system based on Gravitational Search Algorithms and
k-Nearest Neighbour (k-NN) for feature selection. In their study,
classification accuracies were obtained as 77.9% (BIGSA-KNN),
76.3% (BGSA-KNN), 76.1% (QBPSO-KNN), 75.5% (BPSO-KNN) and
74.9% (GA-KNN) on PID dataset.

As is known, Rotation Forest ensemble structures generally con-
sist of DT base classifiers. In this study, we handle RF architecture
and modified it with hybrid NNs (PSO-NN, ABC-NN, ScPSO-NN) in
order to obtain more robust ensemble classifiers (RF (PSO-NN), RF
(ABC-NN), RF (ScPSO-NN)). At this point, two objectives are aimed
as follows:

� Achievement of prior performance with RF (hybrid NNs) vs.
hybrid NNs, RF (NN) and other studies (especially ensemble
based ones) in literature.

� Examination of the subject that ScPSO is more compatible than
PSO and ABC algorithms in order to work with complex
classification architectures or not.
2. Methods

2.1. Particle swarm optimization

Particle Swarm Optimization is a well-known heuristic algo-
rithm inspired by the foraging behaviors of bird swarms
(Kennedy and Eberhart, 1995). In PSO, every bird constitutes a
solution in feature space, and these individuals are named as ‘par-
ticles’. Particles attempt to proceed towards the global minimum
or maximum point(s) and towards food source(s) iteratively. For
this purpose, velocity and position operators are utilized in update
of particles. Eqs. (1) and (2) respectively shows the velocity and
position phenomenon.

Viðt þ 1Þ ¼ xViðtÞ þ c1r1ðXpbestðiÞðtÞ � XiðtÞÞ þ c2r2ðXgbestðtÞ � XiðtÞÞ
ð1Þ

Xiðt þ 1Þ ¼ XiðtÞ þ Viðt þ 1Þ ð2Þ
In Eq. (1),x is the inertia weight that confines the step size. Vi(t)

is the current velocity (step size). r1 and r2 coefficients are randomly
produced values within the range [0, 1]. c1 and c2 coefficients are
the acceleration constants leading the particles towards global
points. Herein, the values of these coefficients can generally accel-
erate or slacken the particles where the sum of coefficients is equal-
ized to ‘4’. Xi(t) is the current position, Xpbest(i)(t) symbolizes the best
individual position of the i.th particle, and Xgbest(t) stands for the
best position in the whole swarm. In Eq. (2), Vi(t + 1) is the newly
generated velocity that will form the new position (Xi(t + 1)) by
being summed with the old position (Xi(t)).

2.2. Artificial bee colony optimization

Artificial Bee Colony Optimization (ABC) simulates the foraging
behaviors of honey bees (Karaboga and Akay, 2009). In ABC, four
phases are actively used for the update of positions. At the begin-
ning of iteration, initialization phase operates Eq. (3) in order to
generate particles.

xm ¼ li þ randð0;1Þ � ðui � liÞ ð3Þ
In Eq. (3), li and ui become the lower and upper boundaries of

the positions, respectively. rand(0,1) is a fixed parameter generated
within the range [0,1] as r1 and r2 coefficients in PSO.

After initialization, loop part starts with the employed bee
phase with which Eqs. (4) and (5) are used for comparing the old
positions with new ones as the result of Eq. (4).

vmi ¼ xmi þ /miðxmi � xkiÞ ð4Þ

fitmðxmÞ ¼
1=ð1þ f mðxmÞÞ; f mðxmÞ > 0
1þ jf mðxmÞj; f mðxmÞ < 0

�
ð5Þ

In Eq. (4), xmi specifies the m.th position, / is a constant within
the range [�1, 1], and i stands for a randomly generated number in
[1, dimension number]. vmi symbolizes the newly generated posi-
tion to be compared with the old one (xm). At this point, the impor-
tant point is that k cannot have the same value with m, otherwise,
(xmi � xki) will be equal to ‘0’. In Eq. (5), fm(xm) holds the result of
objective function. Additionally, the fitness value (fitm(xm)) is
obtained by examining the condition of the objective function. As
a result, vmi is replaced with xm in the case of a better fitness value.

Onlooker bee phase uses Eq. (4) for generating new particles
and Eq. (5) for comparing their fitness values. But, initially, Eq.
(6) is operated to choose a position value (m) to be used in Eq.
(4). In Eq. (6), Pm is the probability choice of xm and Pm is compared
to a randomly generated value within the range [0,1] for achieving
a diversified selection.
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Pm ¼ fitmðxmÞXSN

m¼1
fitmðxmÞ

ð6Þ

Scout bee phase is activated if progress is unable to be achieved
among a user-defined iteration number called limit (Karaboga and
Akay, 2009). According to Eq. (3), scout bees regenerate new solu-
tions (regeneration of ineffective positions).

2.3. Scout particle swarm optimization

Scout Particle Swarm Optimization is a modified PSO algorithm
proposed by Koyuncu and Ceylan (2015). In ScPSO, scout bee phase
is added to standard PSO algorithm in order to upgrade the
performance.

PSO updates the particles’ positions using position and velocity
concepts, while ABC uses the equations that are settled in the
employed bee and onlooker bee phases. By activating the scout
bee phase, ABC regenerates insufficient particles that are blocked
from advancing their position towards the global region(s).

PSO does not include a stable or variable parameter that con-
trols the efficiency of updates. In consideration of this information,
ScPSO is formed by adding the scout bee phase to the basic PSO
algorithm (Koyuncu and Ceylan, 2015).

According to the study of Koyuncu and Ceylan (2015), ScPSO
exhibits a challenging performance vs. PSO due to better conver-
gence. Fig. 1 shows the flow chart of ScPSO algorithm.

2.4. Rotation forest

The Rotation Forest (RF) is a Decision Tree (DT) based ensemble
classifier system proposed by Rodriguez et al. (2006). RF employs a
set of classifiers to be trained with improved datasets formed from
the original data. Herein, diversity plays an important role in clas-
sification performance. With diversity, RF aims to produce the
prior performance vs. other ensemble architectures. To this end,
RF ensures diversity through two different steps (the bootstrap
method and the change of feature vectors’ places process). In order
for best performance to be achieved, a trade-off between diversity-
accuracy is needed with the adjustment of the base classifier and
subset numbers.

In the first part of RF, places of the feature vectors are changed
and the whole matrix is divided into submatrices. Later, bootstrap
is applied to all submatrices at the rate of 75%. Then, Principle
Component Analysis (PCA) is applied to submatrices in order to
obtain eigenvectors. Thereafter, eigenvectors are stated as being
diagonal in a matrix called ‘rotation matrix’. Consequently,
coefficients are produced that are multiplied with the original data.
After the multiplication process, improved and rotated data is
obtained.

For RF, Rodriguez et al. (2006) suggest the pseudocode shown
below:

Training part

� X: the objects in the training dataset (an Nxn matrix)
� Y: the labels of the training set (an Nx1 matrix)
� L: the number of classifiers in the ensemble
� K: the number of subsets
� {W1, W2, ..., Wc}: the set of class labels

For i = 1:L

� Preparation of the rotation matrix Ri
a

- Splits F (feature set) into K subsets: Fi,j (for j = 1:K)
- For j = 1:K
1. Let Xi,j be the dataset X for the features in Fi,j
2. Eliminates from Xi,j a random subset of classes
3. Selects a bootstrap sample from Xi,j of size 75% of the object

number in Xi,j. Denotes the new set by Xi,j’
4. Applies PCA to Xi,j’ to obtain the coefficients in matrix Ci,j

- Arranges the Ci,j, for j = 1,. . .,K in a rotation matrix Ri as in Eq.
(7)

Ri ¼

að1Þi;1 ;a
ð2Þ
i;1 ; . . . :a

ðM1Þ
i;1 ½0� . . . ½0�

½0� að1Þi;2 ;a
ð2Þ
i;2 ; . . . ;a

ðM2Þ
i;2 . . . ½0�

. . . . . . . . . . . .

½0� ½0� . . . að1Þi;k ;a
ð2Þ
i;k ; . . . ;a

ðMkÞ
i;k

2
66664

3
77775

ð7Þ

- Constructs Ri
a by rearranging the columns in order to match the

order of features in F.
- Builds classifier Di using (X Ri

a, Y) as the training set

Classification part

� For a given x, let di,j(xRia) be the probability assigned by the clas-
sifier Di,j to the hypothesis that x comes from class Wj. Calculate
the confidence for each class, Wj, by the average combination
method (8).

ljðxÞ ¼
1
L

XL

i¼1

di;jðxRa
i Þ; j ¼ 1; . . . ; c ð8Þ
� Assign x to the class with the largest confidence

The bootstrap generates a smaller dataset by replacing and by
choosing patterns from the original dataset. The change of the fea-
ture vectors’ places implies that all eigenvectors are multiplied
with a different part of data according to the submatrices in rota-
tion matrix. It should not be forgotten that all classifiers are trained
with improved datasets (different training datasets). However in
tests, diversity (the bootstrap and change of the feature vectors’
places) is not needed, and all classifiers are tested with the same
data (test data).

