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This paper explores the effectiveness of Particle Swarm Classification (PSC) for a classification task in the
field of educational data mining. More specifically, it proposes PSC to design a classification model
capable of classifying questions into the six cognitive levels of Bloom’s taxonomy. To this end, this paper
proposes a novel specialized initialization mechanism based on Rocchio Algorithm (RA) to mitigate the
adverse effects of the curse of dimensionality on the PSC performance. Furthermore, in the design of
the RA-based PSC model of questions classification, several feature selection approaches are investigated.
In doing so, a dataset of teachers’ classroom questions was collected, annotated manually with Bloom’s
cognitive levels, and transformed into a vector space representation. Using this dataset, several experi-
ments are conducted, and the results show a poor performance of the standard PSC due to the curse of
dimensionality. However, when the proposed RA-based initialization mechanism is used, a significant
improvement in the average performance, from 0.243 to 0.663, is obtained. In addition, the results indi-
cate that the feature selection approaches play a role in the performance of the RA-based PSC (average
performance ranges from 0.535 to 0.708). Finally, a comparison between the performance of RA-based
PSC (average performance = 0.663) and seven machine learning approaches (best average perfor-
mance = 0.646) confirms the effectiveness of the proposed RA-based PSC approach.
� 2017 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Particle Swarm Optimization (PSO) is a swarm-based optimiza-
tion approach inspired by social behaviour of bird flocks and fish
schools (Poli et al., 2007). Simply, PSO maintains a swarm of parti-
cles, where each particle is defined by a position in a search space
that represents a potential solution to the optimization problem at
hand. In PSO process, each particle flies across the search space and
adjusts its position in favour of better one by combining some
aspects of the history of its own current and best position with
those of one or more members of the swarm. Over a number of
iterations, the swarm as a whole, like a flock of birds collectively
foraging for food, moves closer to the optimum position
(Engelbrecht, 2006). Conventionally, PSO has been applied success-
fully to function optimization problems, however, in the recent
years a remarkable growth in its application to problems in other
areas has been reported. Data mining is one of those areas, where
PSO is being applied to problems such as clustering, classification,
feature selection, and outlier detection (Grosan et al., 2006;
Martens et al., 2011). For classification, PSO has only recently
gained increasing interest through a specific PSO variant, called
Particle Swarm Classification (Nouaouria and Boukadoum, 2010;
Nouaouria et al., 2013), though its first application to classification
dates back to 2004 (Sousa et al., 2004). The cumulative evidence
since then suggests that PSC is a suitable and competitive tech-
nique, which can be applied efficiently to demanding data classifi-
cation problems, especially when accurate, yet comprehensible
classifiers are required (Abraham et al., 2007).

Educational Data Mining (EDM) is an emerging data mining
field that focuses on the development of methods for exploring
unique types of educational data arising from an educational sys-
tem or process (Romero and Ventura, 2013). In EDM, as well as
other data mining fields, classification is a major task which
appears in different contexts, and to which different techniques
have been applied. A thorough review of EDM classification works,
reported in five key EDM surveys (Baker and Yacef, 2009; Peña,
2014; Pena et al., 2009; Romero and Ventura, 2007, 2010) reveals
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that a particular offshoot of PSO specialized for data classification,
called PSC, has not been investigated for a classification of educa-
tional data. Therefore, this research proposes PSC to build a classi-
fication component in teaching effectiveness model, which is
capable of classifying teachers’ classroom questions into the six
cognitive levels of Bloom’s taxonomy.

Furthermore, to mitigate the adverse effects of curse of dimen-
sionality, an inherent problem of high dimensional dataset, this
paper proposes a novel specialized initialization mechanism that
is based on a particular information retrieval algorithm, called
Rocchio Algorithm. The rationale behind proposing RA-based ini-
tialization mechanism can be expressed as follows: In many previ-
ous studies, the key role of initialization mechanisms for
evolutionary algorithms, e.g. PSO, has been emphasized (Jabeen
et al., 2009; Omran and Al-Sharhan, 2008; Pant et al., 2008;
Parsopoulos and Vrahatis, 2002; Uy et al., 2007; Xue et al., 2014;
Zhang et al., 2009). Nonetheless, some researches have started to
question this role in high dimensional space (Kazimipour et al.,
2014; Xue et al., 2014). More specifically, it has been reported that
the advanced generic initialization mechanisms perform poorly in
high dimensional space, and hence the performance of many evo-
lutionary algorithms deteriorate significantly. Alternatively, a new
trend has started to focus on developing specialized initialization
mechanisms to improve the performance of evolutionary algo-
rithms in high dimensional space (Ma and Vandenbosch, 2012;
Xue et al., 2014). The specialized initialization mechanism exploits
problem-specific knowledge to identify a promising region in the
search space at which the evolution can occur. A particular region,
which has been proven to be promising for the initialization of evo-
lutionary algorithms, has been introduced in centre-based sam-
pling theory (Rahnamayan and Wang, 2009b, 2009a). According
to this theory, the centre region of the search space contains points
with higher probability to be closer to the unknown optimal solu-
tion. On this basis, RA is proposed to identify the centre region of
the search space for data classification, and thus ensure a promis-
ing initialization of the PSC particles.

In addition, since feature selection plays a crucial role in data
classification, the effect of feature selection approaches on the pro-
posed RA-based PSC is investigated. More specifically, the perfor-
mance of RA-based PSC is investigated with the following four
feature selection approaches: Term Frequency (TF) (Xu and Chen,
2010), Mutual information (MI) (Yang and Pedersen, 1997), Chi
Square (v2) (Galavotti et al., 2000), and Information Gain (IG)
(Mladenic, 1998). Finally, the proposed RA-based PSC approach is
validated by comparing its results with the results of the following
Machine Learning (ML) approaches (Mitchell, 1997): k-nearest
neighbor (kNN), Naïve Bayes (NB), Support Vector Machine
(SVM), decision tree algorithm (J48), a rule based ML algorithm
(RIPPER, JRip), Adaptive Boosting method (AdaBoost), and Bayesian
Networks (ByesNet), which have been applied to the same data set
under the same settings.

