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Malware is one of the top most obstructions for expansion and growth of digital acceptance among the
users. Both enterprises and common users are struggling to get protected from the malware in the cyber-
space, which emphasizes the importance of developing efficient methods of malware detection. In this
work, we propose a machine learning based solution to classify a sample as benign or malware with high
accuracy and low computation overhead. An integrated feature set has been amalgamated as a combina-
tion of portable executable header fields raw value and derived values. Various machine-learning algo-
rithms such as Decision Tree, Random Forest, kNN, Logistic Regression, Linear Discriminant Analysis
and Naive Bayes were adopted in the classification of malware. Using existing raw feature set and the
proposed integrated feature set we compared performance of each classifier. The empirical evidence indi-
cates 98.4% classification accuracy in the 10-fold cross validation for the proposed integrated feature set.
In the experiments conducted on the novel test data set the accuracy was observed as 89.23% for the inte-
grated feature set which is 15% improvement on accuracy achieved with raw-feature set alone.
Classification accuracy with only top N features (N = 5, 10, 15, 20, 25) are also experimented and it
was observed that with only top 15 features 98% and 97% accuracy can be achieved on integrated and
raw feature respectively.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction signature based detection are the two major classes of malware
Malicious program or malware is an intentionally written pro-
gram to indulge in various malicious activities, ranging from user’s
information stealing to cyber-espionage. The behavioral dynamism
exposed by the malware is dependent on various factors such as
nature of the attack, sophisticated technology and the rapid
increase in exploitable vulnerabilities. Malware attacks also
increased along with the rapid growth in the use of digital devices
and internet. The exponential increase in the creation of new mal-
ware in the last five years made the malware detection as a chal-
lenging research issue.1

Malware detection is the technique for identifying malware in
the end devices or networks. Signature based detection and Non-
detection techniques used today (Idika and Mathur, 2007).
Signature based detection techniques scan for the specific

sequence of bytes (i.e. signature) to detect malware, whereas
non-signature based techniques detect malware by observing
behaviors and patterns against predefined profile. Signature based
detection has high detection accuracy but is limited to the signa-
ture database, hence requires frequent updates. The major draw-
back is that it provides an attack window time (time between a
vulnerability discovery to signature update or patching) equal to
the sum of detection time, signature generation time and updating
time. Non-signature based detection can raise false positive or false
negative result but it totally eliminates the attack window time.
Non-signature based detection techniques can also detect
unknown, zero-day and modern malware whereas such malware
gets totally undetected in signature-based detection techniques.

This paper proposes a non-signature based approach to detect
malware on the basis of an integrated feature set prepared by pro-
cessing Portable executable (PE) file’s header fields values.

Various approaches exist in the non-signature based methods
such as heuristics, machine learning and hybrid techniques
(Treadwell and Zhou, 2009; Firdausi et al., 2010; Qin et al., 2010;
Schultz et al., 2001). The machine learning based malware classifi-
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cation utilizes the structural and behavioral features of malware
and benign programs to build a classification model to identify a
given sample program as malware or benign. Byte-n-gram,
opcode-n-gram, string present in binary and PE header fields val-
ues are main features used for training and testing malware classi-
fiers (Schultz et al., 2001; Abou-Assaleh et al., 2004; Moskovitch
et al., 2008; Santos et al., 2010; Bilar, 2007; Sami et al., 2010;
Shankarapani et al., 2011; Shabtai et al., 2009). Various fields of
PE header are used to discriminate between malware and benign
file. For example, in our pilot study we observed that the values
for NumberOfSections, SizeOfInitializedData, NumberOfSymbol, etc.
have larger deviation among malware and benign files.

In this proposed work, an integrated feature-based model is
made amalgamating the raw values of various fields of PE header
along with a set of derived features. The values for derived features
are computed by using header fields, binary file data and the
guideline proposed in Pietrek (1994). Derived feature set com-
prises entropy, year, packer information, the number of suspicious
sections, the number of non-suspicious sections and 5 other
boolean features, which are explained further in Section 3.2.2.
Aforementioned integrated features are extracted from the
pre-processed malware and benign samples.

Six machine-learning classifiers Logistic Regression, Linear Dis-
criminant Analysis, Decision Tree, Random Forest, K-Neighbors
Classifier and Gaussian Naive Bayes are trained on raw and inte-
grated feature set. All the six trained models are tested on various
classification metrics using train-test split method (70–30 ratio),
10-fold cross validation and a novel test dataset having 122 sam-
ples from different classes of malware and 30 benign samples that
are not used in training. To verify the improvement in the classifi-
cation accuracy and other metrics, the output from the raw and
integrated feature set are compared. The proposed method is also
compared with the existing model (Bai et al., 2014) which employs
only the raw feature set.

The proposed learning model for malware detection has four
major objectives as listed below:

� To build a feature set consisting of sixteen components with
values derived from PE header fields by comparing with the
guidelines provided for respective fields.
� To amalgamate an integrated feature set with derived and raw
features that would enhance the accuracy of maliciousness
detection of PE file.
� To develop a classification model with six machine learning
based classifiers using the integrated feature set.
� To empirically validate the proposed classification model with
six phase experimental setup which is aimed towards confirm-
ing the performance improvement using established classifica-
tion metrics.

The remainder of this paper is organized as follows. In Section 2,
background information and related works on malware classifica-
tion with respect to PE files using headers information are dis-
cussed. Methodology and details of different features are
discussed in Section 3. Experimental setup, results, and analysis
are given in Section 4. Conclusions derived from this work are pre-
sented in Section 5.

2. Related works

Malware detection is the process of differentiating malware
from benign programs. Both the malware sophistication and
anti-malware techniques have grown together in an arms race of
suppressing each other. Malware detection techniques
(Signature-based and Non-signature based) by its type of analysis
are categorized into static and dynamic. Static analysis does not
execute the sample whereas dynamic analysis executes the sample
in a controlled environment (Egele et al., 2012). Non-signature
based techniques use both kinds of analysis.

The proposed work is based on static analysis and so this
related work section explains some of the notable previous works
on non-signature based malware detection based on static analysis
of PE files. The proposed work has considered the PE files for mali-
ciousness detection. The reason for selecting PE for the experiment
is two folds. Primarily, it is one of the most used file formats due to
the wide use of Windows operating system and secondly, around
47:80% of files submitted to Virustotal2 are PE files. Fig. 1 shows
the percentage of different file types submitted to Virustotal. The
data taken from Virustotal are grouped to make the visualization
more clear and meaningful.

Schultz et al. (2001) introduced the usage of static features of
malware and benign programs with data mining methods for
malware classification. They experimented with different static
features of executable file such as used Dynamic Link Library
(DLL), DLL function calls, Application Programming Interface
(API) calls, and strings present in binary files. Different data mining
classifiers (RIPPER, Naive Bayes and Multi-Naive Bayes) were
trained with a standardized dataset of 3265 malware and 1001
benign programs. They claimed 97:6% accuracy for the
Multi-naive classifier, double than the signature-based detection
for unknown malware.

Shabtai et al. (2009) presented taxonomy for classifying detec-
tion methods of malware by machine learning methods based on
static features extracted from the executable. They explained var-
ious static features, among which PE features are grouped under
six categories as data from PE header and physical structure of
PE, Optional PE header information, Import section, Export Section,
Resource directory, and Version information.

Vinod et al. (2011) used three different types of features- mne-
monic n-gram, principal instruction opcodes, and PE header
entries. They used scatter criterion for feature selection on two
datasets created with pairing obfuscated and packed malware with
benign samples. The best performance of TPR 0:968% and FPR
0.138 was reported with Instance Based learner (IBk) on packed
malware dataset.

