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Data mining and machine learning approaches can be used to predict breast cancer recurrence. However,
real datasets often include missing values for various reasons. In this paper, a hybrid imputation method
is proposed with respect to the dependency between the attributes and the type of incomplete attributes
in order to especially improve the prediction of breast cancer recurrence. After splitting the dataset into
two discrete and numerical subsets, first missing values of the discrete fields are imputed using Bayesian
network. Then, using Tensor factorization, the integrated dataset, which comprises of the filled-subset of
the previous stage and numerical missing values subset, is constructed so that both continuous missing
values are imputed and the accuracy of imputation is enhanced. We evaluated the proposed method ver-
sus six imputation methods i.e. mean, Hot-deck, K-NN, Weighted K-NN, Tensor factorization and
Bayesian network on three datasets and used three classifiers, namely decision tree, K-Nearest
Neighbor and Support Vector Machine for recurrence prediction. Experimental results show that the pro-
posed method has as average 0.26 prediction improvement. Also, the prediction performance of the pro-
posed approach outperforms all other imputation-classifier pairs in terms of specificity, sensitivity and
accuracy.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nowadays, breast cancer is the second deadliest cancer in Iran.
After years of study and research, there are still many unanswered
questions facing researchers in various domains, such as predic-
tion, diagnosis and treatment. According to the latest statistics, in
Iran, the mean annual number of new cases of breast cancer is
approximately 10,000. Among these cases, approximately 2500
patients lose their lives (Sharfian et al., 2015). Women comprise
approximately 98% of breast cancer patients and it is worth men-
tioning that the average age of breast cancer diagnosis in Iranian
women is a decade lower than that of the world average
(Sharfian et al., 2015).
Recurrence is one of the major problems in breast cancer that
means possibility of regrowth of cancer cells in surgery or related
areas. The likelihood of post-surgery recurrence affects breast can-
cer patients’ lives at any time. Therefore, recurrence prediction is
the main factor for successful treatment of this disease (Kim,
2012). Even though, a large amount of patient information is col-
lected in medical datasets. To benefit from the collected data of
patients and increase the accuracy of prediction, a number of
researchers have utilized data mining and machine learning
approaches for predicting breast cancer (Choi and Jiang, 2010).
Classification algorithms are widely used for discovering valuable
information from datasets, which can be applicable in the real
world. The aim of classification is to predict a class label for each
existing sample in the dataset (Zheng et al., 2014). Based on num-
ber of features, number of instances, number of classes and the
degree of imbalance, results of classification approaches are
different.

However, datasets are not always complete. They often include
missing values in some samples. This is a major challenge in utiliz-
ing data mining approaches for breast cancer prediction. This may
occur due to different reasons, such as lack of response from the
patients, human errors or system faults for collecting information.
Although some of the learning algorithms can work with incom-
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plete data, most of them are not able to handle missing values.
They discard the samples that contain at least one missing value
or assign a valid value to the corresponding attribute (Zheng
et al., 2014; García-Laencina, 2015; Tutz and Ramzan, 2015;
Little and Rubin, 2002). Removing incomplete data is an acceptable
method but only when there is a little proportion of missing values
i.e., 5%. With the increase of missing ratio, using this method leads
to valuable information loss. Imputation of missing values is thus
necessary for making efficient predictions using data mining tools
(García-Laencina, 2015).

Since 1980, many techniques for missing data imputation have
been suggested (García-Laencina, 2015). Ref. Little and Rubin
(2002) mentions three patterns of missing values that can affect
the performance of imputation method which are: 1) Missing
Completely at Random (MCAR), when missing value belongs to
an instance that does not depend on either the observed data or
the missing data. 2) Missing at Random (MAR) in which missing
value belongs to an instance that only depends on the observed
data and not the missing data. And finally 3) Missing Not at Ran-
dom (MNAR), when missing value belongs to an instance that
depends on unobserved data. Most studies assume that the pattern
of missing values is MAR (García-Laencina, 2015; Dauwels et al.,
2012). Thus, in this research, the same assumption is made.

The main goal of this study is to propose an imputation method
using a hybrid of two methods to improve the prediction of breast
cancer recurrence. Due to existence of discrete and continuous val-
ues, especially in medical datasets, at first, we benefited from Baye-
sian network for imputation of discrete missing values. Then, we
have used reconstruction of the dataset by Tensor factorization
for improving the performance of imputation. In addition, we com-
pared the proposed method with the imputation based on Tensor
(Dauwels et al., 2012) and Bayesian model (Rancoita, 2014) and
some other well-known methods such as mean, Hot-deck, k-
nearest neighbor and Weighted K-NN on three datasets. Finally,
three classifiers namely, Support Vector Machine (SVM), Decision
Tree (DT) and K Nearest Neighbored (KNN) are applied on the
imputed datasets to predict breast cancer recurrence.