The remainder of this paper is organized as follows: the next
section describes PSC in details. The subsequent section introduces
the proposed RA-based PSC technique. Then, in Section 4, the
recent literature on PSC, EDM, and the specific task of questions
classification is reviewed. Thereafter, Section 5 describes how
PSC is applied to the questions classification task. Afterwards, the
experimental results are presented in Section 6 and discussed in
Section 7. Finally, in Section 8, the drawn conclusions are
presented.

2. Particle swarm classification

In many fields, PSO is one of the most widely used technique for
solving complex optimization problems (Engelbrecht, 2006).
Basically, PSO maintains a swarm of particles that represent poten-
tial solution to the given optimization problem. Associated with
each particle are two values representing particle’s position and
velocity. Furthermore, each particle has a learning component that
merges two types of information: cognitive information (particle’s
own experience) and social information (entire swarm’s experi-
ence). While the cognitive information represents the best solution
a particle has ever achieved in its history, the social information is
the best position the swarm has ever achieved. Together, the cog-
nitive and the social information are used to calculate the velocity
of particles and then their next positions. Typically, PSO starts with
a random initialization of particles’ velocities and positions. Then,
the particles move from one position to another to find a better
solution

The Standard PSO Algorithm
begin
for each particle i
randomly initialize particle’s position pi and velocity vi

while (t < Tmax)
for each particle i
determine the particle fitness value, fi
if fi is better than fbi // fbi is the fitness of the current

local best position
then bi = pi

fbi = fi // bi is current local best position
if fi is better than fg // fg is the fitness of the current global

best position
then pg = pi
fg = fi // pg is current global best position

end for
for each particle i
calculate particle velocity, vi // Eq. 1
update particle position, pi // Eq. 2

end for
end while

end

More formally, as demonstrated in the standard PSO algorithm
above, the PSO maintains a swarm of M particles, where each par-
ticle is composed of three N-dimensional vectors (N is the dimen-
sionality of the search space): the current position (pi), the
previous best position (bi), and the velocity (vi). Each particle moves
iteratively with an adaptable velocity within the search space and
retains in memory the best position it ever reached. The objective
of PSO is to keep finding better positions and updating pi and bi
by adding vi coordinates to pi and adjusting vi from one iteration
to the next as follows: for a particle i, velocity at time t + 1 ðv tþ1

i Þ
is a linear combination of its velocity at time t ðv t

i Þ, the difference
between the position of the best solution found by the particle up
to time t and its current position ðbt

i � pt
i Þ, and the difference

between the best position ever found by the total swarm and the
particle’s current position ðbt

g � pt
i Þ.

v tþ1
i ¼ w:v t

i ðtÞ þ c1:Uð0;1Þ � ðbt
i � pt

i Þ þ c2:Uð0;1Þ � ðbt
g � pt

i Þ ð1Þ
where � denotes point–wise vector multiplication; U(0,1) is a func-
tion that returns a vector whose positions are randomly generated
by a uniform distribution in the range [0,1]; c1 is the cognitive
parameter; c2 is the social parameter; and w is the inertia factor
whose range is [0, 1]. The velocity values must be within a range
defined by two parameters: vmin and vmax. The position of each par-
ticle i in the next step is then computed by summing its current
position and its velocity:
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ptþ1
i ¼ pt

i þ v tþ1
i ð2Þ

These operations are repeated for Tmax iterations or until some
other stopping criterion is met, for instance the minimal error with
respect to the optimal solution.

Since its inception in 1995, PSO has been applied to various
problems, and for many of which the problem-specific characteris-
tics have motivated the development of a PSO variant (Hasanzadeh
et al., 2013; Li et al., 2012). For instance, PSC is basically a PSO vari-
ant (Nouaouria et al., 2013) developed to tackle data classification
tasks. The main idea underlying PSC is the transformation of a
given classification problem into an optimization problem and
using PSO to find the optimal classifiers according to some pre-
specified measures. For this purpose, two types of PSC variants
have been developed: rule-based PSC and nearest neighbor-based
PSC (Martens et al., 2011). In the rule-based PSC, the classifiers
are a set of rules represented in a form of ‘IF-THEN’ rules. Based
on the type of data, categorical or continuous, two methods of rule
representation have been developed (Sousa et al., 2004). For the
categorical data, binary representation is used, whereas for the
continuous data, representation that is more complicated is used.
As for the nearest neighbour-based PSC, the classifier is a set of
prototype vectors, in N-dimensional space, representing the cen-
troids of classes, and the role of PSO is to find the optimal represen-
tative centroid for each class (Nouaouria and Boukadoum, 2010;
Nouaouria et al., 2013). The classification on a new data instance
is performed by measuring its distance to the previously found
prototype vectors.
3. Rocchio Algorithm-based particle swarm classification

In this section, the proposed RA-based PSC is described in
details. It is, simply, a nearest neighbour-based PSC with special-
ized initialization mechanism proposed to overcome the adverse
effects of curse of dimensionality on the performance of PSC. From
classification systems point of view, the RA-based PSC system is a
set of binary classifiers, where a classifier represents an optimal
centroid for a given class. The development of the RA-based PSC
Fig. 1. The developme
system is based on the generic method, depicted in Fig. 1. It starts
with a preprocessing step of the training data, i.e. feature selection
and extraction, followed by a conversion of the training data into a
suitable representation. Afterwards, PSO is applied to find the opti-
mal classifiers capable of classifying the testing data effectively
according to pre-specified evaluation measures. In doing so, PSC
maintains a swarm of M particles, whose coordinates are different
tentative centroids for the given class. In other words, each particle
has 2�N components corresponding to the N-dimensional candi-
date centroid position and velocity. At training stage, PSO itera-
tively refines the positions to find the best classifier that
represents the centroid of the class. In the subsequent testing
stage, the discovered centroid is evaluated using class instances
in the testing set. In the following the motivations, rationale, and
the details of the proposed RA-based initialization mechanism
are described.