Ye et al. (2008) used API call sequence of PE file (extracted using
Import Address Table (IAT) field) with Objective Oriented Associa-
tion (OOA) mining. With aforementioned method, they achieved
an accuracy of 93:7% using Max-Relevance feature selection
methods.

Shafiq et al. (2009) extracted 189 features from PE file headers,
used three different feature selection methods (Redundant Feature
Removal (RFR), Principal Component Analysis (PCA) and Haar
Wavelet Transform (HWT)) to reduce dimension of feature set,
and trained five data mining classifiers (IBk, J48, NB, RIPPER &
SMO). This approach gave an accuracy of 99% and 0:5% of False
Positive (FP). They experimented with large data samples that have
more than ten thousand samples and the resultant classifier on
average took 0:244 seconds to scan a new file.

Wang et al. (2009) proposed a SVM based detection method
for detecting unseen PE malware. Using static analysis, PE
header entries were extracted and the SVM classifier was trained
using selected features. Classification model proposed by Wang
et al. (2009) detects viruses and worms with considerable
accuracy but the detection accuracy is lower for trojans and
backdoors.

Altaher et al. (2012) used API calls of DLL as major feature and
Information Gain (IG) to reduce the total number of features to 11.
They adopted evolving clustering methods to build the rule-based
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Fig. 1. Percentage of file type submitted to Virustotal (29 Oct- 4 Nov, 2016).
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classifier and compared their results (99% Accuracy and 1% FPR)
with Naive Bayes, Decision Tree, and Neural Network.

Liao (2012) selected only five fields of PE headers as the feature
and implemented a hand-crafted rule-based algorithm for classifi-
cation. Liaos algorithm achieved 99% accuracy and 0:2% FP for
unknown malware.

Yan et al. (2013) used all fields of PE headers except character-
istic and image resource NameID fields as numerical feature. Each
bit of characteristic, DLL and system call information are repre-
sented as boolean features. Two separate feature-sets (numeric
and boolean) were used to train Naive Bayes, kNN, SVM and Deci-
sion Tree classifiers. Four different feature selection methods i.e.
Relief, Chi-Square, F-statistic and L1-regularized SVC have experi-
mented with Decision tree and boolean feature-set.

Bai et al. (2014) built an initial feature set of 197 features,
extracted from different PE header fields. They used filter and
wrapper features selection method to reduce the features to 19
and 20 respectively. The selected features were used to train tree
based classifiers such as Decision Tree (DT), Random forest (RF),
Bagged and Boosted decision tree. The best result of these
approaches was mentioned as 99:1% accuracy, 0:998 AUC, and
1:4% FP.

Baldangombo et al. (2013) used the three feature set DLL calls,
API calls and PE header fields values as both separately and com-
bined. Information Gain and PCA were used for feature selection
and achieved a detection rate of 99:6%.

Belaoued and Mazouzi (2015) presented a real-time PE mal-
ware detection system, which is based on the analysis of the infor-
mation stored in the PE-optional header fields. Chi-square and Phi
coefficient were used for feature selection and with selected fea-
tures Rotation forest classifier was trained and tested.

Ahmadi et al. (2016) proposed a novel paradigm to group mal-
ware variants into different families. In this work, feature extrac-
tion and selection method are given more importance than
classification algorithms. Features are extracted from content and
the structure of the sample, so the proposed method will even
work on packed and obfuscated sample. They suggested that fea-
tures can be grouped based on different characteristics of malware
behavior, and their fusion is performed according to a per-class
weighting paradigm. Aforementioned feature engineering method
was experimented with Microsoft Malware Challenge dataset and
achieved a very high accuracy rate of 99:77%.

Table 1 presents details of previous works, which used only PE
header fields or information stored in Data Directories(DD) (DLL
and API calls) or a combination of both features to classify malware
and benign programs.

The available literature on malware detection using PE
header information as features indicates the following
observations:
1) Most of the works have only considered the raw value of PE
header field as features and used them with other complement-
ing features like DLL and API calls extracted from data directo-
ries, or features built using sections header. The proposed work
uses a set of features such as entropy, packer info, count of sus-
picious sections, etc. which are calculated on the basis of header
field value and specification provided in the guideline docu-
ment (Pietrek, 1994).
2) The malware samples used in previous works are either
unavailable due to various reasons or the datasets are private
to the company. If the samples are available, the pre-
processing task such as duplicate removal, file type identifica-
tion, and labeling that consumes much time could have been
avoided. The proposed work, therefore, has considered this
issue seriously and provided a standard labeled dataset and
code for doing further research on the topic.
3) Previous works have used PE raw features as the comple-
menting feature and used them with other features which in
turn improves performance and handle the risk of malware
which are carefully created with a benign header but malicious
payload in the body. In this proposed work, we have only con-
ducted experiments with feature set built from header values.
The purpose is to understand the discriminative limits of PE
header value based feature set and study the improvement in
performance of the proposed integrated feature set. Since the
use of PE header values is only effective as the complementary
feature set in anti-malware applications, the proposed work
does not suggest an independent use of it.

Considering aforementioned observations, we created an inte-
grated feature set by combining a set of derived features with
raw features selected from the three main headers namely DOS
header, File header and Optional header from the PE samples. When
validated with the test dataset created with separate malware and
benign samples, the integration of derived features with selected
raw features shows improvement in the classification accuracy
by 10%.
3. Methodology and feature set

The proposed work is carried out in four main steps: (1) raw
samples collection, (2) pre-processing (includes labeling), (3) fea-
ture extraction and 4) training & testing. Fig. 2 illustrates all four
steps of the work. In the proposed work, raw malware and benign
samples are collected from various sources (explained in sub-
Section 4.1) and are stored separately for further processing. Raw
samples must be processed to make use of machine learning train-
ing. The tasks in pre-processing step are file type identification,
duplicate removal, and labeling.

Labeling is an important task and it can be performed either
locally by installing one or more signature-based anti-virus engine
or using cloud-based service where multiple anti-virus engine
based scan could be performed in parallel. We labeled each sample
in both malware and benign group by cloud based service
Virustotal.

Labeled samples are then passed to feature extraction step
where PE header field’s values are extracted to create raw and inte-
grated feature set (explained in further Section 3.1 and 3.2). With
raw and integrated feature set, different machine learning algo-
rithms are trained and tested in last step (explained in Section 4
i.e. training and testing).

Feature generation is an important task of the proposed
work, Algorithm 1 for that lays down the important steps per-
formed to generate the raw and integrated feature set. All
labeled malware and benign samples along with crafted header



Table 1
Feature set used in Previous works.

Works Only Header Only Data Directory(DD) Header and DD Algorithms FPR Accuracy

Ye et al. (2008) No Yes No OOA Rule based NA 93.00%
Shafiq et al. (2009) No No Yes IBk,J48,NB,Ripper & SMO 0.50% 99.00%
Wang et al. (2009) Yes No No SVM NA 98.86%
Walenstein et al. (2010) No No Yes NB,DT,SVM,RF,IB5 .014 98.90
Vinod et al. (2011) No No Yes SMO, IBk,J48,Adaboost1J48, RF 0.13% 96.80%
Altaher et al. (2012) No Yes No NB, DT, NN and Evolving Clustering method 1.00% 99.00%
Liao (2012) Yes No No If-else-rules 0.20% 99.00%
Baldangombo et al. (2013) No No Yes J48, SVM, NB NA 99.60%
Bai et al. (2014) No No Yes DT, NB, BoostedTree and BaggedDT 1.40% 99.01%
Ahmadi et al. (2016) No No Yes XGBoost NA 99.77%

Objective-Oriented Association (OOA); Instance Based Learner (IBk); Decision Tree (DT) (J48 is a DT implementation present in WEKA); Naive Bayes (NB); Sequential Minimal
Optimization (SMO); Support Vector Machine (SVM); Random Forest (RF); Neural Network (NN).
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rules are input to the algorithm. Two loops, one for benign and
other for malware samples run to bring sample one by one for
processing. By calling FetchFieldsValue() procedure, all values are
extracted from different fields of PE sample file. Raw feature set
(i.e. RawF) is updated with all extracted values and appending
class label. For integrated feature set (i.e IntF), CheckRules() pro-
cedure is called by passing extracted values (i.e. RawValue) and
rules and it returned derived values which is used to update
integrated feature set along with FileValue and class label. This
CheckRules() procedure takes all raw values as input but rules
are checked against only selected fields (explained in Sec-
tion 3.2.2) and other field values are returned without any
change. ExtractFileFeatures() procedure takes a sample as input
and return other derived values such as file size, file entropy
related to file properties (explained in Section 3.2.2).