2.5. Proposed method

RF consists of DT classifiers in its classifier unit. In this study, we
modify the RF algorithm in which the hybrid NNs are used as base
classifiers. For this purpose, the fully optimized NNs are chosen due
to their ability to achieve a better classification performance than
simple base classifiers (NNs, DTs, SVM, etc.). At this point, optimiza-
tion algorithms are directly settled in the update part of NNs in lieu
of the backpropagation algorithm. As a result, a robust RF structure
is generated for binary-medical pattern classification that chal-
lenges the DT based RFs and most of ensemble classifier methods
advised in literature. Fig. 2 shows the operation of hybrid NNs.

In Fig. 2;

� The first process stands for the generation of weight and bias
values of NN. At this point, particle values (values of weight &
bias vectors) can be restricted in a boundary specified by user.

� At the second step, training of NN is realized in order to produce
the output of system, and Mean Squared Error (MSE) is obtained
by comparing the obtained output with the target.



Fig. 1. Flowchart of ScPSO algorithm.
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� At the third part, weight and bias vectors are updated according
to the error rates. Herein, update process is realized by using the
phenomena in optimization algorithms. In PSO-NN, Eqs. (1) and
(2) are utilized to regenerate the vector values. In ABC-NN, Eqs.
(3)–(6) are used for regeneration process. In ScPSO-NN, Eqs. (1)–
(3) are used to assign the new values of vectors. At the fourth
part, maximum iteration number and minimum error rate are
determined to decide the termination of training process.

� At the last part, test is performed by using the weight and bias
vector achieving to the minimum error rate.

Fig. 3 shows the operation of hybrid NNs based RF ensemble
classifiers.
In Fig. 3;

� The first three processes (change of feature vectors’ places,
separation of the data into subsets and bootstrap) ensures the
diversity that is needed for better accuracy. Herein, the change
of feature vectors’ places and bootstrap are applied to the
original dataset with different combinations for obtaining
different-diversified data to be used as the input of classifiers.
The separation of data into subsets (subset number) is kept
fixed for all diversified data.

� In the obtainment of subsets, the data matrix is divided to
subsets including different features.



Fig. 2. The operation of hybrid NNs.

Fig. 3. The operation of RF (hybrid NN) ensemble classifiers.

R. Ceylan, H. Koyuncu / Journal of King Saud University – Computer and Information Sciences 31 (2019) 235–251 239
� Bootstrap is performed to every subset which contains ran-
domly chosen patterns, and the number of patterns is kept as
%75 of the whole subset as in the original pseudocode of RF
(Rodriguez et al., 2006).
� PCA method is utilized to obtain the eigenvector coefficients
used in the obtainment of diversified data. At this point, PCA
is performed to all bootstrap-applied subsets, and square matri-
ces are obtained at the size of feature numbers for all subsets.
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� Before the multiplication of coefficients, every square matrix is
settled in a zero valued-matrix as being diagonal, and the diag-
onal matrix is formed.

� After the obtainment of diagonal matrix, the features in matrix
should be returned to their initial order as in the original data
(to the order that is same with the order in original data).

� The multiplication process is performed by multiplying the
coefficients of diagonal matrix and original data to attain the
diversified data to be used in Hybrid NN.

� Herein, the four processes (the change of feature vectors’ places,
separation of the data into subsets, bootstrap, PCA, multiplica-
tion of coefficients) diversify the used data, and these parts
are operated in training phase.

� Hybrid NNs are used in both training and test phases. In training
phase, the diversified RF data are presented as the input of
hybrid NNs. In test phase, best operation condition of hybrid
NNs are kept stable and test process is performed by using
the hybrid NNs trained with different-diversified data.

� At the last part, the outputs of hybrid NNs are weighted as being
equal, and the collaborative output (the output of RF ensemble)
is achieved by using the class with the largest confidence
(Eq. (8)). Herein, it should be specified that every section
(change of features’ vector places, separation of the data into
subsets, bootstrap, PCA, multiplication of the data with PCA
coefficients) is applied individually for every classifier as being
diverse from each other. Thus, the diversity can be effective on
classification process. At this point, this process positively
effects the classification results, if the necessary tradeoff
between diversity vs. accuracy (change of parameters) are met.

In RF (hybrid NNs) techniques, the whole structure is changed
and named according to the type of used hybrid NNs. In other
words, the type of RF ensemble is connected with the used hybrid
NN. Consequently, three kinds of RF ensemble can be obtained:
1- RF (PSO-NN), 2- RF (ABC-NN), 3- RF (ScPSO-NN).
3. Experimental results

In experiments, not only the accordance of hybrid NNswith RF is
examined, but also the optimization algorithms are evaluated in
terms of running compatible with the designed RF structure and
with hybrid NNs. Thus, a detailed analysis of hybrid methods and
more complex algorithms is realized for the task of pattern
classification.

In this study, the classifier structures (hybrid NNs) are exam-
ined experimentally whether these methods run in accordance
with the diversity operators (the change of feature vectors’ places
and separation of the data into subsets & bootstrap) and with
others or not as in general RF approach in which DT are utilized.
The results are evaluated by utilizing from seven metrics that con-
stitute the most preferable measurement approaches to test the
performance of a novel classification algorithm. In other words,
an objective comparison of methods is wanted to be realized for
a detail analysis of the designed techniques.
3.1. The used medical datasets

RF (hybrid NN) structures are tested via 5 well-known medical
datasets taken from UCI machine-learning repository (Lichman,
2013). Bupa Liver Disorders (BLD), Heart Statlog (HS), Parkinson
(PD) (Little et al., 2009), Pima Indian Diabetes (PID) and Wisconsin
Breast Cancer (Original) (Wolberg andMangasarian, 1990) datasets
are used as input information to NN, hybrid NNs, RF (NN) and to RF
(Hybrid NN) classifiers. Features of these datasets are shown in
Table 1.
The BLD dataset is a combination of mass volume and chemical
measurements in blood. The Parkinson dataset (PD) is composed of
a range of biomedical voice measurements from 31 people, 23 with
Parkinson disease (Little et al., 2009). Each column in PD is a par-
ticular voice measurement, and each row corresponds to one of
195 voice recordings from these individuals. As separator features,
PD contains various frequency measurements and some statistical
metrics. PID dataset is primarily based on the blood results. HS
dataset includes blood tests, electrocardiogram (ECG) signal parts,
chest examinations etc. In WBC, samples were prepared by Dr.
Wolberg from his clinical cases. WBC uses cell-based features to
categorize the patterns (Wolberg and Mangasarian, 1990).

3.2. Three staggered performance comparison via 7 diverse statistical
metrics

In literature, most of the studies assess their methods with Clas-
sification Accuracy (CA), some with Area under ROC Curve (AUC), a
few with Specificity and Sensitivity, and some with other methods.
Ordinarily, CA is chosen as a descriptive metric on performance,
but in some circumstances, CA is not seen as a sufficient statistical
metric to determine good performance (Huang and Ling, 2005;
Tang et al., 2009). Consequently, the significance of other statistical
metrics becomes important in order to measure real performance.
In other studies based on pattern classification, AUC is the second
most chosen statistical parameter after CA. ROC graphs are two-
dimensional graphs in which the true positive (positive and, cor-
rectly classified as positive) rate is settled on the Y axis and the false
positive (actually negative, and classified as positive) rate is placed on
the X axis. This graph reveals the relative trade-offs between the
benefits (true positives) and costs (false positives). At this point,
AUC expresses the area under the ROC curve (Fawcett, 2006).
Alongside CA and AUC metrics, other statistical measurements
can be used together for a much more sensitive analysis.

In this study, we used 7 different statistical metrics
(Eqs. (9)–(14)) for the assessment of classifier architectures
(Sensitivity, Specificity, G-mean, F-measure, Precision, AUC and
CA) (Bradley, 1997; Fawcett, 2006).

Sensitivity ¼ TP=ðTP þ FNÞ ð9Þ

Specificity ¼ TN=ðTN þ FPÞ ð10Þ

Precision ¼ TP=ðTP þ FPÞ ð11Þ

F �measure ¼ 2 � ½ðprecision � recallÞ=ðprecisionþ recallÞ� ð12Þ

G�mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity � Specificity

p
ð13Þ

CA ¼ TP þ TN
TP þ TN þ FP þ FN

ð14Þ

In order to enhance the diversity and to provide an objective
view, a three-step comparison was applied to classifier systems
via 7 statistical metrics. Additionally, Total Statistical Success
(TSS) values were used to measure the success of classifiers.
Herein, TSS is defined as the number of best performances
(or the number of obtained first rows). TSS (7 metrics) is the basis
of comparisons, since it symbolizes the total success and ensures
an equilibrium sight.

� TSS comparison based on 7 metrics (sensitivity, specificity,
F-measure, G-mean, Precision, AUC and CA) ? TSS (7 metrics)

� TSS comparison based on CA ? TSS (CA)
� TSS comparison based on AUC? TSS (AUC)



Table 1
The used medical datasets (continued).

