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Today, Computed tomography (CT) is one of the high efficient tools in medical science which helps to
diagnose the human body. The presence of noise may degrade the visual quality of the CT images, espe-
cially for low contrast images. Therefore, we propose a method based on the modification of total varia-
tion (TV) for noise suppression in CT images which is helpful to preserve the clinically relevant details.
The modification of TV is performed by introducing a new exponentially directional weighted function
(EDWF), which is based on the difference between L1 and L2 norms over the exponential function.
Furthermore, a numerical algorithm is designed to solve the minimization problem of EDWF using
Split Bregman method. The experimental results of proposed scheme are visually analyzed over the real
noise CT image, added noise in true CT images, and also on low contrast zoomed noisy CT image. Apart
from visual analysis, the proposed scheme is also verified with some standard performance metrics
(RMSE, PSNR, SSIM, ED, DIV and GMSD). The proposed scheme is also compared with some standard
existing methods and it is observed that performance of proposed scheme is superior to existing methods
in terms of visual quality and performance metrics.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Computed tomography is one of the important tools which
helps to depict the problem of human body (Trinh et al., 2012;
Muller et al., 2012; Bhadauria and Dewal, 2012; Zhu et al., 2012)
such as fractures, brain hemorrhage, lung cancer and many more.
The CT images help to find the medical relevant details for diagno-
sis purpose. Therefore, a clean medical image is required to get the
correct medical relevant contents. However, various studies con-
firm that CT images are generally degraded by noise which can
affect the medical relevant details, especially on the low contrast
images. Due to the presence of noise, a medical image may not give
an accurate analysis which may be harmful for the patients. Vari-
ous reasons have been found for occurrence of noise in CT images
such as low photon absorption, data loss during acquisition and
transmission, software and hardware limitation, mathematical
computations and low radiation dose. It can be analyzed from
the literature (Gravel et al., 2004; Sanches et al., 2008;
Attivissimo et al., 2010; Andria et al., 2013; Sun et al., 2013) that
the type of noise in CT images is generally an additive white Gaus-
sian noise. The image denoising is one of the solutions to suppress
the noise from noisy images, but the main challenge of image
denoising is to preserve the details of the images such as edges,
contrasts, texture, corners and small structures. The main goal of
image denoising in CT images is to improve the medical images
visually by reducing the noise and preserving details as much as
possible.

Various techniques have been developed to remove the Gaus-
sian noise in CT images such as window based thresholding using
multi wavelet transform (Ali et al., 2010), self-similarity feature
tissue based CT image denoising using Non-Local Means method
(Wu et al., 2011, 2013a,b), Wavelet packet based image denoising
(Fathi and Naghsh, 2012), a locally adaptive shrinkage rule in tetro-
let domain for CT image denoising (Kumar and Diwakar, 2016),
wavelet based noise reduction in CT-Images using similarity anal-
ysis (Borsdorf et al., 2008), Wiener filtering based medical image
denoising using dual tree complex thresholding wavelet transform
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(Naimi et al., 2015) and many more. Some other new algorithms
(Hu et al., 2013a,b, 2016) are also introduced for image denoising
where image denoising is performed based on the concept of Mean
Square Error. These algorithms give noise suppressed image and
help to recover the missing structures of the noisy images.

Recently, various methods have been studied to remove the
Gaussian noise by least square fidelity minimization (Hu et al.,
2011a,b, 2012; Yan and Wu-Sheng, 2015). In least square fidelity
minimization, the authors (Hu et al., 2011a) enhanced the Lp � L2
formulation with the concept of soft shrinkage for image denois-
ing. Further, this work is extended using Lp � L2 formulation with
a power-iterative strategy to provide the smoothness using the dis-
continuity of the global minimizer concept (Hu et al., 2011b). Sim-
ilarly, a weighted TV (WTV) method (Yan and Wu-Sheng, 2015) is
also used to denoise the images by estimating the weight value
over the TV regularization function. To minimize the least square
fidelity term, many regularization functions have been investi-
gated such as Tikohonov, anisotropic diffusion and Total variation
methods. Tikohonov method (Tikhonov and Arsenn, 1977;
Andrews and Hunt, 1997) is the simplest one in which data fidelity
term is minimized with L2 norm regularization, but it over smooths
the detail parts of images (Dobson and Santosa, 1996; Nikolova,
2000). To overcome that, anisotropic diffusion method has been
proposed to enhance the details of the images by stopping the dif-
fusion at the edges, but it blurs the noisy edges (Catt et al., 1992;
Esedoglu and Osher, 2004). In parallel with anisotropic diffusion
(Perona and Malik, 1990; Weickert, 1998), Total variation (TV)
based regularization was proposed to overcome the smoothness
from the noisy images. From various studies, it can be found that
TV method performs better for noise suppression in medical
images, but it has a problem of unwanted stair-artifacts (Dobson
et al., 1995; Vogel and Oman, 1996; Catt et al., 1994; Chambolle
and Pock, 2011). The advantages of TV and anisotropic diffusion
were combined to improve the drawbacks of TV method and the
combination is called anisotropic total variation method (Rudin
et al., 1992).