Algorithm 1. Feature Set Generation

1: procedure GENERATEFEATURESET W;X;U
2: a  countðWÞ .W: malware set
3: b  countðXÞ .X: benign set
4: RawF½aþ b�½�  0
5: IntF½aþ b�½�  0
6: for j 2 W do .Extract features from malware
7: Class 0
8: RawValue  FetchFieldsValueðjÞ
9: FileValue  ExtractFileFeaturesðjÞ
10: for Value 2 RawValue do
11: DerivedValue  CheckRulesðValue;UÞ

.U: Rules set
12: RawF  UpdateRawFðRawValue [ ClassÞ
13: IntF  UpdateIntFðFileValue [ DerivedValue [ ClassÞ
14: for j 2 X do .Extract features from benign
15: Class  1
16: RawValue  FetchFieldsValueðjÞ
17: FileValue  ExtractFileFeaturesðjÞ
18: for Value 2 RawValue do
19: DerivedValue CheckRulesðValue;UÞ
20: RawF  UpdateRawFðRawValue [ ClassÞ
21: IntF  UpdateIntFðFileValue [ DerivedValue [ ClassÞ
22: return(RawF; IntF)

3.1. Raw feature set

Raw feature set is created by extracting values from all fields of
three main headers (DOS header, File Header and Optional header,
including standard and Windows-specific fields) present in every PE
file. In total, raw feature set has 55 features in which 19 features
are from DOS header, 7 from File Header and rest 29 are taken from
Optional header. During training e_res and e_res2 fields are removed
from raw feature set as they are reserved (according to the docu-
ment) and have no values for the samples (including malware
and benign samples). So, the final raw feature set has 53 features
used for training and testing. PE file processing and field’s value
extraction are performed on Linux machine with the help of pefile
python module. Details about in Section 4.1 and 4.2. Eq. 1 shows
the features vector for raw feature set where RawF represents
raw feature set and DH, FH and OH represent the header’s fields
of DOS header, File header and Optional header respectively.

RawF ¼
DH ¼ DH1; � � �DH19f g[
FH ¼ FH1; � � � FH7f g[
OH ¼ OH1; � � �OH29f g[

2
64

3
75 ð1Þ
3.2. Integrated feature set

The integrated feature set is created by combining a few
selected raw features (explained in Section 3.2.1) and a set of
derived features (explained in Section 3.2.2). The proposed method
is designed to utilize the combinatorial benefits of both the raw
and derived features as integrated features. Integrated feature set
has a total of 68 features in which 28 are same as in raw feature
set, 26 boolean features are created by expanding individual flags
of Characteristics and DLLCharacteristics from the File header and
Optional header Windows specific and 14 are derived features
(explained in further Section 3.2.2). The rationale behind the
choice of using binary features for representing DLLCharacteristic
and Characteristics is listed below:

� Using all bits of DLLCharacteristic and Characteristics as separate
binary features will provide more information about PE file than
a numeric value.
� The processing of boolean feature will be easier.
� We can see that only 3 binary features from DLLCharacteristic
and Characteristics are in top 10 features and hence other fields
can be neglected.

Table 2 summarized the count for raw features, expanded raw
features and derived features present in integrated feature set.

Characteristics is one of the important fields under File Header
and it comprises flags that indicate the attributes of the file. Differ-
ent flag values of Characteristics fields store different file charac-
teristic such as IMAGE_FILE_DEBUG_STRIPPED flag that tells
whether separate debug file is used or not. Most of the previous
works have used the integer value of this 16 bits field whereas in
the proposed work all 15 flags (as one bit is reserved for future



Fig. 2. Process diagram of proposed system.

Table 2
Integrated feature set.

Raw Expanded Derived Total

28 26 14 68
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use) used as boolean features for characteristic field and encoded
as FH_char0 to FH_char14.

DLLCharacteristics is an important field under Optional header
Windows-specific fields and contains information about DLL behav-
iors which are used by linker and loader. Various information is
encoded as flags which are represented by on/off bit in 16 bits.
For example, value 0x0040 (hexadecimal 0x0040 or decimal 64)
in this field indicates that DLL can be relocated at load time. Earlier
works have used decimal value of this field as feature whereas,
in the proposed work, all in-use bits are used as the boolean
feature. So, DLLCharacteristics field is coded as OH_DLLchar0 to
OH_DLLchar10 in proposed integrated feature set.

Eq. 2 shows the feature vector for integrated feature set where
IntF represents Integrated feature set and Raw has selected raw
features from DOS header(DH1 to DH6), File header (FH1) and
Optional header (OH1 to OH21) respectively. ExpandedRaw repre-
sents boolean features created by expanding flags present in Char-
acteristics (C1 to C11) and DLLCharacteristics (DC1 to DC15). Derived
represents the proposed derived features.
3 https://msdn.microsoft.com/en-us/library/windows/desktop/ms680198(v=vs.
85).aspx
IntF ¼
Raw ¼ fDH1 � � �DH6g [ fFH1g [ fOH1 � � �OH21gf g[
ExpandedRaw ¼ fC1 � � �C11g [ fDC1 � � �DC15gf g[
Derived ¼ D1 � � �D14f g

2
64

3
75 ð2Þ

The proposed integrated feature set is created with the assump-
tion that integrating raw and derived features will improve the
detection accuracy. We conducted rigorous experiments to vali-
date our assumption and find out that experimental results justify
the assumption. The details of used raw and derived features for
creating proposed integrated feature set are explained further in
Sections 3.2.1 and 3.2.2. Experimental setup, result, and analysis
are explained in Section 4.
3.2.1. Raw features
Raw features are those features for which values are directly

extracted from PE header field for use. In the proposed work, a
few of header’s field value is used directly, and the selection of
these header’s fields are made on the basis of comparing their sta-
tistical properties (mean and standard deviation) between mal-
ware and benign samples. As DOS header, NT and versions after
Windows 3.1 do not use DOS (Disk Operating System) header of
PE files, most of the fields are not useful. Only e_lfanew is impor-
tant which has offset of the first byte of new PE header but the pro-
posed work has used a total of 6 fields from DOS header out of total
19 fields, all six fields name are listed in A. File header is provided
after DOS header, which has abstract information about the whole
file. NumberOfSections and Characteristics are most important than
other fields. To know about total sections and type of files the linker
uses these two fields’ values. In the proposed work, only Num-
berOfSections is used as raw features while Characteristics field’s
value is used after converting into boolean according to the above
explained method. The Optional header has two sets of fields: stan-
dard fields and Windows specific fields. Eight standard fields are
present in PE32 and nine are in PE32+, these fields are similar to
COFF header of Linux system. Windows specific fields are totally
21 in number and have information that is required by the linker
and loader in window OS. Except for Magic, all other standard
fields are used as raw features in the proposed work, 13 windows
specific fields are used as raw features while DLLCharacteristics
field’s value used after converted into boolean as explained above.
For a complete list of raw features used in the proposed work
please refer Appendix A.
3.2.2. Derived features
Derived features are features that are derived from the raw

value of PE header by validating with a set of rules. The result of
this process is taken as the feature value. Choice for set of derived
features are made upon the guidelines given for PE headers’ field.3

Those fields which need to have a value from a predefined set of val-
ues as per the guidelines are chosen as derived features. Along with

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680198(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680198(v=vs.85).aspx


Fig. 3. Example of Valid and Invalid TimeDateStamp value.