Typically, in the evolutionary algorithms, the individuals of the
initial population are initialized randomly using uniform random
distribution. There is strong intuition that better initialization of
individuals help the algorithm to achieve better results. Based on
this, many advanced initialization mechanisms have been investi-
gated to improve the performance of the evolutionary algorithms,
e.g. PSO (Jabeen et al., 2009; Omran and Al-Sharhan, 2008; Pant
et al., 2008; Parsopoulos and Vrahatis, 2002; Uy et al., 2007; Xue
et al., 2014).

Recently, some researches on the scalability of initialization
mechanisms to high dimensional domains have been published
(Kazimipour et al., 2014, 2013; Xue et al., 2014). They investigates
whether or not the claimed advantages of using the generic initial-
ization mechanisms are still significant when the dimensionality of
the data is beyond hundred variables. In these researches, it has
been shown that the uniformity of population drops dramatically
as the data dimensionality grows. This confirms that uniformity
loss is encountered in high dimensional spaces, regardless of the
type of evolutionary algorithm, initializer, or problem
(Kazimipour et al., 2014). In light of these findings, some research-
ers have started considering the design of task-specific initializa-
tion mechanisms as a viable alternative to generic initialization
nt process of PSC.
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mechanisms in order to improve the performance of the PSO when
it is applied to high dimensional domains (Ma and Vandenbosch,
2012; Xue et al., 2014). These mechanisms based essentially on
identifying promising region in the search space to initialize the
evolutionary algorithm. A particular region in the search space that
has been proven to be a promising region for initializing evolution-
ary algorithms is introduced in Rahnamayan and Wang (2009b).
According to this study, the centre region of the search space is a
promising region, because it contains points with higher probabil-
ity to be closer to the potential solution. Moreover, it has been pro-
ven that the probability of closeness to the potential solution
increases directly with the dimensionality of the search space. In
other words, the average distance of the points which are closer
to the centre from the unknown solution is lower and similarly
decreases sharply for the higher dimensions. On this basis, when
the initialization occurs closer to the centre of the search space,
they have a higher chance to be closer to an unknown solution,
and also in average, their distance from solution is lower as well.
Furthermore, for higher dimensions the mentioned advantageous
increases. Given the advantageous of the center region of the
search space, it has been utilized to develop generic initialization
mechanisms for evolutionary algorithm (Rahnamayan and Wang,
2009a, 2009b).

Motivated by the aforementioned advancements, in this
research a novel specialized initialization mechanism is proposed
to improve the performance of PSC in high dimensional data clas-
sification. The proposed mechanism is based on an information
retrieval algorithm, called Rocchio Algorithm, which provide a
specific identification of the centre region of data classification
search space. RA is an efficient information retrieval algorithm,
which was originally designed to use relevance feedback in query-
ing full-text databases (Rocchio, 1971). When it is used for classi-
fication, it generates for each class c a prototype vector, which is
the average vector overall training set vectors that belong to the
class c. To classify a new data instance, it calculates similarity
between the vector of the new data instance and each of prototype
vectors and assigns it to the class with maximum similarity. More
formally, the centroid of a class c is computed as the vector average
or centre of mass of its members as follows:

~lc ¼ 1
jDcj

X
d2Dc

~vðdÞ ð3Þ

where Dc is the set of data instances in the dataset whose class is c.
When it is used as an initialization mechanism for PSC particles, the
centroid for a given class c is used to initialize each particle i as
follows:

~pc
i ¼ ~lc þ~ai ð4Þ

where ~lc is a vector of mean values <m1, . . ., mj,. . ., mN>, such that mj is
the mean value of dimension j over all data instances of in Dc and is
a random vector <a1, . . ., aj,. . ., aN>, such that aj is a small random
value generated independently for dimension j in the interval [�R,
R], such that the generated particle falls in the range [mj � R, mj + R]
cantered at mj. It is worth to mention that RA-based initialization
mechanism is not computationally expensive, because the vector
is calculated once and then used to generate the initial vector of
each particle.

4. Literature review

In the recent years, the explosive growth of educational data,
that come from educational sources (systems and processes), is a
major challenge for educational institutions. EDM is an emerging
data mining field that is concerned with developing methods for
exploring the educational data. It builds on data mining in other
domains such as commerce and biology (Romero and Ventura,
2013). Similar to other data mining fields, classification is a funda-
mental task in EDM. It represents a substantive part of the works
published so far because in education teachers and instructors
are classifying their students according to their behaviour and
levels of knowledge and motivation. An overview of the typical
educational data classification problems and methods are pre-
sented in Hämäläinen and Vinni (2010). In this work, several
examples of EDM classification tasks are identified, such as classi-
fication of student’s academic success at the university level, clas-
sification of student’s success in specific course, predicting
student’s success in the next task, given her/his answers to previ-
ous tasks, and classification of metacognitive skills and other fac-
tors which affect learning.