Datasets Attribute information Pattern Number/Number of Attributes
(including class)

Bupa Liver
Disorders

� Mcv mean corpuscular volume
� Alkphos alkaline phosphotase
� Sgpt alamine aminotransferase
� Sgot aspartate aminotransferase
� Gammagt gamma-glutamyl transpeptidase
� Drinks number of half-pint equivalents of alcoholic beverages drunk per day

345/7

Heart Statlog � Age
� Sex
� Chest pain type (4 values)
� Resting blood pressure
� Serum cholesterol in mg/dl
� Fasting blood sugar > 120 mg/dl
� Resting electrocardiographic results (values 0,1,2)
� Maximum heart rate achieved
� Exercise induced angina
� Oldpeak = ST Depression induced by exercise relative to rest
� The slope of the peak exercise ST segment
� Number of major vessels (0–3) colored by fluoroscopy
� Thal: 3 = Normal; 6 = Fixed defect; 7 = Reversible defect

270/13

Parkinson � MDVP:Fo(Hz) – Average vocal fundamental frequency
� MDVP:Fhi(Hz) – Maximum vocal fundamental frequency
� MDVP:Flo(Hz) – Minimum vocal fundamental frequency
� MDVP:Jitter(%), MDVP:Jitter(Abs), MDVP:RAP, MDVP:PPQ, Jitter:DDP – Several measures of varia-
tion in fundamental frequency

� MDVP:Shimmer, MDVP:Shimmer(dB), Shimmer:APQ3,Shimmer:APQ5, MDVP:APQ, Shimmer:DDA –
Several measures of variation in amplitude

� NHR,HNR – Two measures of ratio of noise to tonal components in the voice
� Status – Health status of the subject (one) – Parkinson’s, (zero) – healthy
� RPDE, D2 – Two nonlinear dynamical complexity measures
� DFA – Signal fractal scaling exponent
� spread1, spread2, PPE – Three nonlinear measures of fundamental frequency variation

197/23

Pima Indian
Diabetes

� Number of times pregnant
� Plasma glucose concentration a 2 h in an oral glucose tolerance test
� Diastolic blood pressure (mm Hg)
� Triceps skin fold thickness (mm)
� 2-Hour serum insulin (mu U/ml)
� Body mass index (weight in kg/(height in m)2)
� Diabetes pedigree function
� Age
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Wisconsin Breast
Cancer

� Clump thickness
� Uniformity of cell size
� Uniformity of cell shape
� Marginal adhesion
� Single epithelial cell size
� Bare nuclei
� Bland chromatin
� Normal nucleoli
� Mitoses
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With the first step, optimum operation conditions were found
based on TSS (7 metrics), and the results obtained in Table 4–8
were rearranged. In this regard, Table 9 is obtained by comparing
the classifiers according to TSS (7 metrics) at their optimum oper-
ation conditions. After this process, CA and AUC based comparisons
are obtained by means of 7 metrics. According to the three-step
comparison stated above, the results that reveal the best classifica-
tion structure are presented in Table 10. 2-fold cross validation
method is used in all trials for performance evaluation of proposed
techniques.

3.2.1. Detection of optimum operation conditions
Parameter values of the NN, PSO-NN and ScPSO-NN classifiers

were adjusted as advised in study of Koyuncu and Ceylan (2015).
Moreover, the ABC-NN parameters were stable at their optimal
conditions determined by trial and error. In the hybrid NNs (PSO-
NN, ABC-NN and ScPSO-NN) architectures, the unique variable
was the hidden node number that changed per the number of
input nodes (feature number of dataset). In trials, hidden node
number at which the highest TSS (7 metrics) value was achieved
was chosen as the optimum hidden node number for the classifier.

RF (PSO-NN), RF (ABC-NN) and RF (ScPSO-NN) structures
contain two variable parameters: the base classifier number
and the subset number. These parameters were changed accord-
ing to the output of the system. Firstly, the subset number was
obtained based on RF (ABC-NN) architecture. Then, the best sub-
set number with the highest TSS (7 metrics) was chosen as the
optimal choice for other RFs. Here, the usage of RF (ABC-NN)
was fulfilled as a result of providing an objective operation con-
dition. In other words, RF (ScPSO-NN) was not chosen because
of ensuring the impartiality. Additionally, the ABC algorithm
exhibits a different algorithm from the PSO and ScPSO methods.
Secondly, the base classifier number was chosen according to
the success based on TSS (7 metrics). In all RF systems, the hid-
den node number of hybrid NNs remained same according to
the optimum node numbers found in trials of hybrid NNs.
Table 2 shows the optimum operation conditions and change-
able parameter(s).



Table 2
Optimum operation conditions for classifier systems.

Classifier systems Stable parameters & values Variable parameters

NN H = 10
lr = 0.1 –

PSO-NN Maxiter = 500
Pop-size = 5
c1 = 2.08 & c2 = 1.92
inertia_w = 0.9 ? 0.4 � H

ABC-NN Maxiter = 500
Pop-size = 5
ui = 10 & li = �10
Limit = 100

ScPSO-NN Maxiter = 500Pop-size = 5c1 = 2 & c2 = 2inertia_w = 0.9 ? 0.4
Limit = pop-size * dim/12

RF (NN) H = 10
lr = 0.1

� Base classifier number
� Subset Number

RF (PSO-NN) PSO-NN parameters are used
RF (ABC-NN) ABC-NN parameters are used
RF (ScPSO-NN) ScPSO-NN parameters are used

(maxiter = maximum iteration number, pop-size = population size, H = hidden node number, inertia_w = inertia weight, lr = learning rate, dim = dimension).

Table 3
Optimum subset number for RF ensemble classifiers.

Dataset Subset Number 2 3 4

BLD (Sub_num = 4) Sensitivity 51,72 47,59 48,28
Specificity 56,00 62,50 80,00
Gmean 53,82 54,54 62,15
Precision 46,01 47,92 63,64
F-measure 48,70 47,75 54,90
AUC 53,86 55,04 64,14
CA 54,20 56,23 66,67

HS (Sub_num = 6) Subset Number 2 3 4 5 6 7

Sensitivity 71,67 79,17 80,00 80,83 76,67 73,33
Specificity 82,67 80,67 84,67 83,33 90,67 88,67
Gmean 76,97 79,91 82,30 82,07 83,37 80,64
Precision 76,79 76,61 80,67 79,51 86,79 83,81
F-measure 74,14 77,87 80,33 80,17 81,42 78,22
AUC 77,17 79,92 82,33 82,08 83,67 81,00
CA 77,78 80,00 82,59 82,22 84,44 81,85

PD (Sub_num = 2) Subset Number 2 3 4 5 6 7

Sensitivity 97,96 97,28 92,52 98,64 95,24 94,56
Specificity 60,42 54,17 50,00 39,58 60,42 56,25
Gmean 76,93 72,59 68,01 62,49 75,85 72,93
Precision 88,34 86,67 85,00 83,33 88,05 86,88
F-measure 92,90 91,67 88,60 90,34 91,50 90,55
AUC 79,19 75,72 71,26 69,11 77,83 75,40
CA 88,72 86,67 82,05 84,10 86,67 85,13

PID (Sub_num = 4) Subset Number 2 3 4

Sensitivity 54,10 41,04 58,21
Specificity 87,20 91,60 85,80
Gmean 68,69 61,32 70,67
Precision 69,38 72,37 68,72
F-measure 60,80 52,38 63,03
AUC 70,65 66,32 72,00
CA 75,65 73,96 76,17

WBC (Sub_num = 4) Subset Number 2 3 4 5 6

Sensitivity 95,82 96,65 97,91 94,98 95,82
Specificity 96,62 96,62 95,95 96,62 96,85
Gmean 96,22 96,64 96,92 95,80 96,33
Precision 93,85 93,90 92,86 93,80 94,24
F-measure 94,82 95,26 95,32 94,39 95,02
AUC 96,22 96,64 96,93 95,80 96,33
CA 96,34 96,63 96,63 96,05 96,49

(The best results are presented as bold numbers, sub_num = subset number).
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Table 4
Optimum values for variable parameters (on BLD).