Table 3
Raw and Derived features.

Features Raw Value Derived Values

Type Values

Entropy Binary value Integer [�1, 0–8]
Compilation Time Integer Boolean [0,1]
Section Name String Integer –
Packer Info NA Boolean [0, 1]
FileSize Integer Integer –
FileInfo String Boolean [0, 1]
ImageBase Integer Boolean [0, 1]
SectionAlignment Integer Boolean [0, 1]
FileAlignment Integer Boolean [0, 1]
SizeOfImage Integer Boolean [0, 1]
SizeOfImage Integer Boolean [0, 1]
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this, the fields whose values depend on another field are also added
to the derived feature set. During preprocessing, extracted values for
these fields are checked against the rules. The binary output of this
comparison is taken as the final value. As the values for these fields
are governed by aforementioned guidelines, tampering of their val-
ues signals potential threat. There is a high possibility that this tam-
pering of values is caused by malware.

Derived features are not values directly extracted from the
header’s field; instead, these are values that are amalgamated as
a result of comparing raw values against logical and documented
rules. They can either be Boolean or Integer. In the proposed work,
the structural and logical specifications of PE file are adopted from
a widely used document explaining structure of PE file (Pietrek,
1994) and online Microsoft’s MSDN document.4

For example, if we take TimeDateStamp field, the raw value will
be simply an integer indicating the number of seconds since 1969
or if an encoding is used by extracting package then it will be in
date format. We can see in Fig. 3 that ValidFile.exe has a valid date
whereas InvalidFile.exe does not have a valid date, now using the
TimeDateStamp raw value we will not have powerful feature so
the proposed work does not use these values directly as feature.
In the proposed work, TimeDateStamp field’s value is converted to
date and is compared with a range of valid date (From December
31st, 1969, at 4:00 P.M. to the date of the experiment) and the
resulted Boolean output is taken as features. Table 3 summarizes
all the considered derived values with its counterpart as raw val-
ues. It shall be observed that except for entropy all other derived
features have binary values. The reason for values of entropy is
explained in the following section.

Entropy can be defined as measure of efficiency of information
storage (Shannon, 1948). It is directly related to the packing of
the file, and packed file will have high entropy resulting in high
efficiency of information storage (Yonts, 2012). The pefile module
has one method named get_entropy() that calculates entropy of a
given section data. The result of this method is in the form of a
quantity of bits per byte and so the maximum entropy will be
8:0. With the inherent properties of measuring the degree of com-
pression, entropy is a very reliable feature to check packer and
malicious behavior. Some modern malware or malicious packers
try to reduce entropy by inserting zero bytes in data. It avoids
detection, as many AV software only react to high entropy files.
In the proposed work, the entropy of different section of PE and
whole file are also calculated and treated as features. As malware
have many different names for different sections, only standard
section names are considered as the feature and if section’s name
is present then their respective entropy are added to the feature
set, else ’�1’ is assigned as entropy value. In total, three features
(E_text, E_data, E_file) are used based on entropy values. (Markel,
2015; Markel and Bilzor, 2014) have used section’s entropy with
threshold values 7 and 1 to set value for two boolean features High-
Entropy and LowEntropy respectively. If any section of the corre-
sponding PE file has entropy greater than 7 then HighEntropy is
set to 1. When the entropy is less than 1, LowEntropy is set to 1.

The difference between (Markel, 2015; Markel and Bilzor, 2014)
and our study is in the way of using section entropy. In earlier
study entropy value is not attached with particular section and file
entropy is not used while in the proposed work, we have used
three features based on entropy. Out of three, two entropy values
are attached to two most frequent sections (.text,.data) of PE file
and one uses file entropy value.

File Creation Year or Compilation time is very useful in
identification of the malware from the benign program. Malware
4 https://msdn.microsoft.com/en-us/library/windows/desktop/ms680198(v=vs.
85).aspx.
usually has very suspicious year of creation such as years earlier
than 1980 or year beyond the current year, whereas the benign
programs have very genuine year of creation. 1980 is considered
as a starting year because the first DOS operating system was
launched5 in this year. File creation year can be calculated using
TimeDateStamp field value of File header for a given PE file. In the
proposed work, the calculated file creation year is checked within
the valid range of year i.e. 1980–2015, if the year is within the range,
then 1 is assigned as feature value else 0 is assigned indicating that
the sample has a suspicious year of creation.

Suspicious Section Name is also a very good indicator of mali-
cious file. A standard compiler gives well-defined name to each
section like .data, .text, .rdata, etc. It has been observed that, the
PE files built using certain non-standard tools tend to have random
section names. These types of sections are termed as suspicious.
Section names of each sample is extracted using sections field
value of PE header and these sections name are compared with a
set of standard section name (Pietrek, 1994), count of match and
non-matching section are assigned to two different feature vari-
ables TotalSuspiciousSections and TotalNonSuspiciousSections.
Perdisci et al. (2008) have also used number of suspicious sections
name as features for detecting packed and non-packed file.

Packer Info would be a potential indicator of malware and
benign program because, in our analysis, it is found that nearly
18% of malware sample are packed whereas it is only 13% for
benign samples. Both benign and malware can be packed but for
different purposes. Benign programs are being packed to protect
copyright and license key breaking attempt and also to stop
reverse engineering of programs. Attackers pack their programs
to bypass the signature-based detection because packed file
changes the byte structure of program and it becomes easy to sur-
pass the signature. In the proposed experiment, packer is a Boolean
feature and will have 0 if file is not packed and 1 if packed with any
packer. Packer information of each sample is collected using PEiD6

signature database with yara7 (a Python module for signature
matching).
5 http://windows.microsoft.com/en-IN/windows/history#T1=era0 [Accessed May
27, 2016].

6 http://www.aldeid.com/wiki/PEiD [Accessed May 27, 2016].
7 http://plusvic.github.io/yara/ [Accessed May 27, 2016]

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680198(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680198(v=vs.85).aspx
http://windows.microsoft.com/en-IN/windows/history#T1=era0
http://www.aldeid.com/wiki/PEiD
http://plusvic.github.io/yara/


8 http://virusshare.com/ [Accessed May 27, 2016]
9 http://download.cnet.com/ [Accessed May 27, 2016].
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File size is also used as a feature. We had initial assumption that
malware file and benign programs file size will have a large differ-
ence. Malware writers try to keep file size minimum which helps
them to distribute it over web hiding within another program.
Malware samples result smaller in size due to avoidance of Graph-
ical User Interface (GUI). Benign programs are free from such size
requirement and have genuine size as needed. All libraries and
external resources are used as needed to run the program effi-
ciently and effectively. Malware writers truncate the unused func-
tion and other external resources from their malicious program,
leaving selective API functions and DLL within programs. In previ-
ous works, file size has not been considered as a feature but in the
proposed work, we have taken this as a feature of type integer that
will have a file size in bytes.