With regard to the specific EDM classification task, questions
classification, it has been addressed in many previous works. In
one of these works, (Fei et al., 2003), an artificial neural network,
namely back-propagation neural network, is used to classify ques-
tion into three difficulty levels that are easy, medium, and hard.
The obtained results in term of F-measure value is nearly 78%. A
decision tree is used in Cheng et al. (2005), to construct an auto-
matic classification of questions of E-learning examination pool
according to its difficulty to choose questions that are suitable
for each learner according to individual background. In Chein and
Liau (2004), an automatic classifier for Chinese questions of partic-
ular keywords is designed. In Ince (2008), three artificial intelli-
gence methods: artificial neural network, support vector
machine, and adaptive network-based fuzzy inference system are
proposed as a means to achieve accurate question level diagnosis,
intelligent question classification and updates of the question
model in intelligent learning environments such as E-learning or
distance education platforms. It reports the investigation of the
effectiveness and performances of these methods within a web-
based E-learning environment in the testing part of an undergrad-
uate course to observe their questions classification abilities
depending on the item responses of students, item difficulties of
questions and question levels that are determined by putting the
item difficulties to Gaussian normal curve. The comparative test
performance analysis conducted using the classification correct-
ness revealed that the adaptive network-based fuzzy inference sys-
tem yielded better performances than the artificial neural network
and support vector machine. In Karahoca et al. (2009), a questions
classification model is developed using rapidly-exploring random
tree algorithm to determine the item difficulties of tests that are
used on a computer adaptive testing system. The effect of the size
of item pool on the question classification is also investigated and
found important for question classification. An interesting work on
question classification is presented in Nuntiyagul et al. (2008). In
this work, an adaptable learning assistant tool for managing ques-
tion bank is presented. The tool is able to automatically assist edu-
cational users to classify the question into predefined classes and
correctly retrieve the questions by specifying the class and/or the
difficulty levels. The system is tested and evaluated in terms of
accuracy and user satisfaction. A recent work that embeds question
classification within intelligent tutoring system is presented in
Kavitha et al. (2012). In this work a norm referencing is used to
classify questions based on item difficulty. The question classifica-
tion have recently addressed in the online question and answer
forums such as Stack Exchange and Quora, an increasingly popular
resource for education. For such systems, a multi-label classifica-
tion system that automatically tags users’ questions using a linear
support vector machine and a carefully chosen subset of the entire
feature set to enhance user experience is proposed in Eric et al.
(2014).

Although in most of the above reviewed works, the classifica-
tion of questions is based on the levels of difficulty, more recently,
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the questions classification based on Bloom’s taxonomy cognitive
level has been reported in several works. In Haris and Omar
(2013, 2015), a rule-based approach is used to develop questions
classification model that classify written examination questions
of computer programming course. The aim is to provide lecturers
with a tool to assess the student’s cognitive levels from the written
examination questions. The preliminary results show that it is a
viable approach to help categorize the questions automatically
according to Bloom’s Taxonomy. Another rule-based questions
classification model of the exam questions based on Bloom’s tax-
onomy is presented in Omar et al. (2012), Fattah et al. (2007), in
which a question classification model, in the context of developing
a web application system to design a good examination questions,
is developed. The system involves question authoring module,
question retrieval module, question analysis module, and exam
paper generation module. The question analysis module determi-
nes the difficulty level of each question based on Bloom’s Taxon-
omy in the question paper using the keyword/s found in the
question. In Abduljabbar and Omar (2015), the question classifica-
tion into Bloom’s cognitive levels is tackled using support vector
machine, naïve bayes, and k-nearest neighbour with or without
feature selection methods, namely chi-square, mutual information
and odd ratio. A combination algorithm is used to integrate the
overall strength of the three classifiers. The classification model
achieves highest result when applying mutual information, which
proved to be promising and comparable to other similar models. In
Jayakodi et al. (2016), WordNet with Cosine similarity algorithm
are used to classify a given exam question according to Bloom’s
taxonomy learning levels. The question classification model con-
sists of tag pattern generation module, grammar generation mod-
ule, parser generation and cosine similarity checking module. The
data is a set of exam questions taken from courses at the Depart-
ment of Computing and Information Systems at Wayamba Univer-
sity. The results show that the performance of the classification
model is consistent with those provided by domain experts on
approximately 71% of occasions. In Yusof and Hui (2010), a ques-
tion classification model to classify items in examinations based
on Bloom’s taxonomy is proposed. The model applies the artificial
neural network approach, which is trained using the scaled conju-
gate gradient learning algorithm. Several data preprocessing tech-
niques and feature reduction methods are investigated. The
experimental results indicate that the model can enhance the con-
vergence speed and document frequency is the most effective fea-
ture reduction method. In Yahya et al. (2013), Yahya and El Bashir
(2014), the effectiveness of three machine learning approaches,
namely, k-nearest neighbours, naïve Bayes, and support vector
machines with different term selection approaches are investi-
gated on the task of classifying teachers’ classroom questions into
different cognitive levels identified in Bloom’s taxonomy. A dataset
of questions is collected and annotated manually with Bloom’s
cognitive levels and several steps of pre-processing have been
applied to convert these questions into a representation suitable
for machine learning approaches. The results show that machine
learning approaches have a superior performance over rule-based
approach and the support vector machine shows a superior perfor-
mance over k-nearest neighbour and naïve Bayes. In Dubey and
Goyal (2016), a question classification model to classify questions
asked on stack overflow, a popular social networks source of tech-
nical questions and answers useful for the education domain,
according to Bloom’s taxonomy is developed. LDA, a three-level
hierarchical Bayesian model, i is applied to reduce the dimensions
of each item and then use k-means algorithm on a collection hav-
ing unlabelled and labelled items to get the result. Initially, an
accuracy of 30.2% is obtained with this approach and with further
augment other features like score, answer count and view count an
accuracy of 56.33% is obtained.
From the forgoing works, it is obvious that the interest in ques-
tions classification task based on Bloom’s taxonomy cognitive
levels is growing due to its implications for educational systems
and e-learning platforms. As can be observed, in most of the works,
the question classification model is an embedded component
within a certain educational system that is developed to emulate
an educational practice, such as intelligent tutoring systems, item
bank question systems, automatic test generation systems, adap-
tive test systems, question answering systems, etc. Definitely, the
growing interest in integrating Bloom’s taxonomy in educational
systems is a reflection of its importance for many educational
practices.