Rudin-Osher-Fatemi (R.O.F.) model (Rudin et al., 1992) was pro-
posed to provide the smooth and denoise image by TV method
using L2 norm fidelity optimization. The authors (Rudin et al.,
1992) also discussed the computational difficulty because of non-
linearity and non-differentiability. Therefore, R.O.F. model is fur-
ther modified to avoid these difficulties and improved the perfor-
mance of image denoising (Chambolle, 2004). A non-differential
TV method was introduced using Bregman iteration and got the
success to minimize the problems. Later, Bregman iteration was
improved using linearization function (Goldstein and Osher,
2009). Further, it was extended to minimize the L1 regularization
by introducing Split Bregman method (Li et al., 2012; Osher
et al., 2005; Yin et al., 2008; Denis et al., 2009). Recently, various
methods (Cai et al., 2009a,b,c; Chen et al., 2015; Candes et al.,
2008 have been proposed using Split Bregman method by modify-
ing norms as well as regularization terms. Some authors also pro-
posed the mixed models such as L2 � L1 (Zibulevsky and Elad,
2012; Lou et al., 2015), higher degree based image denoising (Hu
and Jacob, 2012) and gradient-based algorithms for constrained
total variation (Beck and Teboulle, 2009). However, the results of
mixed model based image denoising are improved over the classi-
cal TV method and some of the state-of-the-art methods, but still
blocking effects are observed near the noisy edges. To solve the
blocking effects in TV model, a method (Sun et al., 2015) was pro-
posed based on exponential TV method. Further, image denoising
is performed by Split Bregman using exponential TV function. This
method gives better noise reduction.

In Jiang et al. (2015) and Bayram and Kamasak (2012)), the
authors addressed the directional derivatives of an image and
image denoising is performed on the basis of choosing directional
TV function. The directional derivatives give better edge and tex-
ture preservation. Recently, total variation methods were
improved such as coefficients driven total variation (Al-Ameen
and Sulong, 2014), nonnegativity constrained TV (Landi et al.,
2012) and so on, to attenuate the noise from the noisy CT images.

The main concept of image denoising is to suppress the noise
and preserve the edges from the noisy images. Unfortunately, the
previous methods (Hu et al., 2011a; Goldstein and Osher, 2009;
Sun et al., 2015; Bayram and Kamasak, 2012; Al-Ameen and
Sulong, 2014; Landi et al., 2012) have not preserved well structures
while suppression of noise over the noisy images. Therefore, to
suppress the noise with better edge preservation, we propose a
method for CT image denoising using total variation method,
where an exponentially directional weight function is introduced
using L2 � L1, directional derivatives and exponential function.
Two advantages of L2 � L1 over other nonconvex measures are its
Lipschitz regularity, and guarantee of convergence, which is analo-
gous to a convex splitting technique for gradient systems. The
directional derivatives and exponential function help to provide
better edge preservation and more smoothness over the noisy pix-
els, respectively. The main contribution of this article is to develop
an exponentially directional weighted function using the differ-
ence between anisotropic and isotropic functions for CT image
denoising. Further, Split Bregman method is used to solve the min-
imization problem of the exponentially directional weighted
function.

The organization of this article is as follows: Section 2 describes
a brief introduction on total variation. In Section 3, the proposed
exponentially directional weighted total variation model and its
numerical algorithm based on Split Bregman algorithm is
described in detail. The Experimental results and comparisons
are discussed in Section 4. Finally, the conclusions are drawn in
Section 5.

2. Background of total variation

Total variation is one of the popular models to develop the opti-
mization algorithms for solving sparse representation problem
which was originally developed for image denoising by Rudin,
Osher, and Fatemi (R.O.F.) (Rudin et al., 1992). A general model
for such problem is:

R ¼ min
U

TVðUÞ þ l
2
kU � Fk2 ð1Þ

where, TVðUÞ is the regularization term as a total variation (TV), l is

a positive parameter to control TVðUÞ; kU � Fk2 is the fidelity term,
and jj:jj represents L2 norm. R is the optimal solution or the recon-
structed result. This is a simple and convex optimization model.
To solve the optimization problem, firstly, the Gradient projection
method (Rudin et al., 1992) is used to accelerate the convergence
using fixed point or variable splitting algorithms. Further, more effi-
cient techniques were also developed such as Newton’s method
(Dobson et al., 1995), dual formulation based TV denoising method
(Chambolle and Pock, 2011Goldstein and Osher, 2009). Generally,
TV model follows a pair of directions: horizontal and vertical direc-
tions. Many authors (Jiang et al., 2015; Bayram and Kamasak, 2012)
gave the privilege to the edges along the directions for image
denoising. Some authors (Bayram and Kamasak, 2012) used the
trigonometric functions to reweight the horizontal and vertical
directions to smooth the noisy regions of the images. In fidelity
term, L2 norm is the most common norm which was used to reduce
the Gaussian noise and it works well in image denoising (Nikolova,
2000; Landi et al., 2012; Yan and Wu-Sheng, 2015). However, if
some of the pixels are degraded by the non-Gaussian type noise,
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then those pixels are not properly denoised with these methods.
Few authors (Darbon and Sigelle, 2006) have also used fidelity term
with L1 norm for the non-Gaussian type of noisy images.

TV model is widely used in image processing for various appli-
cations such as image deblurring (Chen et al., 2015), denoising
(Al-Ameen and Sulong, 2014), etc. The formulation of TV model
can categorized as: isotropic and anisotropic TV, which are used
as a regularization term for sparse representation problems. The
total variation (TV) can be defined as the sum of L1 or L2 norm of
the gradients for all the pixels.

An anisotropic TV model is denoted by TV ðAÞ, and can be
expressed as:

TV ðAÞðUÞ ¼
X
ij

ðjrxUði; jÞjÞ þ ðjryUði; jÞjÞ ð2Þ

where, j.j represents L1 norm.
An isotropic TV model is denoted by TV ðIÞ, and can be expressed

as:

TV ðIÞðUÞ ¼
X
ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrxUði; jÞÞ2 þ ðryUði; jÞÞ2

q
ð3Þ

where, rxU and ryU are the horizontal and vertical gradients,
respectively.

3. Proposed methodology

Generally, the distribution of noise in CT images follows the
Poisson distribution due to statistical fluctuations on X-ray pro-
jected data (Muller et al., 2012). However, different reconstruction
algorithms can change the distribution of noise models. Thus by
Central Limit Theorem (CLT), the noise can be best modeled by
the Gaussian distribution. The CLT can be applied in CT images
because of addition of values from many different projections into
the voxels of CT images (Kumar and Diwakar, 2016).