Classifier H 3 4 5 6 8 10 12 14 16 18 20

PSO-NN (H = 18) Sensitivity 28,97 30,34 37,24 52,41 42,07 50,34 52,41 37,93 42,76 46,21 45,52
Specificity 90,00 77,50 85,00 71,50 77,50 75,00 70,50 73,50 71,50 83,50 77,50
Gmean 51,06 48,49 56,26 61,22 57,10 61,45 60,79 52,80 55,29 62,12 59,39
Precision 67,74 49,44 64,29 57,14 57,55 59,35 56,30 50,93 52,10 67,00 59,46
F-measure 40,58 37,61 47,16 54,68 48,61 54,48 54,29 43,48 46,97 54,69 51,56
AUC 59,48 53,92 61,12 61,96 59,78 62,67 61,46 55,72 57,13 64,85 61,51
CA 64,35 57,68 64,93 63,48 62,61 64,64 62,90 58,55 59,42 67,83 64,06

ABC-NN (H = 18) Sensitivity 24,83 56,55 44,14 42,07 46,90 48,28 52,41 57,24 33,10 64,83 43,45
Specificity 85,50 70,00 70,00 53,00 80,50 80,00 82,50 71,50 81,00 72,00 83,00
Gmean 46,07 62,92 55,58 47,22 61,44 62,15 65,76 63,97 51,78 68,32 60,05
Precision 55,38 57,75 51,61 39,35 63,55 63,64 68,47 59,29 55,81 62,67 64,95
F-measure 34,29 57,14 47,58 40,67 53,97 54,90 59,38 58,25 41,56 63,73 52,07
AUC 55,16 63,28 57,07 47,53 63,70 64,14 67,46 64,37 57,05 68,41 63,22
CA 60 64,35 59,13 48,41 66,38 66,67 69,86 65,51 60,87 68,99 66,38

ScPSO-NN (H = 20) Sensitivity 54,48 41,38 29,66 53,10 35,86 33,10 48,28 35,86 48,28 49,66 51,03
Specificity 70,00 78,50 81,00 71,00 83,00 80,50 68,50 89,00 80,50 73,00 82,00
Gmean 61,76 56,99 49,01 61,40 54,56 51,62 57,51 56,50 62,34 60,21 64,69
Precision 56,83 58,25 53,09 57,04 60,47 55,17 52,63 70,27 64,22 57,14 67,27
F-measure 55,63 48,39 38,05 55,00 45,02 41,38 50,36 47,49 55,12 53,14 58,04
AUC 62,24 59,94 55,33 62,05 59,43 56,80 58,39 62,43 64,39 61,33 66,52
CA 63,48 62,90 59,42 63,48 63,19 60,58 60,00 66,67 66,96 63,19 68,99

Classifier BCN 5 10 15 20 25 30 35 40

RF (NN) (BCN = 20) Sensitivity 20,69 48,97 48,97 44,14 28,28 51,72 41,38 35,86
Specificity 95,50 63,00 68,00 84,00 90,00 54,00 77,50 77,50
Gmean 44,45 55,54 57,70 60,89 50,45 52,85 56,63 52,72
Precision 76,92 48,97 52,59 66,67 67,21 44,91 57,14 53,61
F-measure 32,61 48,97 50,71 53,11 39,81 48,08 48,00 42,98
AUC 58,09 55,98 58,48 64,07 59,14 52,86 59,44 56,68
CA 64,06 57,10 60,00 67,25 64,06 53,04 62,32 60,00

RF (PSO-NN) (BCN = 10) Sensitivity 44,83 32,41 31,03 26,90 20,00 31,72 34,48 31,03
Specificity 65,50 92,50 88,50 91,50 96,50 91,50 89,00 92,00
Gmean 54,19 54,76 52,41 49,61 43,93 53,88 55,40 53,43
Precision 48,51 75,81 66,18 69,64 80,56 73,02 69,44 73,77
F-measure 46,59 45,41 42,25 38,81 32,04 44,23 46,08 43,69
AUC 55,16 62,46 59,77 59,20 58,25 61,61 61,74 61,52
CA 56,81 67,25 64,35 64,35 64,35 66,38 66,09 66,38

RF (ABC-NN) (BCN = 5) Sensitivity 48,28 43,45 48,97 43,45 32,41 43,45 43,45 44,83
Specificity 80,00 67,50 63,00 67,50 85,00 81,50 78,00 79,50
Gmean 62,15 54,15 55,54 54,15 52,49 59,51 58,21 59,70
Precision 63,64 49,22 48,97 49,22 61,04 63,00 58,88 61,32
F-measure 54,90 46,15 48,97 46,15 42,34 51,43 50,00 51,79
AUC 64,14 55,47 55,98 55,47 58,71 62,47 60,72 62,16
CA 66,67 57,39 57,10 57,39 62,90 65,51 63,48 64,93

RF (ScPSO-NN) (BCN = 25) Sensitivity 47,59 30,34 64,83 48,97 55,17 51,72 43,45 30,34
Specificity 55,50 82,50 59,00 63,00 83,00 79,50 77,50 87,50
Gmean 51,39 50,03 61,85 55,54 67,67 64,13 58,03 51,53
Precision 43,67 55,70 53,41 48,97 70,18 64,66 58,33 63,77
F-measure 45,54 39,29 58,57 48,97 61,78 57,47 49,80 41,12
AUC 51,54 56,42 61,91 55,98 69,09 65,61 60,47 58,92
CA 52,17 60,58 61,45 57,10 71,30 67,83 63,19 63,48

(The best results are presented as bold numbers, H = hidden node number, BCN = base classifier number).
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Table 5
Optimum values for variable parameters (on HS).

Classifier H 4 6 8 10 12 14 16 18 20 22 24 26 28 30

PSO-NN (H = 16) Sensitivity 68,33 69,17 69,17 69,17 74,17 75,83 78,33 81,67 76,67 73,33 73,33 65,83 72,50 70,83
Specificity 85,33 81,33 82,00 74,67 77,33 82,00 81,33 75,33 74,67 80,67 71,33 80,67 84,00 74,00
Gmean 76,36 75,00 75,31 71,86 75,73 78,86 79,82 78,44 75,66 76,91 72,33 72,87 78,04 72,40
Precision 78,85 74,77 75,45 68,60 72,36 77,12 77,05 72,59 70,77 75,21 67,18 73,15 78,38 68,55
F-measure 73,21 71,86 72,17 68,88 73,25 76,47 77,69 76,86 73,60 74,26 70,12 69,30 75,32 69,67
AUC 76,83 75,25 75,58 71,92 75,75 78,92 79,83 78,50 75,67 77,00 72,33 73,25 78,25 72,42
CA 77,78 75,93 76,30 72,22 75,93 79,26 80,00 78,15 75,56 77,41 72,22 74,07 78,89 72,59

ABC-NN (H = 26) Sensitivity 70,00 79,17 76,67 68,33 75,00 74,17 76,67 71,67 67,50 71,67 69,17 80,00 74,17 77,50
Specificity 81,33 76,00 84,67 82,67 84,67 79,33 80,67 80,67 85,33 77,33 78,67 82,67 81,33 74,67
Gmean 75,45 77,57 80,57 75,16 79,69 76,71 78,64 76,03 75,89 74,45 73,76 81,32 77,67 76,07
Precision 75,00 72,52 80,00 75,93 79,65 74,17 76,03 74,78 78,64 71,67 72,17 78,69 76,07 70,99
F-measure 72,41 75,70 78,30 71,93 77,25 74,17 76,35 73,19 72,65 71,67 70,64 79,34 75,11 74,10
AUC 75,67 77,58 80,67 75,50 79,83 76,75 78,67 76,17 76,42 74,50 73,92 81,33 77,75 76,08
CA 76,30 77,41 81,11 76,30 80,37 77,04 78,89 76,67 77,41 74,81 74,44 81,48 78,15 75,93

ScPSO-NN (H = 28) Sensitivity 76,67 70,83 80,00 69,17 77,50 67,50 75,00 69,17 78,33 72,50 71,67 75,00 80,83 69,17
Specificity 82,00 80,67 80,67 71,33 76,00 82,67 80,00 88,67 78,00 79,33 79,33 86,00 83,33 82,00
Gmean 79,29 75,59 80,33 70,24 76,75 74,70 77,46 78,31 78,17 75,84 75,40 80,31 82,07 75,31
Precision 77,31 74,56 76,80 65,87 72,09 75,70 75,00 83,00 74,02 73,73 73,50 81,08 79,51 75,45
F-measure 76,99 72,65 78,37 67,48 74,70 71,37 75,00 75,45 76,11 73,11 72,57 77,92 80,17 72,17
AUC 79,33 75,75 80,33 70,25 76,75 75,08 77,50 78,92 78,17 75,92 75,50 80,50 82,08 75,58
CA 79,63 76,30 80,37 70,37 76,67 75,93 77,78 80,00 78,15 76,30 75,93 81,11 82,22 76,30

Classifier BCN 5 10 15 20 25 30 35 40

RF (NN) (BCN = 35) Sensitivity 78,33 75,00 74,17 75,00 74,17 77,50 80,00 78,33
Specificity 83,33 84,00 84,67 82,67 88,67 85,33 85,33 84,67
Gmean 80,79 79,37 79,24 78,74 81,09 81,32 82,62 81,44
Precision 78,99 78,95 79,46 77,59 83,96 80,87 81,36 80,34
F-measure 78,66 76,92 76,72 76,27 78,76 79,15 80,67 79,32
AUC 80,83 79,50 79,42 78,83 81,42 81,42 82,67 81,50
CA 81,11 80,00 80,00 79,26 82,22 81,85 82,96 81,85