The remainder of this paper is organized as follows: Section 2
reviews previous studies that include both breast cancer recur-
rence prediction and imputation of the missing values. Section 3
describes the materials and methods that are used in this paper.
Section 4 proposes the new approach for imputation. Section 5
explains the details of the experimental studies and discusses the
results. Finally, Section 6 summarizes and concludes the paper.
2. Related works

In this section, previous works which are related to either breast
cancer recurrence prediction or missing values imputation are
reviewed. Jerez-Aragonés et al. (2003) proposed a combination of
decision tree and neural network to predict breast cancer recur-
rence during different periods of time based on clinical and labora-
tory data. A novel decision tree called control of induction by
sample division method (CIDIM), which is a beneficial tool for rep-
resenting the relationship among features, has been proposed to
select the most relevant diagnosis factors. Next, selected factors
have been used as inputs to neural network system. Sun et al.
(2010) examined the performance of a two-way approach to eval-
uate the prediction of breast cancer recurrence using three classi-
fiers (linear SVM, SVM-RFE (Wilin, 2009), and L1 Regularized
logistical regression (Ng, 2004). Two datasets, namely, Nature
(Van’t Veer et al., 2002) and JNCI (Buyse, 2006) were experimented,
from which one is used as training set and the other as test set.
They also developed a feature selection method for their approach.
Kim (2012) investigated a diagnostic model based on SVM to
predict breast cancer recurrence (namely BCRSVM) and it has been
compared with two other methods, i.e., Neural network and
Regression model. Wang (2014) proposed the combinations of
SMOTE, PSO, and three popular classifiers including C5, Logistic
Regression, and 1-NN for predicting 5-year survivability of breast
cancer patients. SMOTE is an over-sampling based method that
creates new synthetic instances in the minority class for balancing
the dataset. Feature selection is conducted using PSO algorithm as
well. Their results indicate that the hybrid of SMOTE, PSO and C5 is
the best framework among all possible combinations.

Batista and Monard (2003) proposed three imputation methods,
namely, Hot-deck, mean and k-nearest neighbor and compared
them on four datasets. These approaches where evaluated using
two methods namely, C4.5 decision tree and CN2 (Clark and
Niblett, 1989). Farhangfar et al. (2008) examined the effect of six
classifiers i.e., C4.5, k-nearest neighbor, RIPPER (Cohen, 1995),
Naïve Bayes and SVM with RBF and polynomial kernel on 15 data-
sets with missing ratios of 5%, 10–50% with 10% increments and
five imputation methods.

Jerez (2010) examined three statistical imputationmethods, i.e.,
mean, Hot-deck, and a hybrid of them and three Machine Learning
methods, i.e., k-nearest neighbor, self-organization maps (SOM)
(Kohonen, 1995) and multi-layer perceptron (MLP) (Bishop et al.,
2013) on breast cancer data. They also introduce breast cancer
recurrence prediction with neural network as their final objective.
The results of their work indicate that ML methods are better than
statistical algorithms. Dauwels et al. (2012) utilized Tensor (espe-
cially, CP and normalized CP factorization) for imputation of miss-
ing data on medical questionnaires. They compared the approach
with mean, k-nearest neighbor, and iterative local least square
(Cai et al., 2006) with missing ratios of 10%, 20% and 30%. The
experimental results suggest that Tensor imputation outperforms
the other methods.

Aydilek and Arslan (2013) proposed a combination approach of
optimized fuzzy c-means with support vector regression (Vapnik
et al., 1996) and genetic algorithm for imputation of missing val-
ues. They considered genetic algorithm for optimizing fuzzy c-
means parameters including number of clusters and weighting fac-
tor. The method is compared with three imputation methods,
namely fuzzy c-means, SVR genetic (SvrGa) and Zero imputation
with missing ratios of 1% and 5–25% with increment of 5%.

Although acceptable results are obtained in studies related to
prediction of breast cancer recurrence, they are not considered as
an improvement of recurrence prediction from the perspective of
missing values imputation, and their limitation is the use of old
statistical methods. Regarding previous missing data estimations,
it should be noted that most of them, fill the missing data irrespec-
tive of the dependencies between attributes and the type of incom-
plete attribute.