FileInfo has set of strings, which contains the metadata about
the PE file such as FileVersion, ProductVersion, ProductName, Com-
panyName, etc. Benign programs incorporate a rich metadata while
malware writers avoid putting metadata. In the proposed work,
metadata information of all samples are tried to extract but it is
found that many of malware samples do not have FileInfo field or
other sub-section of this field. Set of all extracted strings about
metadata are large so it is not feasible to consider these strings
as features instead of that FileInfo feature is considered as Boolean
and 1 is assigned if a sample has FileInfo metadata else 0. A more
comprehensive feature set of metadata information can be consid-
ered but the proposed work is limited to the presence and absence
of the FileInfo metadata apart from its value.

ImageBase is a field in the optional header, which has the pre-
ferred address of the first byte of the image when loaded into
memory (Pietrek, 1994). The condition applied to this field is that
it must be a multiple of 64 k (641024). Default value for DLL is
0x10000000 (268435456 in decimal), Window CE exe is
0x00010000 (65536 in decimal) and 0x00400000 (4194304 in dec-
imal) for other Windows OS like Windows XP. To make this field
more useful, a pilot study is carried on the samples and it is found
that 94:55% malware samples have specified default value while
only 77:84% of benign samples have specified a default value
and all the value from both classes follow the condition of multiple
of 64 K. Value of ImageBase field is very specific to type of file (DLL,
exe etc.) So, malware authors do not tamper this field often which
is clear from the aforementioned percentage. With the aforemen-
tioned result, it is decided to consider this field as Boolean and val-
ues were checked against for default values and multiple of 64.

SectionAlignment is another field in the optional header and it
is the alignment (in bytes) of sections that determine when they
are loaded into memory. According to the Microsoft specification
(Pietrek, 1994), it must be greater than or equal to FileAlignment
and the default is the page size of the architecture. In the proposed
work, this field is treated as Boolean and is compared against the
specifications. If extracted value follows the specification then this
field will have a value 1 else will be assigned as value 0.

The value of FileAlignment field of optional header is the factor
(in bytes) that is used to align the raw data of sections in the image
file. Microsoft specification (Pietrek, 1994) states that this value
should be power of 2 (between 512 and 65536). Default value is
512 and if the SectionAlignment is less than the architecture’s page
size, then this value must match with SectionAlignment value. The
proposed work follows the given specification and considered this
as Boolean feature, with value 1 if the extracted value match the
specification else 0.

SizeOfImage gives the size (in bytes) of the image, including all
headers, as the image is loaded in memory (Pietrek, 1994). It must
be a multiple of SectionAlignment. This field is important to hide the
embedded code. To verify this assumption, the specified condition
is checked for malware and benign samples. It is found that almost
all benign samples follow the specification but approx 4% (3:87%)
malware samples do not follow the specification. To benefit the
classification process, since it got a significant proportion, this field
is also considered as Boolean and assigned value 1 if it matches the
specification otherwise 0.

SizeOfHeaders has value that is equal to the combined size of
MS-DOS stub, PE header and Section headers, and is rounded to a
multiple of FileAlignment. This specification is also validated for
malware and benign samples. Among benign samples, 16% did
not follow the specification while 78% of malware samples did
not follow the specification. In the proposed work, this field is con-
sidered as Boolean and assigned 1 if extracted value follow the
specification else 0 is assigned.

The rationale for converting numeric values into boolean is
to incorporate semantics in feature representation. For example,
the feature CompilationTime holds TimeDateStamp which belongs
to 32-bit Integer type. In the proposed work, instead of repre-
senting a numeric value, the semantic of earliest file creation
date is used as a delimiter to convert the value into boolean
representation. Though this looks like losing some content in
the original field, it provides an advantage of proper identifica-
tion with respect to legitimate and tampered value. Moreover,
binary representation would lead to simpler processing and
build a robust classifier. The core idea of this approach is to
harness the value of the field with respect to the context of
malware identification. Similar logic is adopted for all other
derived features. The empirical validation of this approach is
provided with the help of the analysis of experimental results
illustrated in Section 4.3 (Result Analysis).

David et al. (2016) have also presented and discussed the struc-
tured analysis of many of aforementioned fields and stated that
considering these as features can enhance the malware detection
rate. Among aforementioned derived features, six features i.e.
CompilationTime, FileInfo, SectionAlignment, FileAlignment,
SizeOfImage, and SizeOfHeader can be modified by an attacker
without affecting of the execution of the program. This inference
is derived on the basis of comparative analysis between benign
and malware samples present in the dataset.
4. Experimental setup, results and analysis

4.1. Dataset preparation

To evaluate the proposed work and create raw and integrated
feature set, malware and benign samples are collected. Malware
samples are collected from virusshare8 and benign samples are
taken from freshly installed Windows XP and Windows 7 program
files. Some of the benign samples are also collected from online free
software archive.9 Apart from this dataset, a separate test dataset
(explained in detail in Section 4.3.3) is also created for validation
purpose which has 129 malware samples of different type and 30
benign samples. Collected malware and benign samples can have
duplicate sample (same sample with a different name) and that will
affect the classification of trained model. To identify and remove
such duplicate samples using filename alone is not correct as it
can lead to errors, so we used hashing technique (MD5) to create file
hash. Using hashes, retain the unique sample in both malware and
benign group.

In the proposed work, only PE files (exe, DLL etc.) are considered
and so it is necessary to select PE files alone. There are many meth-
ods available for file type detection, among them we have used
Linux’s file utility to get the file type of each sample and with the
Python script we processed output retaining the PE files.

http://virusshare.com/
http://download.cnet.com/


Table 4
Different metrics for measuring performance and comparison.

Metric Formulae Description

True Positive (TP) count() Total malware which predicted as
malware

False Positive (FP) count() Total benign which predicted as
malware

True Negative (TN) count() Total benign which predicted as
benign

False Negative (FN) count() Total malware which predicted as
benign

Accuracy TPþTN
TPþFPþTNþFN Rate of correct predictions

Precision FP
TNþFP Proportion of predicted malware

which are actual malware
Recall/TPR TP

TPþFP Proportion of actual malware which
are predicted malware

F-measure 2� precision�recall
precisionþrecall Harmonic mean between precision
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To have an accurate and robust feature set for training and test-
ing, it is necessary to verify the class label of each sample. Among
the local installed Anti-virus engines and online multiple engines
scanning, we selected online malware scanning service, Virusotal
for labeling. Virusotal offers API-based service which helped to
automate the scanning process, we used this service to verify the
class label of each sample present in the dataset. Virusotal provides
scan result of multiple anti-virus engines running in parallel. The
selection of AV engines are made based on AV-test10 ranking. As
the leading AV engines (Top n) are given priority instead of treating
all engines equal, this approach enhances the probability of more
accurate labeling. The decision on the class label is made using Eq. 3.

CLðMjB; SÞ ¼
M; If ðE1ðSÞ _ E2ðSÞ _ . . . EnðSÞÞ;
B; elseIf ð!ðE1ðSÞÞ ^ !ðE2ðSÞÞ ^ . . . !ðEnðSÞÞÞ

ftðE1Þ < tðE2Þ < . . . tðEnÞg

8><
>:

ð3Þ

From Eq. 3 it is clear that a malware label is assigned to the
sample S, if any of the scanning engine among E1 to En returns pos-
itive whereas a benign label is only assigned to the sample S if all of
the scanning engines return negative. In Eq. 3, the AV-test rank of
engine Ei is represented as tðEiÞ.

After performing the aforementioned pre-processing steps, the
final dataset had 2488 benign and 2722 malware samples. The size
of the dataset is in alignment with the common standards adopted
in machine learning based malware detection research studies
(Schultz et al., 2001; Belaoued and Mazouzi, 2015). However, a lar-
ger dataset size shall strengthen the classifier and the performance
metrics shall improve than the values reported currently in Sec-
tion 4.3 (Result Analysis). All these samples are passed on to a fea-
ture extractor where the different header’s field values are
extracted from the each data sample using pefile11 python module.
It is very efficient and well accepted Python module for PE file
processing.