RF (PSO-NN) (BCN = 35) Sensitivity 72,50 79,17 75,83 76,67 75,00 76,67 78,33 78,33
Specificity 85,33 79,33 86,67 84,67 88,67 88,67 88,67 88,67
Gmean 78,66 79,25 81,07 80,57 81,55 82,45 83,34 83,34
Precision 79,82 75,40 81,98 80,00 84,11 84,40 84,68 84,68
F-measure 75,98 77,24 78,79 78,30 79,30 80,35 81,39 81,39
AUC 78,92 79,25 81,25 80,67 81,83 82,67 83,50 83,50
CA 79,63 79,26 81,85 81,11 82,59 83,33 84,07 84,07

RF (ABC-NN) (BCN = 5) Sensitivity 76,67 76,67 75,00 75,00 75,00 47,59 75,00 72,50
Specificity 90,67 86,00 91,33 90,67 90,00 55,50 86,67 88,00
Gmean 83,37 81,20 82,76 82,46 82,16 51,39 80,62 79,87
Precision 86,79 81,42 87,38 86,54 85,71 43,67 81,82 82,86
F-measure 81,42 78,97 80,72 80,36 80,00 45,54 78,26 77,33
AUC 83,67 81,33 83,17 82,83 82,50 51,54 80,83 80,25
CA 84,44 81,85 84,07 83,70 83,33 52,17 81,48 81,11

RF (ScPSO-NN) (BCN = 15) Sensitivity 75,00 82,50 78,33 76,67 73,33 78,33 76,67 75,83
Specificity 86,00 84,67 89,33 80,67 88,00 86,67 87,33 85,33
Gmean 80,31 83,58 83,65 78,64 80,33 82,39 81,83 80,44
Precision 81,08 81,15 85,45 76,03 83,02 82,46 82,88 80,53
F-measure 77,92 81,82 81,74 76,35 77,88 80,34 79,65 78,11
AUC 80,50 83,58 83,83 78,67 80,67 82,50 82,00 80,58
CA 81,11 83,70 84,44 78,89 81,48 82,96 82,59 81,11

(The best results are presented as bold numbers, H = hidden node number, BCN = base classifier number).
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Table 6
Optimum values for variable parameters (on PD).

Classifier H 5 10 15 20 25 30 35 40

PSO-NN (H = 25) Sensitivity 91,84 89,12 99,32 89,12 93,20 87,76 95,92 97,28
Specificity 52,08 52,08 43,75 60,42 60,42 45,83 33,33 39,58
Gmean 69,16 68,13 65,92 73,38 75,04 63,42 56,54 62,05
Precision 85,44 85,06 84,39 87,33 87,82 83,23 81,50 83,14
F-measure 88,52 87,04 91,25 88,22 90,43 85,43 88,13 89,66
AUC 71,96 70,60 71,53 74,77 76,81 66,79 64,63 68,43
CA 82,05 80,00 85,64 82,05 85,13 77,44 80,51 83,08

ABC-NN (H = 25) Sensitivity 94,56 91,16 92,52 92,52 88,44 94,56 91,84 95,92
Specificity 60,42 62,50 60,42 64,58 79,17 60,42 70,83 54,17
Gmean 75,58 75,48 74,76 77,30 83,67 75,58 80,65 72,08
Precision 87,97 88,16 87,74 88,89 92,86 87,97 90,60 86,50
F-measure 91,15 89,63 90,07 90,67 90,59 91,15 91,22 90,97
AUC 77,49 76,83 76,47 78,55 83,80 77,49 81,34 75,04
CA 86,15 84,10 84,62 85,64 86,15 86,15 86,67 85,64

ScPSO-NN (H = 30) Sensitivity 97,28 93,88 95,92 91,84 89,80 89,12 93,20 91,16
Specificity 20,83 62,50 45,83 58,33 64,58 68,75 41,67 41,67
Gmean 45,02 76,60 66,30 73,19 76,15 78,27 62,32 61,63
Precision 79,01 88,46 84,43 87,10 88,59 89,73 83,03 82,72
F-measure 87,20 91,09 89,81 89,40 89,19 89,42 87,82 86,73
AUC 59,06 78,19 70,88 75,09 77,19 78,93 67,43 66,41
CA 78,46 86,15 83,59 83,59 83,59 84,10 80,51 78,97

Classifier BCN 5 10 15 20 25 30 35 40

RF (NN) (BCN = 30) Sensitivity 92,52 91,16 87,76 90,48 90,48 91,84 89,80 87,07
Specificity 64,58 64,58 62,50 64,58 62,50 68,75 68,75 70,83
Gmean 77,30 76,73 74,06 76,44 75,20 79,46 78,57 78,54
Precision 88,89 88,74 87,76 88,67 88,08 90,00 89,80 90,14
F-measure 90,67 89,93 87,76 89,56 89,26 90,91 89,80 88,58
AUC 78,55 77,87 75,13 77,53 76,49 80,29 79,27 78,95
CA 85,64 84,62 81,54 84,10 83,59 86,15 84,62 83,08

RF (PSO-NN) (BCN = 35) Sensitivity 97,28 95,92 95,92 97,28 97,28 96,60 94,56 97,96
Specificity 27,08 52,08 52,08 52,08 54,17 56,25 58,33 50,00
Gmean 51,33 70,68 70,68 71,18 72,59 73,71 74,27 69,99
Precision 80,34 85,98 85,98 86,14 86,67 87,12 87,42 85,71
F-measure 88,00 90,68 90,68 91,37 91,67 91,61 90,85 91,43
AUC 62,18 74,00 74,00 74,68 75,72 76,42 76,45 73,98
CA 80,00 85,13 85,13 86,15 86,67 86,67 85,64 86,15

RF (ABC-NN) (BCN = 25) Sensitivity 97,96 99,32 99,32 96,60 95,92 100,00 97,96 93,88
Specificity 60,42 52,08 50,00 47,92 66,67 50,00 54,17 56,25
Gmean 76,93 71,92 70,47 68,03 79,97 70,71 72,84 72,67
Precision 88,34 86,39 85,88 85,03 89,81 85,96 86,75 86,79
F-measure 92,90 92,41 92,11 90,45 92,76 92,45 92,01 90,20
AUC 79,19 75,70 74,66 72,26 81,29 75,00 76,06 75,06
CA 88,72 87,69 87,18 84,62 88,72 87,69 87,18 84,62

RF (ScPSO-NN) (BCN = 5) Sensitivity 100,00 96,60 99,32 99,32 93,88 97,28 99,32 97,96
Specificity 54,17 43,75 47,92 47,92 56,25 52,08 50,00 43,75
Gmean 73,60 65,01 68,99 68,99 72,67 71,18 70,47 65,47
Precision 86,98 84,02 85,38 85,38 86,79 86,14 85,88 84,21
F-measure 93,04 89,87 91,82 91,82 90,20 91,37 92,11 90,57
AUC 77,08 70,17 73,62 73,62 75,06 74,68 74,66 70,85
CA 88,72 83,59 86,67 86,67 84,62 86,15 87,18 84,62

(The best results are presented as bold numbers, H = hidden node number, BCN = base classifier number).
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Before the comparison process, the optimum values of variable
parameters were detected via TSS (7 metrics). The BLD, HS, PD, PID
and WBC dataset trials are respectively shown in Table 3, Table 4,
Table 5 Table 6, Table 7 and Table 8.

Literature suggests an idea about the subset number not being
available. According to Table 3, in datasets with 6-to-9 feature
numbers (with BLD, PID and WBC), RF structures operate suffi-
ciently while the subset number is 4. But the optimum subset
number cannot be generalized beyond the feature number of 9.
In HS (12 features) and PD (22 features) datasets, the subset
number changes unpredictably. Thus, in the RF structure, it can be
suggested that the assignment of the subset number as 4 is a conceiv-
able choice for the datasets with a feature number less than 10.
In trials related to the BLD dataset (Table 4), optimum node
numbers of PSO-NN, ABC-NN and ScPSO-NN were found as 18,
18 and 20, respectively. Optimum base classifier numbers were
20, 10, 5 and 25 respectively for RF (NN), RF (PSO-NN), RF (ABC-
NN) and RF (ScPSO-NN) architectures.

According to trials on the HS dataset (Table 5); optimum node
numbers of PSO-NN, ABC-NN and ScPSO-NN were 16, 26 and 28,
respectively. Optimum base classifier numbers were 35, 35, 5
and 15 respectively for RF (NN), RF (PSO-NN), RF (ABC-NN) and
RF (ScPSO-NN) architectures.

On the PD dataset (Table 6); optimum node numbers were 25,
25 and 30 respectively for PSO-NN, ABC-NN and ScPSO-NN meth-
ods. Optimum base classifier numbers were 30, 35, 25 and 5



Table 7
Optimum values for variable parameters (on PID).