Here, with the assumption that the CT images are corrupted by
the Gaussian noise with zero mean and different variances, the
scheme is proposed using total variation model. However, TV
method has been proven to be quite efficient for suppression of
the Gaussian noise in images. But it has a tendency to remove cer-
tain image details and texture along with the noise. The require-
ment for the proposed scheme is that the regularization function
should be an increasing function with respect to the smoothness
of the image. At the same time, considering numerical algorithm
of the minimization, it is highly expected that the regularization
functional should be in simple form as possible. Therefore, an
exponentially directional weighted function (EDWF) is proposed
using anisotropic and isotropic total variations, which is discussed
below in the first subsection. Further, a numerical algorithm is
designed to solve the minimization problem of EDWF using Split
Bregman method (Goldstein and Osher, 2009) for CT image denois-
ing, discussed in second subsection.

The noisy CT image (F) can be expressed as:

F ¼ U þ g ð4Þ
where, U is the clean image to be estimated from F and g is an addi-
tive white Gaussian noise.

3.1. Exponentially directional weighted function (EDWF)

The basic idea of re-weighting of the total variation function is
to enhance the sparsity which was originally introduced in Candes
et al. (2008). Here, a new exponentially directional weighted func-
tion (EDWF) for anisotropic and isotropic TV is introduced.

The directional derivatives (rSU) are computed as:
rSUði; jÞ ¼

raUði; jÞ ¼ Uði; jÞ � Uði� 1; jÞ
rbUði; jÞ ¼ Uði; jÞ � Uðiþ 1; jÞ
rcUði; jÞ ¼ Uði; jÞ � Uði� 2; jÞ
rdUði; jÞ ¼ Uði; jÞ � Uðiþ 2; jÞ
reUði; jÞ ¼ Uði; jÞ � Uði; j� 1Þ
rf Uði; jÞ ¼ Uði; jÞ � Uði; jþ 1Þ
rgUði; jÞ ¼ Uði; jÞ � Uði; j� 2Þ
rhUði; jÞ ¼ Uði; jÞ � Uði; jþ 2Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð5Þ

where S 2 fa; b; c;d; e; f ; g; hg. The mean of the absolute derivatives
is calculated as:

Eði; jÞ ¼
P

i;jjrSUði; jÞj
K

ð6Þ

where K is the total number of directional derivatives. These direc-
tional derivatives are responsible to preserve the structures in the
images such as edges. Using these directional derivatives over the
noisy pixels, an exponentially directional weighted function
(EDWF) is introduced to suppress the noise from CT images.

The exponentially directional weighted functions (EDWF) are
defined, as:

a ¼ eð�jðjEði;jÞj�ckEðiþ1;jÞkÞjÞ ð7Þ

b ¼ eð�jðjEði;jÞj�ckEði;jþ1ÞkÞjÞ ð8Þ
where, c is a diagonal dominant weight factor which is used as a
control parameter. It can be estimated by obtaining the similarity
between horizontal and vertical directions, and can be expressed
as Borsdorf et al. (2008):

c ¼ 2:Eðiþ 1; jÞ:Eði; jþ 1Þ
E2ðiþ 1; jÞ þ E2ði; jþ 1Þ ð9Þ

The values of weights (a and b) and diagonal dominant weight
factor (c) are normalized between 0 and 1. According to similarity
factor, the weight values (a and b) are attenuated differently.
When average value of c is close to 0, weight values (a and b)
behave like e�ðjL1 jÞ. If it is close to 1, weight values (a and b) behave
like e�ðjL1�L2 jÞ.

In the proposed method, the original oscillation measure rU is
modified using exponential weighted function. The motivation of
using exponential functional is that, the exponential energy curve
emphasizes more on the noisy pixels, because as the value of
L2 � L1 increases, the exponential curve increases faster than the
L2 � L1. As higher energy is penalized, the smoothness of noisy pix-
els is increased. In addition, when the value of L2 � L1 is zero, the
slope value of the energy curve may become zero or near to zero
due to more pixels with the same intensity value. This means as
the energy decreases, the difference between pixels becomes smal-
ler, which leads to the blocking effect, whereas, the exponential
function with L2 � L1 = 0 assures that the pixels can still exchange
intensities even when their intensity values are very close to each
other which reduces blocking effect up-to a certain degree.

Let, the total variation (TV) be defined with EDWF in horizontal
and vertical gradients, rxU and ryU, respectively. The anisotropic

TV denoted by TV ðAÞ
EDWF can be expressed as:

TV ðAÞ
EDWFðUlÞ ¼

X
ij

aði; jÞðjrxU
lði; jÞjÞ þ bði; jÞðjryU

lði; jÞjÞ ð10Þ

and, isotropic TV denoted by TV ðIÞ
EDWF can be expressed as:

TV ðIÞ
EDWFðUlÞ ¼

X
ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aði; jÞðrxU

lði; jÞÞ2 þ bði; jÞðryU
lði; jÞÞ2

q
ð11Þ
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where, aði; jÞ > 0 and bði; jÞ > 0 are the weights which effectively
allow to convert the nonconvex total variation into the convex total
variation. The major role of exponentially directional weighted
function (EDWF) is to keep TVEDWF to convex as long as possible. l
is the number of iterations to estimate the re-weighted values for
the TVEDWF minimization. Following is the proposed iterative
reweighted algorithm to solve the TV minimization problem.

Algorithm 1. Iterative reweighted TV minimization

1. Initialize the parameters: l; l, and set aði; jÞ ¼ bði; jÞ ¼ 1.
2. Compute directional derivatives rSU.
3. For l number of iteration, solve the TVEDWF regularized

problem as, minUTVEDWFðUÞ þ l
2 kU � Fk2 and update values

of rSU;aði; jÞ and bði; jÞ.
4. Repeat step 3 for next iteration.
5. Terminate; When l iterations are completed.