When facing missing values, classifiers often either remove the
instance containing missing value or impute it using various impu-
tation methods. Based on our researches and studies, we categorize
imputation models into four groups which are summarized in
Fig. 1. Although many other imputation methods fit in these cate-
gories, we mention only some instances. Also this paper chooses
representative methods from each group both to evaluate the
accuracy of the proposed method and create a set of new and
well-known methods.
3. Materials and methods

The following is a brief description of each imputation method
and each predictive model that is used in this paper. The
imputation methods are representative methods from the three



Fig. 1. Classification of missing values imputation methods.
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imputation modes including three statistical models, two ML-
based models and one mathematical-based model.
3.1. Imputation method

3.1.1. Mean/Mode imputation
Thismethod is oneof the earliest andmost popularmodels that is

known by different names such as mean imputation (Jerez, 2010),
mean substitution (Dauwels et al., 2012), most common method
(Purwar and Singh, 2015), etc. In this method, the missing value is
imputed by using the mean of observed data (for continuous attri-
bute) and the most frequent value (mode) (for discrete attribute)
of the corresponding attribute (Zheng et al., 2014; Little and Rubin,
2002; Cohen, 1995; Vapnik et al., 1996; Purwar and Singh, 2015;
Malarvizhi and Thanamani, 2012). Ref. (Malarvizhi and
Thanamani, 2012) states that imputation error rates of median and
standard deviation are less than that of the mean imputation
method. A disadvantage of this method which can be mentioned is
lack of attention to dependency between attributes.

3.1.2. Hot-deck imputation
Hot-deck is an old statistical model. The procedure is as follows:

each incomplete record is compared with all other examples and
missing value of the corresponding record is replaced by the value
of the same attribute of the most similar record. Mean and Hot-
deck belong to single methods, which means that they impute
the missing value with only a single sample but their main draw-
back is the lack of attention to the correlation between attributes.
On the other hand, the computational cost might be increased
because of comparison with every example (Clark and Niblett,
1989; Cohen, 1995; Purwar and Singh, 2015; Malarvizhi and
Thanamani, 2012).

3.1.3. K-Nearest neighbor imputation
K-NN (Cover and Hart, 1967) is one of the most frequently used

machine learning approaches. In this model, the missing value of
each example is imputed with k most similar neighbor values in
training space. The mean value of neighbors is used for numerical
attributes and the mode value is used for discrete attributes (Zheng
et al., 2014; Little and Rubin, 2002; Cohen, 1995; Vapnik et al.,
1996; Purwar and Singh, 2015). Two parameters play an important
role in the performance of imputation which are the number of
neighbors and the distance measurement. Euclidean distance is a
well-known distance measure for this purpose and we apply it in
our experiments as follows:

dp;q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðpi � qiÞ2
vuut ð1Þ
where n is the number of attributes of each instance and pi is the i th
attribute value in p instance. One of the disadvantages of KNN is its
high dependency on k and it often gives an acceptable and reliable
answer for k values between 5 and 10 while higher k impose nega-
tive effect on the performance of the imputation (Tutz and Ramzan,
2015). The K-NN imputation works on gene data better than mean
and Singular Value Decomposition (SVD) methods as presented in
Ref. (Troyanskaya, 2001). ‘Hot-deck’ is also known as the KNN
imputation where k = 1.

3.1.4. Weighted K-NN model
In the K-NN model, in order to impute the missing value, the

first neighbor and the k th neighbor are equally important, while
the first neighbor, in general, is more important than other neigh-
bors. Therefore, Weighted K-NN is defined as developed K-NN
model so that to any neighbor a specific weight is assigned where
the first neighbor (closest) has the highest weight value and the k
th neighbor (furthest) has the lowest weight value (Tutz and
Ramzan, 2015; SolaroEmail et al., 2017).

3.1.5. Tensor model
Tensors or multi-dimensional arrays are known as hypermatri-

ces. They are extensions of vectors (first-order tensor) and matrices
(second-order tensor) that introduce arrays of higher order
(N > 2). For example, a third-order tensor is an array with ele-
ments, Xi;j;k. Tensor factorization was introduced by Hitchcock
(Hitchcock, 1927). Tensor factorization is generally a computation-
ally expensive task but with a high precision (Yang, 2017). Tucker
and Canonical Polyadic (CP) are two tensor factorization models
which are commonly used. In particular, CP initially divides the
overall tensor into rank-one tensors and next, using tensor multi-
plication, most frequently used type of which is Kronecker, it
reconstructs the primary tensor. Kronecker product of two matri-
ces, A 2 RI�J and B 2 RK�L can be obtained as follows (Acar, 2009):

A� B ¼
a11Ba12B . . . a1JB

a21Ba22B . . . a2jB
. . . . . . . . . . . .