Classifier H 6 8 10 12 14 16 18 20

PSO-NN (H = 20) Sensitivity 49,25 50,00 52,99 56,72 54,48 56,34 57,46 55,97
Specificity 85,40 83,60 83,80 83,20 84,00 81,80 80,20 86,40
Gmean 64,86 64,65 66,63 68,69 67,65 67,89 67,89 69,54
Precision 64,39 62,04 63,68 64,41 64,60 62,40 60,87 68,81
F-measure 55,81 55,37 57,84 60,32 59,11 59,22 59,12 61,73
AUC 67,33 66,80 68,39 69,96 69,24 69,07 68,83 71,19
CA 72,79 71,88 73,05 73,96 73,70 72,92 72,27 75,78

ABC-NN (H = 20) Sensitivity 45,90 56,34 55,22 58,96 61,94 56,34 59,33 62,69
Specificity 87,60 86,00 81,60 82,00 83,20 83,00 78,00 83,40
Gmean 63,41 69,61 67,13 69,53 71,79 68,38 68,03 72,31
Precision 66,49 68,33 61,67 63,71 66,40 63,98 59,11 66,93
F-measure 54,30 61,76 58,27 61,24 64,09 59,92 59,22 64,74
AUC 66,75 71,17 68,41 70,48 72,57 69,67 68,66 73,04
CA 73,05 75,65 72,40 73,96 75,78 73,70 71,48 76,17

ScPSO-NN (H = 8) Sensitivity 54,85 63,81 48,88 55,22 47,01 59,33 55,60 45,52
Specificity 83,40 83,40 79,80 81,40 87,20 79,40 83,20 87,20
Gmean 67,64 72,95 62,46 67,05 64,03 68,63 68,01 63,00
Precision 63,91 67,32 56,47 61,41 66,32 60,69 63,95 65,59
F-measure 59,04 65,52 52,40 58,15 55,02 60,00 59,48 53,74
AUC 69,13 73,60 64,34 68,31 67,11 69,36 69,40 66,36
CA 73,44 76,56 69,01 72,27 73,18 72,40 73,57 72,66

Classifier BCN 5 10 15 20 25 30 35 40

RF (NN) (BCN = 10) Sensitivity 56,72 66,42 64,18 66,79 64,93 64,18 53,73 66,79
Specificity 84,40 80,60 78,80 78,20 81,80 82,40 87,60 78,20
Gmean 69,19 73,17 71,11 72,27 72,88 72,72 68,61 72,27
Precision 66,09 64,73 61,87 62,15 65,66 66,15 69,90 62,15
F-measure 61,04 65,56 63,00 64,39 65,29 65,15 60,76 64,39
AUC 70,56 73,51 71,49 72,50 73,36 73,29 70,67 72,50
CA 74,74 75,65 73,70 74,22 75,91 76,04 75,78 74,22

RF (PSO-NN) (BCN = 20) Sensitivity 52,61 64,18 55,97 56,72 57,46 59,33 60,07 57,84
Specificity 81,40 73,20 81,60 86,60 82,40 79,60 82,60 81,60
Gmean 65,44 68,54 67,58 70,08 68,81 68,72 70,44 68,70
Precision 60,26 56,21 61,98 69,41 63,64 60,92 64,92 62,75
F-measure 56,18 59,93 58,82 62,42 60,39 60,11 62,40 60,19
AUC 67,01 68,69 68,79 71,66 69,93 69,46 71,34 69,72
CA 71,35 70,05 72,66 76,17 73,70 72,53 74,74 73,31

RF (ABC-NN) (BCN = 10) Sensitivity 58,21 57,84 53,73 54,85 54,85 54,10 53,73 52,99
Specificity 85,80 86,60 87,00 88,00 87,80 87,60 88,40 88,20
Gmean 70,67 70,77 68,37 69,48 69,40 68,84 68,92 68,36
Precision 68,72 69,82 68,90 71,01 70,67 70,05 71,29 70,65
F-measure 63,03 63,27 60,38 61,89 61,76 61,05 61,28 60,55
AUC 72,00 72,22 70,37 71,43 71,33 70,85 71,07 70,59
CA 76,17 76,56 75,39 76,43 76,30 75,91 76,30 75,91

RF (ScPSO-NN) (BCN = 35) Sensitivity 58,21 61,94 49,25 58,21 54,48 55,97 56,34 55,60
Specificity 85,20 82,60 90,80 85,60 86,60 84,60 90,20 86,80
Gmean 70,42 71,53 66,87 70,59 68,69 68,81 71,29 69,47
Precision 67,83 65,61 74,16 68,42 68,54 66,08 75,50 69,30
F-measure 62,65 63,72 59,19 62,90 60,71 60,61 64,53 61,70
AUC 71,70 72,27 70,03 71,90 70,54 70,29 73,27 71,20
CA 75,78 75,39 76,30 76,04 75,39 74,61 78,39 75,91

(The best results are presented as bold numbers, H = hidden node number, BCN = base classifier number).
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respectively for RF (NN), RF (PSO-NN), RF (ABC-NN) and RF (ScPSO-
NN) structures.

With regard to the results on the PID dataset (Table 7); opti-
mum node numbers were 20, 20 and 8 respectively for PSO-NN,
ABC-NN and ScPSO-NN techniques. Optimum base classifier num-
bers of RF (NN), RF (PSO-NN), RF (ABC-NN) and RF (ScPSO-NN)
were 10, 20, 10 and 35, respectively.

As seen in trials on the WBC dataset (Table 8); optimum node
numbers of PSO-NN, ABC-NN and ScPSO-NN were found as 6, 18
and 4, respectively. Optimum base classifier numbers were 15,
40, 15 and 10 respectively for RF (NN), RF (PSO-NN), RF (ABC-
NN) and RF (ScPSO-NN) structures.

3.2.2. Performance comparison based on 7 metrics
We acquired optimum operation conditions at Section 3.3.1. In

this part, 7 metrics based TSS values (TSS (7 metrics)) were brought
together in every dataset for all classifiers. Table 9 shows the per-
formance comparison based on TSS (7 metrics).

According to Table 9;
With the BLD dataset, the best TSS value was 5 belonging to the

RF (ScPSO-NN) structure. With the HS dataset, the RF (ScPSO-NN)
obtained the best scores on 4/7 of the statistical metrics meaning
that the TSS of the RF (ScPSO-NN) is 4. With PD, the best TSS
was 3 obtained by RF (ScPSO-NN) and RF (ABC-NN) architectures.
With PID, RF (ScPSO-NN) and RF (NN) achieved the 3 best scores
in 7 metrics. With WBC data, RF (ScPSO-NN) was the best again
with a TSS value of 3. In brief, RF (ScPSO-NN) obtained the best
scores on 18/25 of the trials with 5 datasets, while the second best
algorithm (RF (ABC-NN)) achieved the best scores on 7 of 25 differ-
ent conditions. As a result, it is obvious that if a comparison based
on TSS (7 metrics) is realized, RF (ScPSO-NN) is the best structure
among other options in binary-medical pattern classification.



Table 8
Optimum values for variable parameters (on WBC).

Classifier H 4 6 8 10 12 14 16 18 20

PSO-NN (H = 6) Sensitivity 97,49 99,58 81,17 94,14 95,82 96,23 94,14 97,49 94,56
Specificity 96,62 95,95 94,14 96,62 95,72 95,95 96,62 96,17 96,85
Gmean 97,05 97,75 87,42 95,37 95,77 96,09 95,37 96,83 95,70
Precision 93,95 92,97 88,18 93,75 92,34 92,74 93,75 93,20 94,17
F-measure 95,69 96,16 84,53 93,95 94,05 94,46 93,95 95,30 94,36
AUC 97,06 97,76 87,66 95,38 95,77 96,09 95,38 96,83 95,70
CA 96,93 97,22 89,60 95,75 95,75 96,05 95,75 96,63 96,05

ABC-NN (H = 18) Sensitivity 93,72 97,07 93,72 95,82 95,40 94,56 93,31 97,49 95,82
Specificity 96,17 95,27 95,95 96,40 96,40 96,17 96,62 96,40 95,95
Gmean 94,94 96,17 94,83 96,11 95,90 95,36 94,95 96,94 95,88
Precision 92,95 91,70 92,56 93,47 93,44 93,00 93,70 93,57 92,71
F-measure 93,33 94,31 93,14 94,63 94,41 93,78 93,50 95,49 94,24
AUC 94,95 96,17 94,83 96,11 95,90 95,37 94,96 96,94 95,88
CA 95,31 95,90 95,17 96,19 96,05 95,61 95,46 96,78 95,90

ScPSO-NN (H = 4) Sensitivity 98,33 95,40 50,21 95,82 91,63 95,40 96,65 95,40 95,40
Specificity 96,40 96,85 96,17 96,85 96,62 96,62 96,62 96,17 95,72
Gmean 97,36 96,12 69,49 96,33 94,09 96,01 96,64 95,78 95,56
Precision 93,63 94,21 87,59 94,24 93,59 93,83 93,90 93,06 92,31
F-measure 95,92 94,80 63,83 95,02 92,60 94,61 95,26 94,21 93,83
AUC 97,36 96,12 73,19 96,33 94,13 96,01 96,64 95,78 95,56
CA 97,07 96,34 80,09 96,49 94,88 96,19 96,63 95,90 95,61