As the objective of this research is to develop a questions clas-
sification system using the recent state of the art approaches, a
comprehensive review of the data classification in EDM is useful.
To this end, five key surveys have been adopted as a source of
information (Baker and Yacef, 2009; Peña, 2014; Pena et al.,
2009; Romero and Ventura, 2007, 2010). Each survey reviews
EDM works published on specific time interval and categorizes
them according to a pre-specified taxonomy. The surveys have
been analysed with particular attention paid to the classification
works and the applied classification method. As shown in Fig. 2.
Bayesian networks, decision trees, neural networks, and regression
methods dominate other classification methods. The domination of
these methods is a direct result of their ability to capture the
dependencies between the class attributes and to avoid over-
fitting (Hämäläinen and Vinni, 2010). Furthermore, the analysis
of these surveys reveals that there are still many methods that
have not yet been explored for classification in EDM. Swarm
intelligence-based methods are prominent examples of these
methods, which in spite of their proven success for tackling data
mining tasks in different domains, have not yet been explored for
EDM classification (Grosan et al., 2006; Yahya et al., 2014). This
can be attributed to the relatively nascent stage of the EDM field
and to the popularity of using swarm intelligence methods, e.g.,
PSO and Ant Colony Optimization, for tackling optimization tasks
rather than classification (Nouaouria et al., 2013).

On the contrary to the lack of PSC applications in EDM classifi-
cation, the interest in applying PSC to data classification in other
domains has grown considerably and resulted in two types of
PSC models: rule-based PSC and nearest neighbour-based PSC
(Martens et al., 2011). As the interest of this research lay in the
nearest neighbour PSC, the following review is confined to the
nearest neighbour-based PSC works, regardless of their domains.
Furthermore, for the sake of organization, the reviewed works
are grouped into three categories: the PSC models that depend
on the standard PSO, the PSC models that depend on modified
PSO, and the PSC models that are applied for high dimensional data
classification.

In the first category, the standard PSO has been used in many
works. For example, in Tewolde and Hanna (2007), the standard
PSO is used to develop a PSC for the implementation of single
and multi-surface based data separation methods for classification
of breast cancer data from University California, Irvine (UCI)
machine learning repository. The experimental results showed
excellent classification accuracies, ranging from 97% to 100%, by
the two approaches. In Tsai and Yeh (2008), a PSC approach is
developed for inventory classification problems, where inventory
items are classified based on a specific objective or multiple objec-
tives, such as minimizing costs, maximizing inventory turnover
ratios, and maximizing inventory correlation. The experimental
results of applying the developed PSC on inventory data collected
from a printed circuit board manufacturer with 1101 items and
47 suppliers show that PSC performs comparatively well with
respect to those schemes that are commonly used in practice. In
Ng et al. (2009), a PSC model that is based on the standard PSO
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is developed and used to perform unsupervised clustering of multi-
class images. The experimental results drawn from separate multi-
class image data sets revealed that the PSC produced better and
more consistent results in terms of cluster characteristics and sub-
sequent recognition than the k-means algorithm. In Liu et al.
(2010), a PSC model was developed based on the standard PSO
for data clustering. In this PSC model, four cluster validity indices
(Euclidean distance-based PBM, the kernel function-induced CS,
Point Symmetry, and Manifold Distance) are used as fitness func-
tions. Results of experimentation on 31 data sets (artificial, synthe-
sized data and UCI data) uncovered that the PSC with the Manifold
Distance index outperforms the PSC with the other indices in terms
of clustering accuracy and robustness. In Nebti and Boukerram
(2010), PSO, Bees Algorithm, Artificial Bees Colony Optimization,
Multilayer Perceptron, and a Hybrid Multilayer Perceptron and
Bees Algorithm are applied to the problem of hand-written Arabic
digits recognition (selected from the MNIST database). The exper-
imental results disclosed that performance of the PSC is better than
those of the Artificial Bees Colony Optimization andMultilayer Per-
ceptron but worse than those of the Bees Algorithm and the Hybrid
Multilayer Perceptron and Bees Algorithm, which produces the
best results. In Kalyani and Swarup (2011), the standard PSO is
used to develop a PSC for static security assessment of large-
scale power systems. Results of experiments on data sets of the
IEEE 14 Bus, IEEE 57 Bus, and IEEE 118 Bus systems points out that
the PSC produces fairly-high classification accuracy and a low mis-
classification rate. In Wang and Ma (2014), a novel PSC based on
the standard PSO and the k-nearest neighbour algorithm is pro-
posed for diagnosing faults in a power plant thermal system under
two operating points (600-MW and 480-MW). The experimental
results derived from processing five UCI data sets (Diabetes, Glass,
Heart, Iris, and Wisconson) demonstrate the validity of the pro-
posed approach.