aI1BaI2B . . . aIJB

2
664

3
775 ð2Þ

Tensor reconstructs missing values with the linear combination
of other features. If x be considered as a three-rank tensor of size
I � J � K and R be assumed as the number of broken matrices or
rank of tensor, CP factorization is created by factor matrices A, B
and C of size I � R, J � R and K � R respectively such that the fol-
lowing equation holds for all values of i ¼ 1 . . . I, j ¼ 1 . . . J and
k ¼ 1 . . .K:

xijk ¼
XR
r¼1

airbjrckr ð3Þ
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The principal objective of CP factorization is minimizing the
reconstruction error rate of primary tensor so that sum of one-
rank tensors has the least difference with the original tensor and
the following f function has the lowest value (Wang et al., 2017).

f ðA;B;CÞ ¼
XI

i¼1

XJ

j¼1

XK

k¼1
ðxijk �

XR

r¼1
airbjrckrÞ

2
ð4Þ

The CP factorization cannot suitably impute the missing data
with high percentage of missing-ness; nevertheless, improved CP
model, namely, Weighted CP algorithm (CP-WOPT) has been pro-
posed so that a weight tensor with the same size as the original
tensor is considered for imputing missing values. Therefore, f func-
tion can be formulated as below:

f ðA;B;CÞ ¼
XI

i¼1

XJ

j¼1

XK

k¼1
fwijkðxijk �

XR

r¼1
airbjrckrÞg

2
ð5Þ

where w is a non-negative weight tensor which can be initialized as
follows for all i ¼ 1 . . . I, j ¼ 1 . . . J and ¼ 1 . . .K (Acar et al., 2009):

wijk ¼
1 if xi;j;k is know
0 if xi;j;k is unknow

�
ð6Þ
3.1.6. Bayesian network model
Bayesian network is known as belief network and it also

belongs to the family of probabilistic graphic models (Dauwels
et al., 2012; Franzin et al., 2017; Dempster et al., 1977; De
Campos, xxxx). This network is composed of a directed acyclic
graph (DAG) where nodes are associated to attributes that repre-
sent both dependency among attributes and a joint probability dis-
tribution ðPrMÞ over a collection of discrete variables. Bayesian
network can be denoted as a triple M ¼ ðG;X; PÞ where
G ¼ ðVG; EGÞ is the dependency graph of X variables including VG

as a set of m nodes (a node per variable) and EG as a set of edges
relationships between variables. P is a set of conditional probabil-
ities, PrMðXijPAiÞ, where PAi refers to the nodes which Xi depends
on them (called parents of Xi, it may be empty or a subset of vari-
ables VG). The main capability of Bayesian network is its Markov
structure, which means that each attribute Xi can be conditionally
independent of non-descendants while having its parent (paiÞ.
Bayesian network can show the joint probability distribution as
the following equation:

PrMðX1 . . .XmÞ ¼
Y
i

PrMðXijPAiÞ ð7Þ

Despite the fact that learning and inference are quickly per-
formed in Bayesian network, it has a major challenge. This method
is mostly used for datasets containing discrete, binary data where
every attribute Vi commonly has a finite number of values
(v i1 . . .v ini

Þ. Although it can be trained with continuous values
(Rancoita, 2014). There are generally two issues in Bayesian net-
work: network structure and learning its parameters. In network
structure, it is tried to detect the best DAG for a given database.
On the other hand, the learning of parameters means setting of
parameters of conditional probability distribution based on corre-
sponding dataset. Expectation Maximization algorithm (EM)
(Franzin et al., 2017; Dempster et al., 1977) is one of the best meth-
ods in Bayesian network. It is a repetitive procedure for estimating
the highest probability where only subset of the total data is
observed. Therefore, its advantage is that it is successfully trained
with missing data. This method consists of two steps; first, Expec-
tation step (E-step) which calculates log probability of data and
based on this calculated log, current structure and networks
parameters are characterized. In maximization step (M-step)), we
begin to find the parameters for maximizing the previous step
probabilities and updating network structure. This procedure is
repeated until it enhances neither the network structure nor
parameters values. The main drawback of EM method is the use
of a local searching function to build the best DAG in M-step while
local search requires much computation time. Hence, Ref. Rancoita
(2014) employed available global searching functions such as K2
local search (Little and Rubin, 2002), Branch-and-bound (BB) (De
Campos, xxxx), dynamic programing (DP) (Silander and Myllym,
2004) and linear integer programing (IP) (Jaakkola and Meila,
2010) for this purpose. Learning process usually starts by running
K2 algorithm for finding an improved solution. If optimum net-
work structure is obtained in a period of time, the process is
stopped or returned; otherwise; one of the other methods (BB, IP
or DP) are applied depending on the number of variables.
3.2. Predictive models

3.2.1. Decision tree
Decision tree is a supervised model and a useful, understand-

able and simple method for classification. Its inputs and outputs
are labeled training data and an organized sequential tree struc-
ture, respectively. One of its basic advantages can be stated as
decomposition of complex problems into smaller and simpler
problems. Classification process consists of labeling the input
instances by a traversing from the root node to the leaf nodes with
respect to the fact that the leaf nodes are class labels. There are two
issues involved in building decision tree: (1) growing the tree as
long as training set instances are accurately classified. (2) Pruning
until the unnecessary nodes are eliminated in order to improve the
overall accuracy (Zheng et al., 2014; Buyse, 2006; Jaakkola and
Meila, 2010). C4.5 is a kind of decision tree which can be used
for both discrete and continuous data. Hence, we benefited from
this method for our classification task.
3.2.2. K- nearest neighbor classifier
This method is a well-known instance-based method. The label

class of a new instance is predicted using the majority of k nearest
neighbors labels which belong to training instances based on a cer-
tain distance measure.