Classifier BCN 5 10 15 20 25 30 35 40

RF (NN) (BCN = 15) Sensitivity 93,72 96,23 96,65 94,98 95,82 96,65 94,14 96,65
Specificity 97,30 96,17 97,30 97,30 97,52 96,62 97,30 96,85
Gmean 95,49 96,20 96,97 96,13 96,67 96,64 95,71 96,75
Precision 94,92 93,12 95,06 94,98 95,42 93,90 94,94 94,29
F-measure 94,32 94,65 95,85 94,98 95,62 95,26 94,54 95,45
AUC 95,51 96,20 96,98 96,14 96,67 96,64 95,72 96,75
CA 96,05 96,19 97,07 96,49 96,93 96,63 96,19 96,78

RF (PSO-NN) (BCN = 40) Sensitivity 95,40 97,07 97,49 97,49 97,49 97,07 97,49 98,33
Specificity 96,62 97,30 97,07 96,62 96,85 97,07 97,07 96,85
Gmean 96,01 97,18 97,28 97,05 97,17 97,07 97,28 97,58
Precision 93,83 95,08 94,72 93,95 94,33 94,69 94,72 94,38
F-measure 94,61 96,07 96,08 95,69 95,88 95,87 96,08 96,31
AUC 96,01 97,18 97,28 97,06 97,17 97,07 97,28 97,59
CA 96,19 97,22 97,22 96,93 97,07 97,07 97,22 97,36

RF (ABC-NN) (BCN = 15) Sensitivity 97,91 96,23 97,91 96,65 96,23 95,82 94,98 97,07
Specificity 95,95 97,52 97,07 97,30 96,40 97,07 97,30 96,62
Gmean 96,92 96,88 97,49 96,97 96,32 96,44 96,13 96,85
Precision 92,86 95,44 94,74 95,06 93,50 94,63 94,98 93,93
F-measure 95,32 95,83 96,30 95,85 94,85 95,22 94,98 95,47
AUC 96,93 96,88 97,49 96,98 96,32 96,44 96,14 96,85
CA 96,63 97,07 97,36 97,07 96,34 96,63 96,49 96,78

RF (ScPSO-NN) (BCN = 10) Sensitivity 97,91 98,74 98,33 97,07 97,91 96,23 96,65 97,91
Specificity 96,62 96,62 96,40 96,40 96,62 97,52 96,17 96,62
Gmean 97,26 97,68 97,36 96,73 97,26 96,88 96,41 97,26
Precision 93,98 94,02 93,63 93,55 93,98 95,44 93,15 93,98
F-measure 95,90 96,33 95,92 95,28 95,90 95,83 94,87 95,90
AUC 97,26 97,68 97,36 96,73 97,26 96,88 96,41 97,26
CA 97,07 97,36 97,07 96,63 97,07 97,07 96,34 97,07

(The best results are presented as bold numbers, H = hidden node number, BCN = base classifier number).
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After the 7 metrics based TSS comparison was completed, we
wanted to enforce the possibilities and realize a comparison based
on the AUCmetric. The area under the ROC Curve (AUC) was chosen
among othermetrics according for the fact that AUCwas the second
most preferred metric in the pattern classification. In this part, only
the AUCmetric of classifiers was compared. For this reason, the AUC
values (stated in Table 9) were individually described in graphs for
every dataset. Fig. 4 shows the AUC based comparison.

According to Fig. 4;
On BLD, HS and WBC datasets, the RF (ScPSO-NN) structure

achieved the best AUC percentages (69.09%, 83.83% and 97.68%,
respectively). With PID, RF (NN) obtained the highest AUC
(73.51%). With PD, RF (ABC-NN) took the first place with an AUC
value of 81.29%. Finally, the TSS of RF (ScPSO-NN) is 3. Moreover,
ScPSO outperforms other base classifiers (NN, PSO-NN, ABC-NN)
on 4 medical datasets (except the WBC dataset). As seen in AUC
based comparison, an optimal choice, obtaining the best AUC val-
ues on all trials, is not available. However, RF (ScPSO-NN) obtains
the TSS value of 3 among five trials that brings this method into
the forefront more than others.

After the AUC based TSS comparison (TSS (AUC)), the CA metric
was used for comparing the classification methods, that owed to its
being the most preferable one in the pattern classification area.
Fig. 5 shows the classification performances via the CA results
taken from Table 9.

According to Fig. 5;



Table 9
Performance comparison of classifier systems (based on TSS).

Datasets Technique NN PSO-NN ABC-NN ScPSO-NN RF (NN) RF (PSO-NN) RF (ABC-NN) RF (ScPSO-NN)

BLD Sensitivity 42,07 46,21 45,52 51,03 44,14 32,41 48,28 55,17
Specificity 84,50 83,50 83,00 82,00 84,00 92,50 80,00 83,00
Gmean 59,62 62,12 61,46 64,69 60,89 54,76 62,15 67,67
Precision 66,30 67,00 66,00 67,27 66,67 75,81 63,64 70,18
F-measure 51,48 54,69 53,88 58,04 53,11 45,41 54,90 61,78
AUC 63,28 64,85 64,26 66,52 64,07 62,46 64,14 69,09
CA 66,67 67,83 67,25 68,99 67,25 67,25 66,67 71,30

TSS 0 0 0 0 0 2 0 5

HS Sensitivity 72,50 78,33 80,00 80,83 80,00 78,33 76,67 78,33
Specificity 78,67 81,33 82,67 83,33 85,33 88,67 90,67 89,33
Gmean 75,52 79,82 81,32 82,07 82,62 83,34 83,37 83,65
Precision 73,11 77,05 78,69 79,51 81,36 84,68 86,79 85,45
F-measure 72,80 77,69 79,34 80,17 80,67 81,39 81,42 81,74
AUC 75,58 79,83 81,33 82,08 82,67 83,50 83,67 83,83
CA 75,93 80,00 81,48 82,22 82,96 84,07 84,44 84,44

TSS 0 0 0 1 0 0 3 4

PD Sensitivity 85,03 93,20 91,16 89,12 91,84 100,00 95,92 100,00
Specificity 68,75 60,42 66,67 68,75 68,75 45,83 66,67 54,17
Gmean 76,46 75,04 77,96 78,27 79,46 67,70 79,97 73,60
Precision 89,29 87,82 89,33 89,73 90,00 84,97 89,81 86,98
F-measure 87,11 90,43 90,24 89,42 90,91 91,88 92,76 93,04
AUC 76,89 76,81 78,91 78,93 80,29 72,92 81,29 77,08
CA 81,03 85,13 85,13 84,10 86,15 86,67 88,72 88,72

TSS 1 0 0 1 1 1 3 3

PID Sensitivity 61,19 55,97 62,69 63,81 66,42 56,72 57,84 56,34
Specificity 82,60 86,40 83,40 83,40 80,60 86,60 86,60 90,20
Gmean 71,10 69,54 72,31 72,95 73,17 70,08 70,77 71,29
Precision 65,34 68,81 66,93 67,32 64,73 69,41 69,82 75,50
F-measure 63,20 61,73 64,74 65,52 65,56 62,42 63,27 64,53
AUC 71,90 71,19 73,04 73,60 73,51 71,66 72,22 73,27
CA 75,13 75,78 76,17 76,56 75,65 76,17 76,56 78,39

TSS 0 0 0 1 3 0 0 3

WBC Sensitivity 94,56 99,58 97,49 98,33 96,65 98,33 97,91 98,74
Specificity 96,85 95,95 96,40 96,40 97,30 96,85 97,07 96,62
Gmean 95,70 97,75 96,94 97,36 96,97 97,58 97,49 97,68
Precision 94,17 92,97 93,57 93,63 95,06 94,38 94,74 94,02
F-measure 94,36 96,16 95,49 95,92 95,85 96,31 96,30 96,33
AUC 95,70 97,76 96,94 97,36 96,98 97,59 97,49 97,68
CA 96,05 97,22 96,78 97,07 97,07 97,36 97,36 97,36

TSS 0 2 0 0 2 1 1 3

(The best results are presented as bold numbers).

Fig. 4. Comparison based on AUC.
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Fig. 5. Comparison based on CA.
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On BLD and PID datasets, the best performance was obtained
with RF (ScPSO-NN). Similarly, RF (ABC-NN) and RF (ScPSO-NN)
methods shared the highest CA rates in HS, PD and WBC datasets.
In addition, the performance of RF (PSO-NN) was equal to RF (ABC-
NN) and RF (ScPSO-NN) architectures in WBC. Consequently, the
TSS value of RF (ScPSO-NN) was 5, while the TSS of the second best
structure (RF (ABC-NN)) was 3. Among base classifiers, ScPSO-NN
achieves better results with BLD, HS and PID datasets. At this point,
it should be specified that CA rates of RF (ScPSO-NN) never falls
behind of other techniques (NN, hybrid NNs and other RF ensem-
bles) on all trials. In brief, RF (ScPSO-NN) is the most robust one
among others on account of TSS (CA) based comparison.