In Algorithm 1, Step 3 has to solve the minimization problem.
To solve the minimization problem for both anisotropic and isotro-
pic TV, Split Bregman iteration method is used, as discussed in the
following subsection.

3.2. Split Bregman Iteration to solve EDWF problem

The Split Bregman method has several good properties such as
it can converge very quickly when applied to the L1 regularization
problem and avoid the problem of numerical instabilities
(Goldstein and Osher, 2009).

3.2.1. Anisotropic TV denoising
We begin with anisotropic total variation to solve the mini-

mization problem of Algorithm 1 for CT image denoising, as
follows:

min
U

rEDWF
x U

��� ���þ rEDWF
y U

��� ���þ l
2
kU � Fk2 ð12Þ

where, rEDWF
x U ¼ aði; jÞðUði; jÞ � Uðiþ 1; jÞÞ and rEDWF

y U ¼
bði; jÞðUði; jÞ � Uði; jþ 1ÞÞ.

Here in the Eq. (12), first and second terms are the total varia-
tion regularizers, third is the fidelity norm and l > 0 is the
weighted function to control the regularizer and fidelity terms.

Let, Bregman Splitting method be applied to solve the above
minimization problem. First, rEDWF

x U and rEDWF
y U are replaced by

dx and dy, respectively. This yields the constrained problem as:

min
U

jdxj þ jdyj þ l
2
kU � Fk2; s:t: dx ¼ rEDWF

x U; dy ¼ rEDWF
y U ð13Þ

By enforcing the constraints, the above equation turns into
unconstrained optimization problem, as,

min
dx ;dy ;U

jdxj þ jdyj þ l
2
kU � Fk2 þ k

2
kdx �rEDWF

x U � bl
xk2

þ k
2
kdy �rEDWF

y U � bl
yk2 ð14Þ

where, bl
x and bl

y are updated through the Bregman iteration, as
follows:

bðlþ1Þ
x ¼ bl

x þrEDWF
x Uðlþ1Þ � dðlþ1Þ

x ð15Þ

bðlþ1Þ
y ¼ bl

y þrEDWF
y Uðlþ1Þ � dðlþ1Þ

y ð16Þ

To obtain Uðlþ1Þ; dðlþ1Þ
x and dðlþ1Þ

y , the above equations can be writ-
ten as follows:
uðlþ1Þ ¼ argmin
U

l
2
kU � Fk2 þ k

2
kdl

x �rEDWF
x U � bl

xk2 þ
k
2
kdl

y

�rEDWF
y U � bl

yk2 ð17Þ

dðlþ1Þ
x ¼ argmin

dx
jdxj þ k

2
kdl

x �rEDWF
x Uðlþ1Þ � bl

xk2 ð18Þ

dðlþ1Þ
y ¼ argmin

dy
jdyj þ k

2
kdl

y �rEDWF
y Uðlþ1Þ � bl

yk2 ð19Þ

To solve Eq. (17) a method as suggested in Yan and Wu-Sheng
(2015) is used to get the first order optimal condition for weighted
TV regularization. Therefore, the first order optimal condition for
weighted TV regularization can be written as:

lþ k rEDWF
x

� �TrEDWF
x þ k rEDWF

y

� �TrEDWF
y

� �
Ulþ1

¼ lF þ krEDWF
x ðdl

x � bl
xÞ þ krEDWF

y dl
y � bl

y

� �
ð20Þ

where, ðrEDWF
x ÞT and ðrEDWF

y ÞT are the adjoint matrices of rEDWF
x and

rEDWF
y .
Eq. (20) can be solved using the Gauss–Seidel method because

the system is strictly diagonal dominant, therefore,

Ulþ1ði; jÞ ¼ w
n

ð21Þ

where, w¼lFþkrEDWF
x ðdl

x�bl
xÞþkrEDWF

y ðdl
y�bl

yÞþk½a2ði;jÞUlðiþ1;jÞ�
þa2ði� 1; jÞUlþ1ði� 1; jÞ þ b2ði; jÞUlði; jþ 1Þ þ b2ði; j� 1ÞUlþ1ði; j� 1Þ-
and n ¼ lþ k½a2ði; jÞ þ a2ði� 1; jÞ þ b2ði; jÞ þ b2ði; j� 1Þ�

To solve the coupling problem in elements of dx and dy, both dx

and dy are computed using shrinkage rule, as given below:

dlþ1
x ¼ sgnðsxÞ:maxðjsxj � 1=k;0Þ ð22Þ

dlþ1
y ¼ sgnðsyÞ:maxðjsyj � 1=k;0Þ ð23Þ

where, sx ¼ rEDWF
x Uðlþ1Þ þ bl

x and sy ¼ rEDWF
y Uðlþ1Þ þ bl

y.