The raw feature set is created by just appending class label with
each set of values extracted from all samples.

For creating integrated feature set, we have selected raw values
and set of derived features. Raw values are retained from the pre-
vious step and for derived features, a python script is written
which has methods to check selected field’s value with pre-
defined rules (based on MSDN document) and return the result
as feature’s value. As explained in Algorithm 1, all extracted field
values are passed and only selected fields are checked for derived
features. Appending selected raw with returned derived values
and class label we created the integrated feature set. Some sample
headers fields’ values are not readable which is the result of obfus-
cation and hence such samples are neglected by the extractor.

4.2. Experimental system

To validate the proposed idea, an experimental environment is
created with Ubuntu Operating system running on Intel(R) Core
(TM) 2 Duo CPU E7400@2.80 GHz processor and 4 GB of primary
memory and 320 GB of secondary memory. Ubuntu system helps
to stop infection of the experimental system as samples are tar-
geted for Windows based OS. Due to static analysis, computation
cost is very low and hence all experiments are carried on the nor-
mal end-host system. Scikit-learn (Pedregosa et al., 2011), a
Python-based machine learning tool is used to run all the experi-
ments. It is used to build and test the performance of different clas-
sifiers with raw, integrated and test dataset. Train-test split, 10 fold
cross-validation and supply of test dataset testing methods of
Scikit-learn are used to perform various training and testing based
10 https://www.av-test.org/en/antivirus/home-windows/.
11 https://github.com/erocarrera/pefile [Accessed May 27, 2015].
experiments. It helps in comparing the performance of various
models on many metrics such as accuracy, recall, precision and
f1-measure.

Scikit-learn has the implementation of many of well recognized
machine learning algorithms such as Decision Tree (DT), Logistic
Regression (LR), Random forest, etc. We selected one algorithm
from each category which are grouped on the basis of underlying
theoretical approaches such as tree-based, Bayesian or
probability-based, instance-based, dimensionality reduction-
based and ensemble-based algorithms. Six algorithms Logistic
Regression (LR), Linear Discriminant Analysis (LDA), Random For-
est (RF), k-Nearest Neighbours (kNN), Decision Tree (DT) and Gaus-
sian Naive Bayes (NB) are selected finally and used throughout all
experiments. All the aforementioned algorithms are trained and
tested with various configurations and different datasets (result
of these are present in further Sections 4.3.3, 4.3.2, 4.3.3 and 4.3.5).

4.3. Result analysis

Various experiments are conducted by training classifiers with
Raw Feature (RF) set (that have only PE headers field value as fea-
ture) and Integrated Feature (IF) set (which has a few selected PE
fields’ value and derived features).

Accuracy, Precision, Recall, F-measure and Receiver Operating
Characteristic (ROC) curve are used as performance metrics. These
performance metrics with other primitive metrics are explained
with formulae in Table 4.

In this subsection result of each experiments with analysis is
presented.

4.3.1. Train-test split
The aim of this experiment is to study the performance of the

proposed integrated feature set by splitting the dataset into two
parts with 70 : 30 ratio for training and testing respectively.
Train-test split is a method of splitting the dataset into two parts,
training, and testing. It takes the percentage as splitting threshold.
Training dataset is used for training the machine learning algo-
rithm while testing dataset tests the classifier’s performance. We
use 70 : 30 ratio for splitting our raw and integrated feature and
hence 70% of the dataset used to trained classification algorithms
and 30% is used for testing.

The result of various classifiers’ performance on different met-
rics with train-test split is summarized in Table 5. It can be
observed that NB (accuracy 50� 60%) performance is minimum
while performance of Random Forest (accuracy 97.47% and
98.78% on raw and integrated feature set respectively) is best
and recall
ROC area/AUC 2D curve of

TPR/FPR
Area Under the ROC

https://www.av-test.org/en/antivirus/home-windows/
https://github.com/erocarrera/pefile


Table 5
Classifiers result on train-test (70–30) split.

Classifier Accuracy Precision Recall F1-score

RawF IntF RawF IntF RawF IntF RawF IntF

LR 77.06 78.12 0.81 0.80 0.77 0.78 0.76 0.77
LDA 91.71 92.45 0.92 0.93 0.92 0.92 0.92 0.92
RF 97.43 98.78 0.97 0.99 0.97 0.99 0.97 0.99
DT 96.47 97.12 0.96 0.97 0.96 0.97 0.96 0.97
NB 56.04 50.09 0.74 0.77 0.56 0.58 0.48 0.51
kNN 94.73 90.79 0.95 0.91 0.95 0.91 0.95 0.91

Fig. 4. ROC curves for different classifiers with train-test split method.

Table 6
Comparison of classifiers’ accuracy with 10-fold cross-validation.

Classifier Accuracy Difference

Integrated Raw

LR 0.600 0.742 �0.142
LDA 0.923 0.874 +0.049
RF 0.984 0.977 +0.007
DT 0.974 0.960 +0.014
NB 0.583 0.578 +0.005
kNN 0.899 0.928 �0.029
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among all classifiers on both datasets, and the integrated feature
set is performing better (accuracyþ 1:31%) than the raw feature
set. Other classifiers also show better performance on all metrics
except kNNwhich gives better result on raw features than the inte-
grated feature. Fig. 4 shows the ROC curve for classifiers trained
and tested on raw and integrated feature set. ROC and Area Under
Curve (AUC) values also indicate similar performance as other met-
rics, proving that the integrated feature set have better AUC value
than the raw feature set. Random forest performance is best among
all other classifiers.

4.3.2. 10-fold cross validation
The aim of this experiment is to empirically validate the perfor-

mance generalization of proposed integrated feature set indepen-
dent from the dataset utilized for the current experimental setup.
Train-and-test method of validation has two main limitations, first,
in a single train-and-test experiment, the holdout estimate of error
rate will be misleading if we get a split which does not represent
each class sample proportionally. Second, it reduces the training
samples which would degrade the performance of the classifier.
To overcome these limitations, a method more robust for valida-
tion, cross-validation method is used. Cross-validation is repre-
sented as k=n� fold where k or n represent the number of folds
the dataset will be split and the number of times the training
and testing will be done. For a k-fold cross-validation, the dataset
will be split in k folds and for k times the k� 1 fold dataset will
be used for training and the one fold left out will be used for test-
ing. The final result is given as the average of all k folds.

We have performed a 10-fold cross-validation of all classifiers on
raw and integrated features. For comparison, we have measured the
accuracy of each classifier for both raw and integrated features.
Table 6 shows the10-fold cross-validation outputof all the classifiers.
It canbeobserved thataccuracyofall classifiers isdecreasedbynearly
1% than the accuracy achievedunder test-split validationand thedif-
ference column clearly shows that integrated feature set is perform-
ing better than raw features. Four classifiers (LDA, RF, DT, and
GaussianNB) have higher accuracy rate while other two classifiers
(LR and kNN) have a very close accuracy of the raw feature set.
Fig. 5 shows the box plot output of classifier’s accuracy collected dur-
ing 10-fold cross validation. It is observed that Random forest and
Decision Tree have high accuracy and low variation where others
have more variation with low accuracy.

Among the classifiers, with the same configuration, Random
forest consumed the highest training time on both raw and inte-
grated features set, 9.51 and 8.25 seconds respectively, and Deci-
sion Tree has taken lowest training time for both raw and
integrated features set, 0.83 and 0.6 seconds respectively. It is also
observed that training time is less for integrated features set, for
example, both RF and DT have taken less time than raw feature set.