4. Discussions

RF uses Decision Tree classifiers and achieves approximately the
same performance with hybrid classifiers. In this study, the hybrid
NN based RFs were preferably generated, since these hybrid algo-
rithms could easily outperform with a base classifier like DT. For
this purpose, NN, PSO-NN, ABC-NN and ScPSO-NN algorithms were
settled in the base classifier unit of RF. Therefore, RF (NN) method
was formed, and RF (PSO-NN), RF (ABC-NN), RF (ScPSO-NN) archi-
tectures were designed.

With PSO-NN, ABC-NN and ScPSO-NN architectures, optimiza-
tion algorithms were used for updating the weight and bias param-
eters in NN. In other words, optimization algorithms were used
instead of backpropagation algorithm.

The test process was realized with a three-step statistical com-
parison for an objective view. With this aim, TSSs (7 metrics), TSSs
(AUC) and TSSs (CA) were calculated in five medical datasets for all
classification structures.

According to experiments;
Performance of RF (ScPSO-NN) is generally prior to other struc-

tures on 7 metrics based comparison. Also its performance is better
than others by means of obtained AUC values on average. More
importantly, its performance never falls behind of other structures
on CA based comparisons meaning that it is more robust than
others to changeable conditions (to different datasets).

As stated in Section 1, our second aim was to compare the
ScPSO with PSO and ABC algorithms in hybrid NNs and in hybrid
NN based RF. In other words, second aim was to reveal that ScPSO
prior to PSO and ABC algorithms is owed to providing coherence in
a complex system. This experimentation was performed, and
ScPSO demonstrated prior performance not only in NN, but also
in RF (Hybrid NNs). Herein, if a detailed scan is achieved between
hybrid classifiers via TSS (7 metrics), TSS (AUC) and TSS (CA),
ScPSO-NN demonstrates a surpassing performance on average in
comparison to other base classifiers because of its ability to hold
a better optimization algorithm. Besides, it is more coherent with
hybrid NN based RF than others, since RF (PSO-NN) and RF (ABC-
NN) obtains worse results than hybrid NNs in some trials with
CA based comparisons. Thus, we can infer that ScPSO technique
is more convenient to use in hybrid NNs and in hybrid NN based
RF. Furthermore, usage of RF (hybrid NNs) has a meaning if opti-
mization method in NN is chosen as ScPSO.

However, our first aim was to test RF (Hybrid NNs) in order to
obtain prior performance with a base classifier, hybrid classifiers,
RF (NN) and literature studies. As seen in results, hybrid NN
method plays a key role on performance of RF (hybrid NN) archi-
tecture. But, it’s seen that all hybrid NNs are not reliable to use
in RF (hybrid NN) method meaning that the useful optimization
algorithm should be chosen in NN for the obtainment of a robust
classifier. Otherwise, complex structure cannot outperform to
hybrid NN or RF (NN) techniques. As a result, the first three parts
of our first aim were realized and RF (ScPSO-NN) was found the
optimum choice among others. At the last part of our first objective
was accomplished as in indicated in Table 11.

As demonstrated in Table 10, RF (ScPSO-NN) is a promising
architecture that exhibits a challenging performance not only in
new hybrid methods, but also in other ensemble algorithms (Ran-
dom Forest, Rotation Forest with DT, Derivatives of RF, MmGA-
based ensemble optimizer).



Table 10
The comparison of RF (ScPSO-NN) with literature studies.

Dataset Study Classification structures Test method Classification accuracy (%)

BLD Hsieh et al. (2014) HRCNN %50–%50 training-test split 65
Aldape-Pérez et al. (2012) AMBC %50–%50 training-test split 65.40
Aldape-Pérez et al. (2012) Rotation Forest %50–%50 training-test split 68.98
Tao et al. (2015) MCSSVM 5-fold CV 69.52
Aldape-Pérez et al. (2012) Random Forest %50–%50 training-test split 70.14
Shi et al. (2015) FR-KECA %50–%50 training-test split 70.44
Li et al. (2011) PM-SVM(Gaus) 200 data? train 145data? test 70.85

This study RF (ScPSO-NN) 2-fold CV 71.30

HS Li and Leng (2015) SAMA 10-fold CV 66.96
Aldape-Pérez et al. (2012) Random Forest %50–%50 training-test split 79.25
Ozcift and Gulten (2011) RF classifier ensembles 10-fold CV 80.49
Aldape-Pérez et al. (2012) Rotation Forest %50–%50 training-test split 80.74
Kim et al. (2011) WAVE 10-fold CV 82.71
Aldape-Pérez et al. (2012) AMBC %50–%50 training-test split 83.33
Tan et al. (2014) MmGA-based ensemble optimizer 10-fold CV 83.68

This study RF (ScPSO-NN) 2-fold CV 84.44

PD Hsieh et al. (2014) HRCNN %50–%50 training-test split 75
Li and Leng (2015) SAMA 10-fold CV 81.84
Hsieh et al. (2014) PFHRCNN %50–%50 training-test split 82.4
Ozcift and Gulten (2011) RF classifier ensembles 10-fold CV 87.13

This study RF (ScPSO-NN) 2-fold CV 88.72

PID Li and Leng (2015) SAMA 10-fold CV 68.57
Aldape-Pérez et al. (2012) AMBC %50–%50 training-test split 70.57
Aldape-Pérez et al. (2012) Random Forest %50–%50 training-test split 74.34
Ozcift and Gulten (2011) RF classifier ensembles 10-fold CV 74.47
Xiang et al. (2015) GA-KNN Leave-One-Out 74.9
Couellan and Wang (2015) Bi-level SVM 5-fold CV 75.07
Li et al. (2011) PM�SVM(Gaus) 700 data? train 68data? test 75.36
Xiang et al. (2015) BPSO-KNN Leave-One-Out 75.5
Xiang et al. (2015) QBPSO-KNN Leave-One-Out 76.1
Tao et al. (2015) MCSSVM 5-fold CV 76.11
Xiang et al. (2015) BGSA-KNN Leave-One-Out 76.3
Aldape-Pérez et al. (2012) Rotation Forest %50–%50 training-test split 76.82
Xiang et al. (2015) BIGSA-KNN Leave-One-Out 77.9
Je and Je (2011) GEP-B 10-fold CV 78.12
Shi et al. (2015) FR-KECA 5-fold CV 78.12

This study RF (ScPSO-NN) 2-fold CV 78.39

WBC Hsieh et al. (2014) HRCNN %50–%50 training-test split 90
Hsieh et al. (2014) PFHRCNN %50–%50 training-test split 96
Kim et al. (2011) WAVE 10-fold CV 96.24
Couellan and Wang (2015) Bi-level SVM 5-fold CV 96.50
Aldape-Pérez et al. (2012) Random Forest %50–%50 training-test split 96.92
Zhang and Suganthan (2014) Random Forests ensemble 10-fold CV 97.16
Je and Je (2011) GEP-B 10-fold CV 97.21
Aldape-Pérez et al. (2012) Rotation Forest %50–%50 training-test split 97.21
Tan et al. (2014) MmGA-based ensemble optimizer 10-fold CV 97.21

This study RF (ScPSO-NN) 2-fold CV 97.36

(The best results are presented as bold numbers).

Table 11
Complete TSS comparison.

Statistical Test Datasets NN PSO-NN ABC-NN ScPSO-NN RF (NN) RF (PSO-NN) RF (ABC-NN) RF (ScPSO-NN)

TSSs (7 metrics) BLD +
HS +
PD + +
PID +
WBC +

TSS 0 0 0 0 0 0 1 5

TSSs (AUC) BLD +
HS +
PD +
PID +
WBC +

TSS 0 0 0 0 1 0 1 3

TSSs (CA) BLD +
HS + +
PD + +
PID +
WBC + + +

TSS 0 0 0 0 0 1 3 5

Sum of TSSs 0 0 0 0 1 1 5 13
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5. Conclusions

In literature, there are a few studies proving that the usage of RF
(NN) is more appropriate than the usage of RF (DT) (Koyuncu and
Ceylan, 2013). Likewise, RF (NN) outperforms the PSO-NN algo-
rithm as demonstrated in study of Koyuncu and Ceylan (2013).
In this study, it has been revealed that the usage of ScPSO-NN is
more appropriate than the usage of DT and NN methods in RF
ensembles. Moreover, ScPSO was deemed to be more reliable to
use in NN and NN based RFs. Table 11 is formed based on the
obtained results as being the summary of this work.

As evidenced in Table 11, the best complete TSS value is 13
achieved by RF (ScPSO-NN) architecture. Thus, it is obvious that
RF (ScPSO-NN) is more convenient to use than a base classifier, a
hybrid classifier, or other hybrid-NN based RFs. Furthermore, it is
concluded that the trade-off between complexity-performance
can be realized via coherence that is achieved through the
hybridization of RF and ScPSO-NN.

For biomedical determination and diagnosis, a challenging
ensemble structure (RF (ScPSO-NN)) has been obtained achieving
higher classification performance on five diverse medical datasets.

In future work, we wish to design a new ensemble classifier
technique based on different base classifiers and various hybrid
architectures.
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