K-NN involves two important issues: (1) the number of neigh-
bors (k), (2) distance measure (d). If the number of neighbors is
low, the outlier examples may affect the results, while large num-
ber of neighbors may face the interference of unrelated data
(Zheng et al., 2014; Buyse, 2006; Clark and Niblett, 1989; Purwar
and Singh, 2015; Cortes and Vapnik, 1995) .In this study, the opti-
mal number of neighbors can be obtained using cross validation
procedure.
3.2.3. Support vector Machine
Support vector machine (Cortes and Vapnik, 1995) is a kernel-

based method that is also widely used for classification. If the
training set is linear separable, SVMmakes hyper planes with max-
imum margin; otherwise, it is mapped to other space with greater
dimension to be linearly separable (Vidyasagar, 2017). Though
SVM particularly works for dataset containing two classes and its
basic idea is finding the optimal discrimination between two
classes, there are also ways to be extend it for multi-class datasets,
i.e. one-against-all (OAA) and one-against-one (OAO). OAA
approach requires k separators for k-class classification such that
every separator is used to separate one class from all other classes.
While OAO approach creates binary vector machines for each pos-
sible combination of classes (a binary vector machine per possible
combination of classes). OAA algorithm is generally considered a k
(k � 1)/2 binary vector machine (Choi and Jiang, 2010).
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4. Proposed approach

As stated before, Bayesian network is a strong model for repre-
senting conditional dependencies between variable, but this model
lacks generalization to continuous variables due to the necessity of
prior knowledge for the conditional densities. Due to this reason,
Bayesian network is proper for imputing missing values when data
is of finite domain variables. On the other hand, tensor factoriza-
tion estimates missing features with the linear combination of
others (not necessarily continuous or discrete) and therefore the
estimated value is usually precise. However, constructing tensors
in the presence of large amount of missing values is erroneous.
Therefore, for better value estimation, in the proposed approach
the categorical values are firstly estimated using Bayesian network
and then the partially completed dataset is fed to the tensor factor-
ization approach for imputing continuous missing values.

Tensor factorization learns the latent structure and dependen-
cies among different dimensions of the tensor which represents
variables. This property is definitely the advantage that some other
missing value imputation approaches lack. When Bayesian net-
work can model dependencies between relatively fewer variables,
tensor factorization is an effective approach for capturing depen-
dencies in higher dimensional data. On the other hand, Bayesian
network represent dependencies in the form of conditional proba-
bility functions which are hard to estimate and highly depend on
prior assumptions.

Fig. 2 shows the proposed framework for missing values impu-
tation and especially for predicting breast cancer recurrence. The
framework consists of four subsections: splitting original dataset
into discrete attributes set and continuous attributes set, Bayesian
network imputation, reconstruction and imputation using tensor
and class prediction with classifiers. Since it is important whether
the data is pre-processed or not before missing values imputation,
it should be stated that we have not applied any pre-processing to
the data. In the first step, we split vertically the entire dataset into
two subsets: a subset with continuous missing attributes and a
Fig. 2. The propose
subset with categorical missing attributes. Secondly, Bayesian net-
work, computes the probability of possible values. Then, the most
likely value replaces the discrete missing value. This procedure is
repeated for each missing value until the discrete dataset is com-
pleted. Bayesian network model for categorical attributes of Omid
dataset is shown in Fig. 3.

After estimating non-numerical missing values, integrated
dataset from discrete imputed subset and the subset of numerical
missing data are reconstructed using tensor; and continuous miss-
ing values are also imputed using this reconstruction. Reconstruc-
tion process is executed as long as the convergence condition is
satisfied. That is, the difference between successive estimated val-
ues is minimized and no change can be occurred in the next itera-
tions. We have applied mean squared deviation (MSD) as the
convergence measurement, which can be formulated as follows:
MSD ¼ 1=n
Xn
i¼1

ðoutputðtÞi � outputðt � 1ÞiÞ2 ð8Þ

In which outputi(t) denotes the estimated value in tth iteration
and n denoted the total number of missing values.