3.2.2. Isotropic TV denoising
Here, the convex problem is discussed to solve the exponen-

tially directional weighted isotropic TV regularization using Split
Bregman method, which can be expressed as:

min
U

X
i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frEDWF

x Uði; jÞg2 þ frEDWF
y Uði; jÞg2

q
þ l

2
jjU � Fjj2 ð24Þ

Similarly, as discussed in anisotropic TV denoising, the problem
for exponentially directional weighted isotropic TV regularization
using Split Bregman strategy can be formulated as:

min
U

X
i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fdxði; jÞg2 þ fdyði; jÞg2

q
þ l

2
kU � Fk2; s:t: dx

¼ rEDWF
x U; dy ¼ rEDWF

y U ð25Þ
By enforcing the constraints, the above equation turns into

unconstrained optimization problem, as:

min
dx ;dy ;U

X
i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fdxði; jÞg2 þ fdyði; jÞg2

q
þ l

2
kU � Fk2 þ k

2
kdx

�rEDWF
x U � bl

xk2 þ
k
2
kdy �rEDWF

y U � bl
yk2 ð26Þ

To solve the above equation for l number of iterations, it can be
rewritten as:
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uðlþ1Þ ¼ argmin
U

l
2
kU � Fk2 þ k

2
kdl

x �rEDWF
x U � bl

xk2 þ
k
2
kdl

y

�rEDWF
y U � bl

yk2 ð27Þ

dðlþ1Þ
x ;dðlþ1Þ

y

� �
¼ arg min

dx ;dy

X
i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fdxði; jÞg2 þ fdyði; jÞg2

q

þ k
2
kdl

x �rEDWF
x Uðlþ1Þ � bl

xk2 þ
k
2
kdl

y

�rEDWF
y Uðlþ1Þ � bl

yk2 ð28Þ
As, in anisotropic case, the variables dx and dy are decoupled,

but in anisotropic case, both variables are coupled. To solve this
problem, a generalized shrinkage formula is used, as given below:

dðlþ1Þ
x ¼ maxðsl � 1=k;0Þr

EDWF
x UðlÞ þ bl

x

sl
ð29Þ

dðlþ1Þ
y ¼ maxðsl � 1=k;0Þr

EDWF
y UðlÞ þ bl

y

sl
ð30Þ

where, sl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrEDWF

x UðlÞ þ bl
xj2 þ jrEDWF

y UðlÞ þ bl
yj2

q
In the proposed method, exponentially directional weighted

functions (a and b) are introduced for horizontal and vertical direc-
tions. These weighted functions are effectively used to modify the
TV method for CT image denoising, as shown in Algorithm 1. Fur-
ther, minimization problem of Algorithm 1 is solved using Split
Bregman method.

4. Numerical Experiments

In this section, the numerical results are presented on some real
CT images to verify the efficiency of proposed algorithm. Here in the
experiments, two types of noisy CT images are used to analyze the
(a) (b)

Fig. 2. Noisy CT imag

(a) (b)

Fig. 1. Original CT i
performance of the proposed algorithm. The sample of real CT
images shown in Fig. 1 is the first type of CT images, which aremade
noisy by adding an additive white Gaussian noise at various levels
ðr 2 f10;20;30;40gÞ. Fig. 2 represents noisy CT image data set with
r= 20. Another type of CT image is real noisy CT image as shown in
Fig. 12(a) which is also used for experimental evaluation.

Both types of noisy CT images are of size 512 � 512 used to ver-
ify the performance of the proposed algorithm for the quantitative
and qualitative evaluation. Images shown in Figs. 1(a-d) and 12(a)
are collected from public access database (http://www.via.cornell.
edu/visionx/). All experiments are evaluated in MATLAB 7.12 on
Pentium Dual Core 2 GHz. For easy conversation, CT images in
Figs. 1(a), (b), (c) and (d) are denoted as CT1, CT2, CT3 and CT4,
respectively. From literature (Beck and Teboulle, 2009; Hu and
Jacob, 2012) as well as from experimental evaluation, it is observed
that in most of the cases anisotropic total variation gives better
outcome or sometimes similar in comparison to isotropic TV. With
this consideration, here all simulations are reported using aniso-
tropic type of total variation. For all experiments, the maximum
number of iterations l is set to 30, l is :05 and k is 2l.

Since the comparative study is also required to show the ability
of the proposed algorithm, some well-known standard methods
are chosen for comparision, such as: directional total variation
(DTV) (Bayram and Kamasak, 2012), coefficients-driven total vari-
ation (CDTV) (Al-Ameen and Sulong, 2014), nonnegativity con-
strained total variation (NCTV) (Landi et al., 2012), Split Bregman
total variation (SBTV) (Goldstein and Osher, 2009), iterative re-
weighted TVp algorithm (IRTV) (Hu et al., 2011a) and Exponential
total variation (ETV) (Sun et al., 2015). For comparison analysis,
the parameter values other than iteration number l;l and k are
used as reported in corresponding literature, Bayram and
Kamasak (2012), Al-Ameen and Sulong (2014), Landi et al.
(2012), Goldstein and Osher (2009), Hu et al. (2011a) and Sun
et al. (2015).
( c ) (d)

e data set r = 20.

( c ) (d)

mage data set.

http://www.via.cornell.edu/visionx/
http://www.via.cornell.edu/visionx/
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To measure the accuracy of the proposed algorithm, some stan-
dard performance metrics are used, such as: root mean square
error (RMSE), peak signal to noise ratio (PSNR), Structural Similar-
ity (Zibulevsky et al., 2004) (SSIM), Entropy Difference (ED), Differ-
ence in Variance (DIV) and Gradient Magnitude Similarity
Deviation (Xue et al., 2014 (GMSD). SSIM provides the accuracy
on the basis of structural information, while GMSD gives the accu-
racy by estimating pixel-wise gradient similarity. The outcome of
SSIM lies between �1 and 1, the value closer to 1 shows better
results. However, GMSD values lie between 0 and 1, the value clo-
ser to 0 indicates better results.