It should be mentioned that the standard PSC is not always
effective as nearest neighbour-based classification model, and con-
sequently different variants of PSO have been developed and
employed in the development of the nearest neighbour PSC. In
Owechko et al. (2004), a PSC that is based on PSO extended with
sequential equations is used to classify a set of infrared images
for human detection using Haar wavelet and edge-symmetry fea-
tures. The results show that the proposed PSC is effective, very fast
and can robustly detect multiple objects in the scene. In O’Neill and
Brabazon (2006), a PSC model that is based on a novel self-
organizing particle swarm (SOSwarm) is proposed and tested on
four UCI ML repository data: Breast cancer, Pima Indians diabetes,
New Thyroid, and Glass. The proposed PSC outperforms or accords
with the best-reported results on all four data sets. In Omran and
Al-Sharhan (2007), A new variant of PSO is proposed in which no
parameters’ tuning is required. It is used in a PSC model to classify
synthetic, MRI, and satellite images. The experimental results
demonstrate that the proposed PSC outperforms the state-of-the-
art algorithms. In Cervantes et al. (2009), a PSC model that is based
on Adaptive Michigan PSO (AMPSO) is developed, in which each
particle in the swarm represents a single prototype in the solution
space and the swarm evolves using modified PSO equations with
both particle competition and cooperation. The experiments on
seven UCI data sets (Balance Scale, Bupa, Diabetes, Glass, Iris, Thy-
roid, and Wisconsin) show that AMPSO could always find a better
solution than the standard PSO. In addition, the AMPSO is compet-
itive with some of the most commonly-used classification algo-
rithms. A Quantum-based PSO (QPSO) is proposed in Chen et al.
(2008) and used to develop a PSC for gene expression data analysis.
In the QPSO, the update rule is a combination of the mean of per-
sonal best positions among the particles and a contraction-
expansion coefficient. Experiments on four gene expression data
sets (rat CNS data set, the GAL data set, and two yeast cell data
sets) show that the QPSO-based PSC is always able to obtain parti-
tions with outstanding effect and that it is a promising tool for
gene expression data clustering.

As the interest in using PSC for classification grows, several con-
cerns about its effectiveness have been raised. A major concern
that has been receiving considerable attention is its effectiveness
in high dimensional data classification. This concern was initially
addressed in De Falco et al. (2005, 2007) where the PSC is applied



Fig. 3. Bloom’s Taxonomy Cognitive Levels.
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to nine data sets and the obtained results are compared with the
results of nine classical classification algorithms. In these studies,
the effects of the number of classes and data size and dimension-
ality on the PSC effectiveness are investigated. Experiments are
conducted on nine UCI data sets: Card, Diabetes, Glass, Heart,
Horse, Iris, Wdbc, Wdbc-I, andWine. In these data sets, the number
of classes ranges from 2 to 6, the dimensions range from 4 to 58,
and the sizes range from 150 to 768. The conclusion is that the
PSC classification accuracy tends to decrease with increasing val-
ues of classes in the data set and with the value of the product of
data set size by dimensionality. This conclusion is questioned in
Nouaouria and Boukadoum (2009, 2010) by investigating the per-
formance of the PSC on a more complex data set (Fluorescence
measurements on substance data set with 19 classes, 2103 data
instances, and 64 space dimensions). The results show positive
performance of PSO when using a mechanism of confinement of
the data values. Further investigation is carried out in order to
evaluate the extent to which the generalization of the previous
conclusions holds for three additional data sets with sizes of
2103, 16000, and 3823; dimensions of 64, 16, and 64; and class
numbers of 19, 26, and 10. The results bring to surface that PSC
with additional coping mechanism has good potential as a classifi-
cation tool, even for high dimensioned problem spaces with a large
number of instances and multiple classes.

In summary, the above review reveals a couple of findings that
motivate the current work. First, it indicates that questions classi-
fication based on Bloom’s taxonomy is a task of crucial importance
for e-learning systems and platforms. Second, in spite of wide
range of PSC application domains, no works on PSC application to
EDM filed has been reported. Third, the review indicates that the
performance of the standard PSC tends to decrease as data dimen-
sion increases, and when coping mechanisms are used, the perfor-
mance of the PSC improves, however, none of the previous works
has investigated the effects of initialization mechanisms on the
performance of PSC for high dimensional data classification.
Table 1
Examples of Questions Dataset.

BCL Question Example

Knowledge what are the main components of a finite automata
Comprehension describe the four clauses in the syntax of a simple SQL

retrieval query
Application if you apply quick select to find the median of the list of

numbers what would be the results ?
Analysis compare right-linear grammar with left-linear grammar.
Synthesis How would you model this problem by a graph?
Evaluation Which grammar do you think should be used?
5. RA-based PSC for educational questions classification

In education, teaching effectiveness is a multi-dimensional con-
cept that is defined as the ability of a teacher to inculcate knowl-
edge and skills in students as well as to change their behaviours.
Although it is influenced by a combination of teacher skills, it is
widely acknowledged that teacher’s questioning skill is one of
the key indicators of teaching effectiveness. Hamilton, an early
adopter of the importance of acquisition and development of ques-
tioning skills, was quoted as saying that questions are the core of
effective teaching (Ramsey et al., 1990). Presently, it is quite a com-
mon fact that the essence of effective teaching is related to good
questioning (Ornstein, 1987). In educational practices, questioning
is the most frequently used instructional intervention in classroom
as teachers ask many questions in a lecture for a variety of pur-
poses (e.g., developing interest and critical thinking skills) (Levin
and Long, 1981). Taxonomy-based analysis is one of the most com-
monly used methods for analysing teacher’s questions (Hackbarth,
2005). Within this context, many classification systems have been
developed (Bloom et al., 1984), and Bloom’s Taxonomy is the most
salient example. It was developed by Benjamin Bloom, who identi-
fied six levels of learning in cognitive domain known as Bloom’s
cognitive levels (BCLs), and organized them on the basis of hierar-
chy as depicted in Fig. 3.

It follows from the above that the automatic classification of the
questions of the teacher in the classroom is a key component for
modelling teaching effectiveness. Besides that, as described in Sec-
tion 3, the automatic question classification is a key component in
many computer-based educational systems and e-learning plat-
forms, such as intelligent tutoring systems, automatic test genera-
tion systems, item bank management systems, adaptive testing
systems, question answering systems, etc. On account of this, the
RA-based PSC is proposed to automatically assign a BCL to a given
teacher’s classroom questions as described in the following sub-
sections.