After imputing missing values, SVM, DT and K-NN classifiers are
applied on complete dataset for prediction.

The proposed method is summarized as follows:
Input:

1. An n� d original dataset with missing values

Output:

1. An n� d imputed dataset
2. Breast cancer recurrence prediction with imputed datasets

Step 1: Split the dataset into two subsets with continuous and
discrete values.
d framework.



Fig. 3. Dependency graph of discrete attributes in Omid dataset.
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Step 2: Impute discrete missing values subset using Bayesian
network.

Step 3: Integrate of discrete imputed subset and continuous
missing values subset.

Step 4:

. Convert the dataset to tensor.

. Divide the entire tensor into rank-one tensors.

. Create a non-negative weight tensor that is the same size as
the original tensor.

. Impute continuous missing values and reconstruct rank-one
tensors by CP-Wopt function and repeat it until the conver-
gence is reached.

Step 5: Return the existing data of original dataset and preserve
imputed values.

Step 6: Apply the classification models (DT, K-NN and SVM) via
complete imputed dataset.

5. Evaluation

One of the main goals of the experiments is to examine the
effect of several imputation methods on the accuracy of subse-
quent prediction models. We start by detailed description of our
real dataset and experimental settings and then proceed to perfor-
mance evaluation and analysis.

5.1. Datasets

We used women breast cancer dataset of Omid Hospital of
Mashhad, Iran that is collected during 2000–2010. This dataset
includes clinical and laboratory data for 217 instances with 22
variables, namely, Age, Height, Weight, Overall survival (period
of admission until complete treatment), Ethnicity, Place, Marital
Status, Tumor Size (T), The number of involved cells (N), Metastasis
(M), Side of cancer, Last condition of patient, Family History, Addic-
tion, Radiotherapy, Chemotherapy, Hormone therapy, Stage, Final
Status, PR, ER and HER2. These variables have been approved by
Omid treatment center.

Disease Free Survival (DFS) is assumed as target class which
medically means the period from admission of the patient until
the recurrence of the patient’s disease (it may be before leaving
hospital or after that). The values of DFS range from 0 to 149
months; therefore, we grouped them into 4 categories: in the first
class, relapsed instances belong to the first 11 months (the number
of instances in this group is 60), in the second class, relapsed
instances range between 11 and 34 months (51 instances),
between 34 and 56 in the third class (51 instances), and between
56 and 149 months in the fourth class (55 instances). The highest
missing rate belongs to HER with 29.41%. The brief description of
the statistical information and missing percent for each variable
is shown in Table 1. Only 96 instances of 217 instances are
complete.

Also, to evaluate the performance of proposed method, we used
two known datasets: Wisconsin and Cleveland, which are publi-
cally available to researchers in UCI machine learning repository
(Blake and Merz, 1998). Hence, there is no missing value in Wis-
consin dataset; we only used this dataset to evaluate the precision
of the proposed missing value imputation in term of estimation
error. The basic information of datasets is summarized in Table 2.

5.2. Evaluation settings

In general, the experiments are implemented on a system with
hardware characteristics including Intel core 7 3.40 GHz, 16 G
RAM, 2 TG Hard Disk and Windows 7. We employed Matlab
(R2014a) as well as Tensor Toolbox (Bader and Kolda, 2015) and
Poblano Toolbox (Dunlavy et al., 2010) for executing methods used
in this paper.

5.3. Evaluation setup

To evaluate the performance of the proposed method for miss-
ing value estimation, we inserted different amounts (i,e, 5, 10 and



Table 1
Attributes of Omid dataset for breast cancer recurrence prediction.

Missing (%) Variance Mean/Mode Type (Range) Attributes No.

0 163.07 61.34 Numerical (32–85) Age 1
0 38.21 154.19 Numerical (135–195) Height 2
0 188.01 62.04 Numerical (39–112) Weight 3
0 979.54 46.46 Numerical (0–159) Overall Survival 4
0.69 1.57 1 Categorical (1–8) Ethnic 5
0 0.15 1 Binary Place 6
3.46 0.11 1 Binary Marriage 7
2.76 0.65 2 Categorical (1–4) T 8
4.15 0.89 1 Categorical (1–4) N 9
0 0.08 0 Binary M 10
7.26 0.26 1 Binary Side 11
0 0.17 1 Binary Last Condition 12
0.69 0.19 2 Binary Family History 13
5.19 0.09 1 Binary Addiction 14
0 0.24 1 Binary Radiotherapy 15
0 0.06 1 Binary Chemotherapy 16
0 0.25 0 Binary Hormone therapy 17
0.34 0.42 2 Categorical (1–4) Stage 18
4.84 0.58 1 Categorical (1–7) Final 19
20.41 4.04 0 Binary PR 20
20.76 3.97 1 Binary ER 21
29.41 0.66 1 Categorical (1–3) HER2 22

Table 2
Basic information of the datasets used in this paper.