Peak Signal-to-noise Ratio (PSNR) is an important factor to eval-
uate denoising performance. The high PSNR value represents more
similarity between the denoising and original image than lower
PSNR values. For clean image (X) and denoised image (R), the PSNR
is expressed as:

PSNR ¼ 10� log10
255�255

MSE

� 	 ð31Þ
where, Mean Square Error (MSE) is defined as-

MSE ¼ 1
mn

Pm�1
i¼0

Pn�1
j¼0 ½Xði; jÞ � Rði; jÞ�2

Root mean square error (RMSE) can be estimated as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
MSE

p
ð32Þ

Entropy is a statistical measure of randomness that can be used
to characterize the texture of the input images. Between clean
image (X) and denoised image (R), patch wise Shannon entropy is
estimated. The difference of mean value represents as Entropy Dif-
ference (ED). Entropy Difference (ED) is calculated as follows:

ED ¼ SEðXÞ � SEðRÞ ð33Þ
(a) (b)

Fig. 4. Results

(a) (b)

Fig. 3. Result
where, SE represents Shannon entropy. Shannon entropy ðSEÞ is cal-
culated as follows, (Fathi and Naghsh, 2012):

SE ¼ �
X
i

X2
i logðX2

i Þ ð34Þ

The performance of algorithm can also be measured by estimat-
ing DIV, defined as follows:

DIV ¼ 1� VarðRÞ
VarðXÞ ð35Þ

where, VarðRÞ is the variance of denoised image and VarðXÞ is the
variance of clean image. The values closer to 0 indicate better
results of RMSE, ED and DIV.

Figs. 3–9 show the results of DTV, CDTV, NCTV, SBTV, IRTV, ETV
and proposed algorithm, respectively. For real noisy CT image,
Fig. 12(b), (c), (d), (e), (f), (g) and (h) show the results of DTV, CDTV,
NCTV, SBTV, IRTV, ETV and proposed algorithm, respectively. To
measure the visual comparison, there is no mathematical or speci-
fic method available. Therefore, the results need to be evaluated
with naked eye to determine the best filtered images. For better
visual inspection, we follow four criteria: (i) visibility of the arti-
facts; (ii) preservation of edge details; (iii) visibility of low contrast
objects, and (iv) preservation of the texture.

The performance metrics (RMSE, PSNR, SSIM, ED, DIV and
GMSD) are also computed using various noise levels and shown
in Tables 1 and 2. The best values among all the methods are
shown in bold. The results shown in Tables 1 and 2 demonstrate
that in most of the cases, the proposed method is superior to all
other compared methods.

The results of DTV, NCTV and ETV are good in terms of noise
reduction from noisy CT images. However, DTV method gives
( c ) (d)

of CDTV.

( c ) (d)
s of DTV.



(a) (b) ( c ) (d) 
Fig. 5. Results of NCTV.

(a) (b) ( c ) (d)

Fig. 6. Results of SBTV.

(a) (b) ( c ) (d)
Fig. 7. Results of IRTV.

(a) (b) ( c ) (d)

Fig. 8. Results of ETV.
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(a) (b) )d()c(

Fig. 9. Results of proposed scheme.

Table 1
RMSE, PSNR and SSIM of CT denoised images.

RMSE PSNR SSIM

Image r 10 20 30 40 10 20 30 40 10 20 30 40

CT1 DTV 8.1727 18.1708 28.0817 37.9911 29.8509 22.9115 19.1317 16.5074 0.8822 0.6992 0.6077 0.5592
CDTV 8.5437 18.5204 28.4952 38.6414 29.4675 22.7472 19.0078 16.3576 0.8737 0.6963 0.6075 0.5576
NCTV 9.2709 19.2453 29.1603 39.0873 28.7581 22.4145 18.7997 16.2564 0.8563 0.6871 0.6020 0.5550
SBTV 9.9575 19.9490 29.9086 39.7625 28.1380 22.0987 18.5870 16.1113 0.8429 0.6776 0.5983 0.5519
IRTV 7.4668 17.4150 27.4157 37.3013 30.6353 23.2813 19.3408 16.6642 0.8954 0.7158 0.6133 0.5634
ETV 7.8725 17.8067 27.7561 37.7731 30.1796 23.0866 19.2330 16.5542 0.8879 0.7050 0.6109 0.5608
Proposed 6.9736 16.9260 26.8551 36.9188 31.2315 23.5284 19.5213 16.7543 0.9078 0.7153 0.6176 0.5637

CT2 DTV 8.1692 18.1343 28.0820 38.0104 29.8539 22.9272 19.1310 16.5018 0.9385 0.8061 0.6989 0.5856
CDTV 8.5778 18.4709 28.5423 38.4462 29.4308 22.7662 18.9880 16.4016 0.9344 0.8021 0.6816 0.5788
NCTV 9.2620 19.2230 29.1711 39.0849 28.7628 22.4219 18.8004 16.2565 0.9250 0.7926 0.6741 0.5730
SBTV 9.9451 19.9060 29.9458 39.8759 28.1481 22.1194 18.5722 16.0855 0.9157 0.7822 0.6659 0.5671
IRTV 7.4697 17.4141 27.3986 37.4060 30.6324 23.2822 19.3444 16.6427 0.9471 0.8151 0.6936 0.5882
ETV 6.9648 17.8558 27.7362 37.8116 31.2232 23.0625 19.2373 16.5475 0.9422 0.8102 0.6886 0.5861
Proposed 7.8842 16.9271 26.9387 36.9306 30.1670 23.5287 19.5095 16.7653 0.9534 0.8230 0.6976 0.5938

CT3 DTV 8.1841 18.1538 28.1277 37.9715 29.8411 22.9201 19.1163 16.5092 0.8702 0.6649 0.5480 0.4788
CDTV 8.5483 16.8861 28.5513 38.5108 29.4595 23.5497 18.9883 16.3875 0.8618 0.6567 0.5468 0.4767
NCTV 9.3043 19.2348 29.2041 39.1955 28.7274 22.4204 18.7901 16.2338 0.8411 0.6457 0.5597 0.4722
SBTV 9.9693 19.8947 29.9134 39.8088 28.1256 22.1220 18.5845 16.1000 0.8258 0.6395 0.5343 0.4692
IRTV 7.4694 17.4209 27.3837 37.3879 30.6330 23.2785 19.3486 16.6475 0.8869 0.6785 0.5568 0.4824
ETV 7.9006 17.8431 27.7387 37.8122 30.1490 23.0714 19.2376 16.5473 0.8774 0.6674 0.5528 0.4798
Proposed 6.9745 18.5630 26.8968 36.8509 31.2272 22.7271 19.5047 16.7670 0.8988 0.6858 0.5588 0.4872