4.3.3. Testing with new test dataset
The aim of this experiment is to test the performance of the pro-

posed integrated feature with new samples which represent the



Fig. 5. Box plot for different classifiers’ accuracy with 10-fold cross validation.

Table 7
Type of malware samples and count in test dataset.

Malware Type Virus Worm Trojan Bot Spyware Downloader Backdoor Total

Initial Count 20 20 20 9 20 20 20 129
After extraction 5 18 19 7 20 13 20 102

Table 8
Classifiers performance on test dataset.

Classifier Accuracy Precision Recall F1-score

RawF IntF RawF IntF RawF IntF RawF IntF

LR 73.48 70.00 0.77 0.77 0.73 0.70 0.75 0.72
LDA 81.82 88.46 0.85 0.90 0.82 0.88 0.83 0.89
RF 74.24 89.23 0.87 0.93 0.74 0.89 0.76 0.90
DT 74.24 83.85 0.86 0.90 0.74 0.84 0.76 0.85
NB 28.79 31.54 0.83 0.84 0.29 0.32 0.21 0.26
kNN 79.55 76.15 0.88 0.83 0.80 0.76 0.81 0.78
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real world scenario where classifiers get unknown and zero-day
samples. Test dataset is created with samples which are not
included in training dataset and is used to validate or test the per-
formance of trained classifier. After testing and comparing the per-
formance of classifiers on the raw and integrated feature set with
train-test and cross-validation method, we have also performed
experiments to validate the efficiency of the integrated feature
set with new test dataset. We have collected unique 129 malware
samples (which are not present in earlier collected samples) of dif-
ferent types and mixed with 30 benign samples randomly selected
from earlier collected samples.

Table 7 shows the count of each malware type that is included
in the test dataset. All the samples are downloaded from openmal-
ware public malware repository12 and the same label given by the
aforementioned archive is adopted. The MD5 hash comparison is
done to ensure that none of the training dataset sample is present
in the new test dataset. After pre-processing and feature extraction
step, the final test dataset has 102 malware and 30 benign samples
in total.
12 http://oc.gtisc.gatech.edu:8080 [Accessed May 27, 2016].
Aforementioned selected learning algorithms are trained with
the feature set having 5180 samples from both malware and
benign class, and their performance is validated with new test
dataset that has 132 samples. The result of various metrics on inte-
grated and raw features set with test dataset is summarized in
Table 8.

It can be observed from Table 8 that raw feature set based clas-
sifiers performed poorly on the new test dataset. The raw feature
set has an accuracy rate ranging between 73%� 81% for classifiers
reported low to high. The performance of integrated feature-based
classifier also reduces and the best classifier Random forest has
only 89:23% accuracy which is 9:17% less than the 10 folds
cross-validation result. With comparison to raw, integrated feature
set performance is better. Random forest and Decision tree had
only 74:24% accuracy on raw features, while 89:23% and 83:85%
are the accuracy rate achieved with Random forest and Decision
tree respectively on integrated features. It shall also be inferred
from the Table 8 that classifiers such as LR & kNN have performed
better with the RawF. However, the metric values fall in 70 % range
which is considered below average as per the current trend of
machine learning based classifiers. At the same time, the classifiers
such as LDA, RF, and DT which performed better with IntF have

http://oc.gtisc.gatech.edu:8080


Fig. 6. ROC curves of classifiers on Test dataset.

Table 9
Partial AUC for FPR range [0, 0.1] and [0, 0.2].

Classifier FPR = 0.1 FPR = 0.2

RawF IntF RawF IntF

LR 0.03 0.04 0.12 0.09
LDA 0.07 0.09 0.17 0.18
RF 0.10 0.10 0.19 0.20
DT 0.06 0.07 0.16 0.17
NB 0.02 0.02 0.04 0.05
kNN 0.09 0.07 0.19 0.17

Table 10
Comparing the proposed work with earlier work.

Works DT RF

Proposed work 97.4 98.4
Bai et al. (2014) 98.7 98.9
Markel and Bilzor (2014)(F-score) 97.0 –

Table 11
Top 10 Features from Raw and Integrated feature set selected with tree method.

Raw Integrated

Features Value Features Value

Characteristics 0.202 FH_Char12 0.213
ImageBase 0.107 OH_DLLChar2 0.082
DLL Charaticteristics 0.079 fileinfo 0.080
MajorSubSystemVersion 0.064 OH_DLLChar0 0.072
SubSystem 0.056 FH_Char0 0.064
MajorOSVersion 0.037 SubSytem 0.031
MinorSubSystem 0.030 E_data 0.027
e_Ifanew 0.029 E_file 0.025
SizeOfStackRes 0.028 OH_DLLChar6 0.0248
CreationYear 0.026 FH_Char3 0.0241
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comparatively higher margin than their RawF counterparts (Accu-
racy improvement(%): 6:64;14:99 and 9:61 for LDA, RF and DT
respectively). One of the potential reasons for this reduced perfor-
mance shall be the presence of samples belonging to new malware
families which are originally not part of the training dataset. These
zero-day samples shall be analyzed in detail to confirm the afore-
mentioned performance degradation that can be carried out as
an independent study which we could not do due to the challenges
such as samples clustering based on malware families for both
training and testing dataset.

Fig. 6 shows the ROC curve and AUC value of different classifiers
on raw (Ref. Fig. 6a) and and integrated (Ref. Fig. 6b) feature set. It
is clearly evident that integrated feature set is performing better
than raw feature set and have 5% more AUC value for Random for-
est and other classifiers.

4.3.4. Comparing performance on partial AUC
The purpose of this experiment is to test the performance of the

proposed integrated feature set with specific FPR intervals. Partial
AUC is suitable for this requirement as it provides information on
the effectiveness of a classifier in a given range of FPR. McClish
(1989), Thompson and Zucchini (1989) and Jiang et al. (1996) have
proposed and explained the functionality and capability of partial
AUC. Partial AUC metric suits the malware classification task as
its usage notes the classifier performance within low FPR area. Ear-
lier, the use of partial AUC are limited to test classifier built for
medical domains such as for classifying diagnosis result and dis-
ease detection, but due to the high damage caused even by a single
cyber security attack, researchers today focus on the performance
of classifiers within very low FPR area.

From Table 9, it shall be inferred that in FPR interval ½0;0:1�
integrated feature set is performing better than raw feature set
with the exception of the kNN classifier. Similarly in FPR interval
½0;0:2� integrated feature performance is better than raw feature
set except for LR & kNN classifiers. In both intervals, integrated fea-
ture set is able to achieve maximum value (0.1 and 0.2 respec-
tively) with the RF classifier and so with this result, it can be
suggested to use for malware classification task.

4.3.5. Comparison with previous works
In the previous four experiments, it is found that the proposed

integrated feature set is performing better than the raw features
set.

To further strengthen the accuracy performance of proposed
integrated features set, it is important to compare the proposed
work with earlier works based on PE file and its header informa-
tion. To the best of our knowledge, except (Markel and Bilzor,
2014), no other malware classification work has been carried out
based on only headers’ field values. David et al. (2016) have dis-
cussed the structured analysis of various fields of PE header and
stated that considering these features enhance the malware detec-
tion rate. There are few other works close to the proposed work but



Fig. 7. Decision Tree and Random forest accuracy on top N features.
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most of them have used PE header’s based feature as a comple-
menting feature and have used them with other features set such
as API & DLL calls, byte-n-gram, and opcode-n-gram.

Bai et al. (2014) have used API & DLL calls along with various
raw values of PE headers. Comparison with (Bai et al., 2014) work
will not state clear merits or demerits of the proposed work but
can be tested for approximate results.