Datasets Records Attributes Missing values Pure records

Omid 217 22 Yes 96
Wisconsin 569 32 No 569
Cleveland 303 13 Yes 297

Table 3
Parameters of some of imputation and prediction models.

Parameter Method Task

Number of nearest neighbors = 5;Distance =
Standardized Euclidean

K-NN Imputation
W-KNN

Kernel function = RBF;Order of the RBF kernel = 4 SVM Prediction
Number of nearest neighbors = 5;Distance = Pearson

Correlation
K-NN
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15 percent) of random missing values in the evaluation datasets,
even Wisconsin dataset that does not contain missing values. Since
our real dataset is of various ranges, we compared the accuracy of
the imputation methods using the normalized root mean square
error (NRMSE) that can be defined as follows (Dauwels et al.,
2012):

NRMSE ¼ 1
max�min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðxi � x0iÞ2

r
ð9Þ

where xi is the real value and x0i is the imputed value. xmax and xmin

are maximum and minimum values, respectively.
One of the most popular and well-known measures for examin-

ing the classification performance is accuracy which is applied to
recurrence prediction in this study. It refers to the ability of the
model for correct prediction of class label of unobserved cases
(García-Laencina, 2015). Furthermore, sensitivity and specificity
measures have been used to analyze correct and incorrect deci-
sions by the corresponding classifier. These three measures can
be calculated as below:

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

ð10Þ

Sensitiv ity ¼ TP
TP þ FN

ð11Þ

Specificity ¼ TN
FP þ TN

ð12Þ

Where TP, TN, FP and FN denote true positive, true negative,
false positive and false negative, respectively. For example if a
dataset has two classes, true positive indicates the number of cor-
rect classifications that belong to the first class and true negative is
the number of correct classifications that belong to the second
class. On the other hand, false positive and false negative give us
respectively the number of instances that are incorrectly predicted
in the first class while they belong to the other class and the num-
ber of instances that are incorrectly predicted in the second class
while they belong to the first class.

When the number of classes is more than two, to evaluate the
performance of classifier, we must obtain the above equations for
each class separately such that each class is considered as first class
and all other classes as second class. After computing the above
equations (Eqs. 10–12) for every class, we apply the average of
these values for the final result.

The proposed approach of missing data imputation is compared
with six imputation methods, i.e., mean, Hot-deck, K-NN, Weighed
K-NN, Tensor-based imputation (Dauwels et al., 2012) and Baye-
sian network imputation (Rancoita, 2014). In literature, the men-
tioned approaches are applied for both numerical and categorical
attributes in the same way. These approaches do not use different
paradigms for different variable. Therefore, we have applied these
approaches for both discrete and numeric values the same. We
firstly empty 5%, 10% and 15% of a whole dataset. Then, we esti-
mated the missing values via the imputation methods and com-
pared the resulted values with the actual ones using NRMSE
measurement (Eq. (9)).



Table 4
NRMSE of imputation methods on three datasets with 5–15% missing rates.

Datasets Imputation Methods NRMSE (lower value is better)

Missing rate: 5% Missing rate: 10% Missing rate: 15%

Omid Mean 0.31 0.34 0.36
Hot-deck 0.66 0.74 0.82
K-nn 0.54 0.70 0.73
W-knn 0.37 0.40 0.42
Tensor 0.18 0.21 0.25
Bayesian network 0.15 0.17 0.20
Proposed Method 0.09 0.12 0.16

Wisconsin Mean 0.32 0.33 0.34
Hot-deck 0.35 0.37 0.38
K-nn 0.27 0.29 0.32
W-knn 0.17 0.19 0.21
Tensor 0.11 0.17 0.20
Bayesian network 0.09 0.15 0.17
Proposed Method 0.06 0.11 0.13

Cleveland Mean 0.33 0.35 0.35
Hot-deck 0.55 0.59 0.62
K-nn 0.58 0.61 0.63
W-knn 0.35 0.37 0.38
Tensor 0.16 0.21 0.24
Bayesian network 0.13 0.19 0.22
Proposed Method 0.08 0.11 0.14
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In this work, 5-fold cross validation procedure is used in order
to evaluate predictive models. The dataset is split randomly into
5 folds. One fold is considered for test and all the others for train-
ing. To ensure the stability of the results, the number of experi-
ments is five. We reported only the average results for each
experiment. Table 3 introduces the parameter settings for imputa-
tion and classification methods.
Fig. 4. NRMSE of imputation methods for O
5.4. Experimental results

Imputation of the missing data according to the proposed
method is conducted to improve breast cancer recurrence predic-
tion. Table 4 shows the results of NRMSE for estimation approaches
on the three datasets (Omid, Wisconsin and Cleveland dataset).
Also Fig. 4 illustrates the results using curves. In these results,
mid, Wisconsin and Cleveland datasets.
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the proposed method obtained the lowest error rates and was
more efficient than the other methods (the NRMSE for Omid data-
set is 0.12, the NRMSE for Wisconsin dataset is 0.10 and the NRMSE
for Cleveland dataset is 0.11).