CT4 DTV 8.1690 18.0980 28.1172 38.0365 29.8542 22.9476 19.1196 16.4963 0.9361 0.7952 0.6608 0.5480
CDTV 8.5822 18.5219 28.4912 38.3817 29.4288 22.7422 19.0063 16.4156 0.9306 0.7897 0.6570 0.5560
NCTV 9.2276 19.2467 29.1440 39.1438 28.7928 22.4103 18.8110 16.2462 0.9207 0.7776 0.6450 0.5412
SBTV 9.9744 19.8810 29.7766 39.9005 28.1205 22.1312 18.6235 16.0812 0.9121 0.7702 0.6393 0.5305
IRTV 7.4606 17.4154 26.9256 37.2329 30.6432 23.2788 19.4924 16.6792 0.9450 0.8025 0.6680 0.5557
ETV 7.8834 17.8268 27.8366 37.7518 30.1645 23.0779 19.2071 16.5582 0.9396 0.7987 0.6653 0.5494
Proposed 6.9708 16.9406 27.4470 36.8389 31.2347 23.5212 19.3333 16.7741 0.9519 0.8105 0.6735 0.5498
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satisfactory results to reduce the Gaussian noise from CT images
but failed to preserve the edges over the strong noisy edges. The
DTV method gives better SSIM value only over the CT2 image with
noise level 30. The ETV method provides smooth edges over the
homogeneous regions. However, as noise increases, the edges get
blurred. The ETV method gives better RMSE and PSNR values only
over the CT2 image with noise level 10. The NCTV method is also
helpful to reduce the Gaussian noise from CT images, but, visually
texture is not as good as required for clinical purpose. However, the
NCTV method gives better SSIM value only over the CT3 image
with noise level 30 and Entropy Difference (ED) value only over
the CT3 image with noise level 10. The results of CDTV, IRTV and
SBTV methods indicate that the noise from CT images is effectively
reduced. From experimental analysis, it was analyzed that the
results of CDTV method are not sufficiently reduce the higher
noise. However, the CDTV method gives some better results such
as RMSE and PSNR values over the CT3 image with noise level
20, SSIM value over the CT4 image with noise level 40, and ED
value over the CT2 image with noise level 20, as shown in Tables
1 and 1. The SBTV and IRTV methods failed to provide the smooth-
ness over the homogeneous regions, which can be analyzed from
Figs. 6 and 7. As noise increases, SBTV method also fails to preserve
the textures. However, the SBTV method gives better ED value over
the CT1 image with noise level 20. While, the IRTV method also
gives some better results such as ED and GMSD values over the
CT4 image with noise level 20, SSIM and DIV values over the CT1
image with noise level 20, RMSE and PSNR values over the CT4
image with noise level 30. The results of the proposed scheme pro-
vide better outcome for effective noise reduction on the CT images.
The edges and texture are well-preserved without over-smoothing
or generating the unwanted denoising flaws. In most of the cases,
the proposed method gives better RMSE, PSNR, SSIM, ED, DIV and
GMSD values over given CT image dataset, as shown in Tables 1
and 1. For more sophisticated CT images, physicians generally pre-
fer original noisy images more willingly in comparison to over-
smoothed images. The proposed algorithm provides less smoother



Table 2
ED, DIV and GMSD of CT denoised images.

ED DIV GMSD

Image r 10 20 30 40 10 20 30 40 10 20 30 40

CT1 DTV 0.6618 0.5657 0.5396 0.5233 1.4230 3.2890 5.0488 6.9309 0.0794 0.2065 0.2826 0.3269
CDTV 0.6547 0.5681 0.5367 0.5228 1.4849 3.1835 4.8124 6.4410 0.0833 0.2093 0.2834 0.3289
NCTV 0.6436 0.5619 0.5368 0.5222 1.5318 3.5606 5.0399 6.7116 0.0955 0.2167 0.2873 0.3313
SBTV 0.6276 0.5572 0.5359 0.5227 1.6782 3.4186 5.4367 6.9713 0.1053 0.2221 0.2921 0.3328
IRTV 0.6771 0.5707 0.5375 0.5236 1.4013 2.8137 4.5955 6.6144 0.0688 0.1974 0.2770 0.3240
ETV 0.6691 0.5674 0.5368 0.5237 1.4874 3.1870 4.9947 6.5835 0.0738 0.2019 0.2805 0.3285
Proposed 0.6213 0.5739 0.5313 0.5219 1.2270 2.9833 4.7102 6.4088 0.0617 0.1945 0.2740 0.3248

CT2 DTV 0.2160 0.1866 0.1917 0.2122 2.0167 4.3235 7.0097 9.7046 0.0571 0.1569 0.2199 0.2599
CDTV 0.2129 0.1846 0.1904 0.2165 2.0869 4.6213 7.0424 9.2240 0.0624 0.1577 0.2233 0.2605
NCTV 0.2105 0.1862 0.1930 0.2170 2.2377 4.8857 7.1624 10.1340 0.0692 0.1623 0.2236 0.2628
SBTV 0.2045 0.1858 0.1962 0.2190 2.4397 5.0360 7.5028 9.8770 0.0771 0.1709 0.2273 0.2650
IRTV 0.2226 0.1872 0.1880 0.2115 1.8326 4.2262 6.7563 9.4507 0.0502 0.1487 0.2172 0.2578
ETV 0.2184 0.1869 0.1899 0.2139 1.9644 4.3427 7.0746 9.6899 0.0550 0.1515 0.2176 0.2588
Proposed 0.2037 0.1885 0.1878 0.2099 1.7305 4.3030 6.4731 9.0947 0.0459 0.1466 0.2137 0.2547