Bai et al. (2014) work is reproduced and compared with the pro-
posed integrated feature set. The selection of previous work is
based on the similarity of work i.e. learning algorithms and the fea-
ture set used.

Table 10 summarizes the comparison result of the proposed
work with the previous works. From Table 10, it can be observed
that Random forest with proposed feature set has an accuracy of
98:4% which is only 0:5% less than the accuracy of Bai et al.
(2014) 98:9%. The improvement of 0:5% might be due to the use
of API & DLL calls along with PE headers’ field values.
4.3.6. Testing with selected features
Feature selection is the process of selecting a subset of relevant

features for use in model construction13. Generally, feature selec-
tion is performed before training and testing, and it reduces the fea-
ture set dimension as it selects only features with high
discriminative value. As the focus of the proposed work is to test
the classifiers’ performance with raw and integrated feature set, fea-
ture selection before training and testing is avoided on both feature
sets.

In the proposed work, we are interested in knowing the impor-
tance ranking of features in raw and integrated feature sets which
further helps to understand the difference and importance of fea-
tures among both sets. Among model based feature selection
methods (wrapper methods) tree based methods are easier to
apply and without much tuning, it can also model non-linear
relations.

We have used Extra Trees Classifier with 250 trees and all other
default settings (scikit-learn implementation) to get feature impor-
tance for raw and integrated feature set. It is an ensemble classifier
and by default Gini impurity is used to measure the quality of a
split. Table 11 lists out the top 10 features from raw and integrated
feature set. It is observed that in top 10 from the integrated feature
set, 3 features are derived features, 6 are boolean represented by
Characteristics and DLLCharacteristics raw features, SubSystem is
common in both which clearly indicates the importance of derived
features.
13 https://en.wikipedia.org/wiki/Feature_selection.
To verify, the suitability and efficiency of the proposed inte-
grated feature set, five subsets of features are selected from raw
and integrated feature set. Selections are made by considering
aforementioned feature ranking and five subsets are created as
top5, top10, top15, top20 and top25 having top 5, 10, 15, 20 and
25 features respectively. On these five feature set, Random forest
and Decision tree classifiers are trained with 10-fold cross valida-
tion and their accuracy is recorded and compared. Fig. 7 shows
the accuracy of RF and DT on raw and integrated feature set. From
Fig. 7, it is evident that the performance of raw feature is better till
top 15 features above which accuracy is constant. More features do
not improve accuracy any further whereas integrated feature set
have lower or equivalent performance below top 15 features but
get improved and have greater accuracy over top 15 than raw fea-
ture set. The reasons for this behavior is very obvious, Characteris-
tics and DLLCharacteristics is in top 5 features in raw dataset
whereas it is separated in various boolean features in integrated
feature set. Hence, features after top 15 provide constant accuracy
for the raw feature set. In the case of integrated feature set, more
than 15 top features improve accuracy and overtake the accuracy
of the raw feature set because of other informative features apart
from Characteristics and DLLCharacteristics based boolean features
and the top 20 features of integrated features set have 6 out of
14 derived features.
5. Conclusions

Detection of malicious PE file from benign is very important as
PE file format is the highly used file format, used in Windows OS.
The proposed work has provided a novel derived feature engineer-
ing technique that improves the performance of machine learning
based classifier for malicious PE file detection. The proposed tech-
nique used static analysis technique to extract the features which
have low time and resource requirement than dynamic analysis. It
has also compared the performance of the proposed integrated fea-
ture set with the raw feature set by training and testing different
classes of machine learning algorithms and found that the perfor-
mance of classifiers improved significantly with the new inte-
grated feature set. To record a robust and stable performance
metric from classifiers, validation is performed with four different
methods, train-and-test split, 10-fold cross validation, new test
dataset and Partial AUC. With all four methods, integrated feature
set is performed better than the raw feature set. The performance
of the proposed integrated feature set is also compared with the
work of Bai et al. (2014) who used PE headers’ fields’ values along
with DLL & API calls. The accuracy of the integrated feature set is

https://en.wikipedia.org/wiki/Feature_selection


Table A.12
List of header’s fields used as raw features.

Header Fields

DOS_HEADER(6/19) e_cblp, e_cp, e_cparhdr, e_maxalloc, e_sp, e_lfanew
FILE_HEADER(1/7) NumberOfSections
OPTIONAL_HEADER

(8 + 13)
MajorLinkerVersion, MinorLinkerVersion, SizeOfCode,

SizeOfInitializedData, SizeOfUninitializedData,
AddressOfEntryPoint, BaseOfCode, BaseOfData,
MajorOperatingSystemVersion,
MinorOperatingSystemVersion,
MajorImageVersion, MinorImageVersion, CheckSum,
MajorSubsystemVersion, MinorSubsystemVersion,
Subsystem,
SizeOfStackReserve, SizeOfStackCommit,
SizeOfHeapReserve,
SizeOfHeapCommit, LoaderFlags
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only 0:5% less than the Bai et al. (2014) work, and the probable
reason might be the use of DLL & API calls.

Contributions of the proposed work are as listed below:

� An integrated feature set is created, which has raw and derived
features, based on different header fields’ values of PE file. The
proposed integrated feature set improves the classification
accuracy of machine learning classifiers.
� The proposed work also provides an empirical evidence for
usability of different headers’ fields’ value of PE file as useful
discriminative features. Experiments’ result clearly suggest that
header fields’ raw values and values derived from these can be
used to classify malware programs from benign programs.

As a tangible outcome, the proposed work provides a pre-
processed dataset having 2722 malware and 2488 benign program
samples.14 Extracted and processed raw & integrated feature set is
also available for comparing future work with the proposed work.15

The proposed dataset is pre-processed following most of the
required metric for malware research suggested in Firdausi et al.
(2010). The dataset will help future researchers of this field to take
research on the further level by having such dataset in advance.

5.1. Limitations and Future works

In the result and analysis section (Ref. Section 4.3), we have
empirically observed that it is possible to build malware classifier
using header fields’ value alone as the feature and achieved a good
classification accuracy.

The real-world scenario is unpredictable and can be different
than experimental environment so to protect a sensitive system
from malware, it is not advisable to use only headers’ values based
classifier. For example, a carefully crafted malware would have a
benign header and malicious payload hidden in the body of PE file.
Hence, the proposed work is not suggesting the stand-alone use of
such classifier and also does not compete with other features like
(API & DLL call, byte-n-gram, and opcode-n-gram) based classifiers.
Instead, the proposed work is an attempt to complement existing
classifiers with a high accuracy and low computation based classi-
fier built on PE headers’ values. The proposed work also shows
improvement in accuracy using derived features in conjunction
with a subset of existing raw features over the accuracy of only
raw features. Currently, the proposed work is limited with PE file
format but as the proposed feature engineering method is very
generic, it can be extended to other file formats such as image,
pdf, audio and including mobile OS such as Android and iOS.

In current work, malware and benign samples’ application type
information is not taken into consideration. The impact of applica-
tion type on classification discrimination can be considered as
important future directions. The classification of PE file represent-
ing different application type such as multimedia, document pro-
cessing, device drivers, etc. shall be studied with both malware
and benign samples belonging to aforementioned application type.
For future study, the performance of a new feature set after com-
bining proposed integrated feature with another feature set can
be studied and an in-depth comparison with earlier works would
be performed. Another file format can be studied in future and
with feature engineering, the scope of similarly derived features
can be explored.

Appendix A. Raw features used in the proposed work

See Table A.12.
14 Available on email request (to minimize misuse).
15 www.github.com/urwithajit9/clamp.
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