In these results, the proposed method obtained the lowest error
rate and is better than other methods. As expected, since the num-
ber of discrete categorical attributes are more than continuous
attributes, Bayesian network based imputation performance is
superior compared to Tensor imputation. On these datasets, W-
KNN, KNN and Hot-deck do not work very well in dealing with con-
tinuous missing values. Table 5 shows the results of classifiers (Eqs.
10–12) on Omid dataset. The proposed method has achieved the
best result with an average accuracy of 89.29%, sensitivity of
78.55% and specificity of 92.83% with C4.5 classifier which has an
increased accuracy as compared with Tensor-based imputation
and Bayesian network imputation. The same results are also
depicted in Fig. 5.
Table 5
Breast cancer recurrence prediction accuracy on Omid dataset with 10% imputed missing

C4.5 K-NN

Sensitivity Specificity Accuracy Sensitivity

Mean 75.37 91.92 87.78 70.47
Hot-deck 76.65 92.35 88.30 70.71
K-nn 77.42 92.48 88.72 71.09
W-knn 76.64 92.31 88.47 71.49
Tensor 77.63 92.60 88.94 71.79
Bayesian network 77.21 92.40 88.50 71.36
Proposed Method 78.55 92.83 89.29 71.99

Fig. 5. Classification accuracy, sensitivity and specificity of DT, K-NN, and
6. Discussion and conclusion

The recurrence of breast cancer affects the lives of patients even
many years after Decision TreeKNNSVMsurgery. In recent years,
machine learning and data mining methods have increasingly
improved predictions and helped medical professionals. Extracting
verified information from collected medical data is considered as a
major challenge. Due to the increase of cancer patients, especially
breast cancer patients, the research about this field is very impor-
tant. The existence of missing values in medical data is a main
challenge in this field. A precise estimation of missing values,
which leads to better decision, or at least assist experts for this
purpose, is valuable in cancer diagnosis and recurrence prediction.
In this paper, a new approach for missing values imputation is pro-
posed with respect to dependencies among variables and the type
of incomplete variable which significantly affects imputation using
Tensor and Bayesian networks for both categorical and numerical
values.

SVM

Specificity Accuracy Sensitivity Specificity Accuracy

90.21 85.16 53.70 72.36 69.79
90.52 85.61 48.70 70.57 67.70
90.62 85.71 58.85 72.49 70.83
90.62 85.75 63.70 72.36 70.83
90.81 86.08 55.62 73.70 71.87
90.70 85.80 55.62 72.95 70.40
90.80 86.16 58.75 73.07 71.35

SVM models on Omid dataset for Breast cancer recurrence prediction.



184 M. Vazifehdan et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 175–184
variables. The proposed method for replacing missing data has also
been evaluated using several different imputation methods includ-
ing mean, Hot-deck, K-NN, Weighted K-NN, Tensor and Bayesian
network using NRMSE criterion. Although both tensor and Baye-
sian networks are capable of imputing missing values, they are
more capable in continuous and discrete missing data imputation,
respectively. We also used three predictive models, namely, SVM,
K-NN and DT and three popular measures of accuracy, sensitivity
and specificity in order to predict breast cancer recurrence. These
measures are applied using 5-fold cross validation on all datasets
created by imputation methods. Finally, experimental results are
reported for each imputation-classifier pair.

In general, the results show that the proposed method can prac-
tically increase both quality of the data and prediction quality, and
it is more useful and efficient than all other compared techniques
for subsequent classification. Unfortunately, our method suffers
from some limitations, such as the lack of suitable prediction by
SVM with RBF kernel and more computational overhead than all
other methods due to checking convergence. However, we sought
to obtain the following objectives: 1) the improvement of breast
cancer recurrence prediction 2) proposing an approach for imput-
ing missing data 3) paying attention to the dependency between
attributes and type of incomplete attribute. Future works can focus
on noise elimination of the data, feature selection and the use of
other classification models for enhancing prediction accuracy. In
addition, although Bayesian network and Tensor factorization are
selected due to their effectiveness in previous reports, one can
evaluate other missing value estimation approaches (i.e. deep neu-
ral networks or clustering-based approaches) in the proposed
hybrid iterative framework.
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