CT3 DTV 0.6924 0.5971 0.5737 0.5686 3.7617 8.7158 13.5662 18.4269 0.0796 0.2060 0.2781 0.3194
CDTV 0.6865 0.5950 0.5755 0.5698 4.0448 8.9458 13.6403 17.8657 0.0860 0.2100 0.2809 0.3201
NCTV 0.6739 0.5928 0.5726 0.5675 4.3108 9.2104 14.0623 18.8141 0.0973 0.2153 0.2838 0.3236
SBTV 0.6810 0.5879 0.5792 0.5683 4.7438 9.0988 14.0902 19.3326 0.1064 0.2223 0.2878 0.3243
IRTV 0.7080 0.5991 0.5735 0.5667 3.6907 8.2033 12.1909 17.6931 0.0710 0.1961 0.2735 0.3166
ETV 0.6987 0.5997 0.5738 0.5664 3.8453 8.7534 13.2321 18.1521 0.0768 0.2026 0.2753 0.3185
Proposed 0.6940 0.5846 0.5716 0.5636 3.1779 7.9014 13.1541 16.8782 0.0634 0.1921 0.2720 0.3152

CT4 DTV 0.2180 0.1853 0.1852 0.2040 1.8633 4.3152 6.5716 8.5008 0.0580 0.1540 0.2193 0.2583
CDTV 0.2139 0.1855 0.1867 0.2037 2.0693 4.2925 6.8359 8.9685 0.0630 0.1583 0.2216 0.2588
NCTV 0.2087 0.1856 0.1881 0.2073 2.1010 4.3883 6.8031 9.2242 0.0698 0.1640 0.2234 0.2600
SBTV 0.2176 0.1852 0.1886 0.2087 2.4249 4.7364 7.0283 9.2779 0.0774 0.1669 0.2257 0.2635
IRTV 0.2229 0.1840 0.1859 0.2025 1.8446 4.1105 6.3610 8.4685 0.0510 0.1497 0.2147 0.2551
ETV 0.2185 0.1863 0.1860 0.2027 1.8374 4.2139 6.6262 8.8953 0.0543 0.1507 0.2167 0.2575
Proposed 0.2049 0.1849 0.1842 0.2017 1.6181 3.8725 6.3447 8.4888 0.0441 0.1433 0.2148 0.2548
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results with preserved edges and reduced noise which can be help-
ful for clinical purpose.

A zoom cropped object of low contrast noisy CT2 image as
shown in figure in 10(a) is also used to verify the performance of
the proposed algorithm. Fig. 10(b), (c), (d), (e), (f), (g) and (h) are
the results of DTV, CDTV, NCTV, SBTV, IRTV, ETV and the proposed
(a) (b)

(e) ( f ) 

Fig. 10. Analysis on zoomed image of noisy CT2 image: (a) zoomed image of noisy CT2; (b
IRTV; (g) result of ETV; and (h) result of proposed algorithm.
method, respectively. Visually, it can be analyzed that the pro-
posed method gives better outcomes in terms of noise reduction
and better edge preservation. For more critical analysis of noise
reduction from noisy CT image, the profile of CT3 image is also
obtained to compute the intensity values along a line. The analysis
of the profiles of denoised CT image as shown in Fig. 11 indicates
( c ) (d)

( g ) (h)

) result of DTV; (c) result of CDTV; (d) result of NCTV; (e) result of SBTV; (f) result of



Fig. 11. Intensity profile of a line on CT3 image. In each plot, the Noise Free intensity profile is plotted in red and filtered profile is plotted in blue.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12. Analysis on real noisy CT image: (a) real noisy CT image; (b) result of DTV; (c) result of CDTV; (d) result of NCTV; (e) result of SBTV; (f) result of IRTV; (g) result of ETV;
and (h) result of proposed algorithm.

Table 3
Execution time for different denoising methods (in seconds).

Method DTV CDTV NCTV SBTV IRTV ETV Proposed

Time 15.4976 3.3612 3.3125 .5667 2.9831 6.7121 3.0195
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that the proposed scheme is better in comparison to existing
denoising schemes.

The computation time is also an important factor to measure
the performance of the proposed methods. The average computa-
tion time in second(s) of proposed method and compared methods
are shown in Table 3. From Table 3, it can be observed that the pro-
posed method takes relatively less computation time in compar-
ison to DTV, CDTV, NCTV and ETV methods but slightly more
time compared to SBTV and IRTV methods. As the number of iter-
ations is increased, the time cost is proportionally increased. How-
ever, the proposed method still takes lesser computation time in
comparison to DTV, CDTV and ETV methods. Hence, there is trade-
off between the performance and computation time in the pro-
posed scheme. The major difficulty of deriving the results is to
find the optimum values of the inner parameters (a; b;l). How-
ever, it can be resolved by setting default values of inner parame-
ters to perform the proposed algorithm iteratively. The results can
slightly vary by changing the inner parameter values of the pro-
posed scheme.
5. Conclusions

In this article, a new exponentially directional weighted func-
tion (EDWF) for anisotropic and isotropic TV is developed to
denoise the computed tomography medical images. The perfor-
mance of the proposed method is evaluated with various factors
such as visual inspection of real CT image (added noisy and real
noisy). The performance metrics such as RMSE, PSNR, SSIM, ED,
DIV and GMSD are also computed and compared. From comparison
and result analysis, it can be clearly said that the proposed method
recovers visually accepted image by preserving most of the struc-
tures with less computation time. It also preserves the small image
details and generates no visual artifacts. The performance of the
proposed algorithm has a great potential to serve for denoising
the computed tomography images.
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