5.1. Collection of educational questions data

The questions data set is a set of questions collected over a per-
iod of three semesters of the academic years 2011 and 2012, from
lecturers of computer science courses at Najran University. The
procedure of data collection was based on lecturers who were
requested to keep records of the questions they direct to their stu-
dents in the classrooms. All lecturers were informed about Bloom’s
taxonomy and the objectives of this work. It should be mentioned
that due to nascence of the EDM field, the availability of bench-
mark data sets is still a challenge (Woolf et al., 2013) despite some
current efforts such as the Datashop from Pittsburgh Science of
Learning Center (Koedinger et al., 2008), which provides many
educational data sets and facilitates data analysis. With regard to
the collected questions data set, which has been used in this work,
it was used in several previous studies (Yahya et al., 2013; Yahya
and El Bashir, 2014), and currently is available for benchmarking.
Table 1 shows a sample of questions and their corresponding BCL
class.

5.2. Questions preprocessing

Since the textual data are not suitable for most classifier learn-
ing algorithms, a transformation of the questions data set into a
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suitable representation (e.g., vector space representation) was per-
formed. Typically, data preprocessing involves steps of linguistic,
morphological, and statistical analysis such as tokenization, stem-
ming, and feature selection. The following subsections describe the
preprocessing steps applied to the questions data set.

5.2.1. Tokenization (Term Extraction)
Tokenization involves breaking the text stream into meaningful

tokens, also called terms, such as symbols, phrases, and words.
Typically, tokenization starts by defining the meaning of token,
usually in a form of regular expression. For the questions data
set, the term is defined as a maximal sequence of non-blank char-
acters where all letters are in the lower case form. Therefore, tok-
enization involves reducing the question text to lower case
characters and generating its terms set.

5.2.1.1. Unuseful term removal. In English language, there are
groups of words that are not informative for text classification,
called stop words (the most frequently used words) such as pro-
nouns, prepositions, and conjunctions. The stop words in English
include about 400–500 words such as ’the’, ’of’, ’to’, . . . etc. It has
been proven that the removal of the stop words is very useful for
text classification (Silva and Ribeiro, 2003). In this work, the stop
words as defined in Salton (1989) have been removed. Besides
the stop words, the following three groups have been also
removed:

� Punctuation marks. All punctuation marks.
� Numbers. Terms consisting purely of digits.
� Low-frequency terms. Terms with frequency less than three.

5.2.2. Stemming
In linguistic morphology, stemming is the process of reducing

the inflected words to their roots or base forms, known as stems,
which may not be the same as the morphological root of that word.
Stemming is usually done by removing any attached suffixes and
prefixes from terms to improve the classification accuracy.
Although many stemming algorithms have been developed, a por-
ter stemmer has been used for the questions data set (Porter,
1980). This stemmer is based on the idea that the suffixes in the
English (approximately 1200) are mostly made up of a combina-
tion of smaller and simpler suffixes. It proceeds in steps, and in
each step, rules are applied until one of them is satisfied. If a rule
is accepted, the suffix is removed accordingly, and the next step
is performed. Eventually, the resultant stem at the end of the fifth
step is returned.

5.2.3. Term selection
In this step, a feature selection approach is applied to select a

sub-set from the original terms set (a set of all the terms in the
questions under consideration) such that only the most represen-
tative terms are used. A computationally easier term selection
approach is the filter approach (Yahya et al., 2011), which selects
a sub-set of terms that receive the highest score according to a
function of term importance for the classification task. In this work,
a filter approach based on Term Frequency (TF) has been applied
due to its ability to take into account the multiple appearances of
a term in the questions (Xu and Chen, 2010).

5.2.4. Term weighting
Term weighting is the task of assigning a numerical value to

each term based on its contribution to characterization of classes.
In its simplest form, a binary weighting can be used, where 1
denotes presence and 0 absence of the term. However, non-
binary weight forms are most often used. In this work, a non-
binary weighting in the form of term frequency inverse document
frequency (tfidf) has been applied (Sebastiani, 2002). First, the tfidf
of each term tk in a question qj is computed as follows:

tfidf ðtk; qjÞ ¼ tf ðtk; qjÞ � log
NðTrÞ

N qtk
; Tr

� �
0
@

1
A ð5Þ

where tf(tk, qj) denotes the number of times tk appears in qj, N(Tr)
represents the number of questions in the training set Tr, and
Nðqtk

; TrÞ expresses the number of questions, in Tr in which the qtk

term, tk is encountered. The term weight is then computed as
follows

wðtk; qjÞ ¼
tfidf ðtk; qjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
k¼1 tfidf ðtk; qjÞ

� �2q ð6Þ

where T is the number of unique terms in Tr.

5.2.5. Vector space representation
In this step, each question qj is represented as a vector of term

weights <w1j, . . ., wTj>, where 0 � wkj � 1 represents the weight of
term tk in qj.

5.3. Classifiers learning

In this phase, RA-based PSC is applied to learn a classifier for
each BCL class from the training set. The main idea is that given
a training set divided into instances labelled with the given BCL
(DBCL) and instances labelled with other BCLs ðDBCLÞ represented
in N-dimensional vector space, the RA-based PSC searches for the
optimal centroids of that BCL and BCL in the N-dimensional space.
By so doing, RA-based PSC starts with a swarm of particles initial-
ized as described in Section III, where each particle represents
potential centroids of that BCL and BCL. Then, the RA-based PSC
iterates through a search process to obtain the best centroids.
The ith particle in the swarm is encoded as a concatenation of four
vectors as follows:

~pBCL
i ;~pBCL

i ;~vBCL
i ;~vBCL

i

n o
ð7Þ

In this representation, ~pBCL
i and ~pBCL

i of particle i represent the

candidate centroid of the given BCL and BCL as follows:

~pBCL
i ¼ pBCL

i1 ; . . . ;pBCL
iN

� � ð8Þ

~pBCL
i ¼ pBCL

i1 ; . . . pBCL
iN

n o
ð9Þ

Similarly,~vBCL
i , ~vBCL

i of particle i express the velocity components
of the particle as follows:

~vBCL
i ¼ vBCL

i1 ; . . . ;vBCL
iN

� � ð10Þ

~vBCL
i ¼ vBCL

i1 ; . . . vBCL
iN

n o
ð11Þ

During the search, each particle i is evaluated in order to assess
its fitness by a fitness function w computed over all training set
instances, DBCL and DBCL, as the sum of two components: the sum-
mation of the Euclidean distance between~xj and~pBCL

i divided by the
number of data instances in DBCL, and the summation of the Eucli-

dean distance between ~xj and ~pBCL
i divided by the number of data

instances in DBCL as follows:

wðiÞ ¼ 1
DBCL

XDBCL

j¼1

d ~xj;~pBCL
i

� �þ 1
DBCL

XDBCL
j¼1

d ~xj;~pBCL
i
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As such, the problem is a typical minimization problem to
which RA-based PSC can be applied. At the end of this phase, the
best particle found is used as the centroid representing the BCL
and BCL classes in the subsequent evaluation phase.

5.4. Evaluation of the classifiers

The performance of the RA-based PSC classifiers depends essen-
tially on computing a contingency table obtained from the classifi-
cation of a sub-set of questions referred to as the testing set. For a
given BCL classifier, the contingency table consists of the following

� True Positive (TP): number of questions a classifier correctly
assigns to the right BCL classes.

� False Positive (FP): number of questions a classifier incorrectly
assigns to BCL classes.

� False Negative (FN): number of questions that belong to the
class but which the classifier incorrectly assigns to other BCL
class(es).

� True Negative (TN): number of questions a classifier does not
assign to inappropriate BCL class(es).

The following are the common measures used to evaluate the
performance of a given BCL classifier:

� Precision (P): probability that if a random question is classified
under BCL, then this classification is correct. That is,

P ¼ TP
TP þ FP

ð13Þ

� Recall (R): probability that if a random question ought to be
classified under ci, then this classification is done. That is

R ¼ TP
TP þ FN

ð14Þ

Normally, the P and R measures are combined into a single Fb
measure (harmonic mean), which is defined for b = 1.0, as follows:

F1:0 ¼ 2RP
Rþ p

ð15Þ

Based on the above measure, the performance across a set of
BCLs classifiers can be measured by Macro-Average (unweighted
mean of performance across all classes) and Micro-Average (per-
formance computed from the sum of per-class contingency tables).
In this work, the Macro-Average of F1 has been used.

6. Experimental results

This section presents the results obtained from sets of experi-
ments conducted to evaluate the performance of the proposed
RA-based PSC approach for the classification of the questions data
set. First, the standard PSC with several generic initialization mech-
anisms is applied. Then, the proposed RA-based PSC is applied to
Table 2
Performance of the Standard PSC.

BCL Average F1 over all experimental Cases

Knowledge 0.241
Comprehension 0.239
Application 0.248
Analysis 0.253
Synthesis 0.251
Evaluation 0.234
Average 0.243
evaluate the role of RA-based initialization mechanisms in the clas-
sification process. Thereafter, the effect of four feature selection
approaches on the performance of the RA-based PSC is investi-
gated. Finally, to validate the proposed RA-based PSC approach,
its results are compared with the results of seven ML approaches
experimented on the same dataset.

Concerning the questions data set, it has been decided to have
an equal distribution of questions among BCLs such that each
BCL will have 1000 questions, so as to avoid the potential effect
of data skewness. Moreover, the questions data set has been
divided into a training set (70%) and a testing set (30%) and each
approach has been repetitively applied to 50 experimental cases.
In each case, the number of terms, k, used for question representa-
tion varies as follows: k = 10, 20, . . ., 500. On the other hand, the
PSC control parameters were set as recommended by a previous
work on application of the PSC to a high dimensional data classifi-
cation problem (Nouaouria and Boukadoum, 2010). Thus, the PSO
parameter values are as follows: Tmax = 1000, vmax = 0.5, vmin = �0.5,
c1 = 2.0, c2 = 2.0, vop = �1, vsu = 1, and M = 100 particles. Further-
more, the parameters of the proposed RA-based initialization
mechanism were set to rmin=� 0.1 and rmax=0.1. In the experiments
of ML approaches, Weka tool (Hall et al., 2009) is used.

In all experiments, evaluation of the classifier’s performance is
based on the following three F1-based criteria: the average perfor-
mance over all experimental cases, the best F1 of each BCL classifier
obtained using a specific number of terms, and the best F1 of each
BCL classifier obtained using different numbers of terms for each
classifier. In addition to that and for comparison between
approaches, the number of experimental cases in which the partic-
ular approach outperformed the others was used.

6.1. The standard PSC

In this experiment, the standard PSC is applied to classify ques-
tions of the testing set into BCLs, as described above, and the
results are presented in Table 2. It is clear that the performance
of the standard PSC is poor, in all aspects of evaluation mentioned
above. The poor performance of the PSC is consistent with the find-
ings of previous works (S. Chen et al., 2015; Clerc and Kennedy,
2002; Hatanaka et al., 2009; Kazimipour et al., 2014; Li and Yao,
2009; Vesterstrom and Thomsen, 2004), which applied PSO to
function optimization in high dimensional spaces.

6.2. Rocchio Algorithm-based PSC approach

The results of applying the proposed RA-based PSC to induce
classifiers for BCLs are shown graphically in Fig. 4. The general pat-
tern of the RA-based PSC performance is characterized by a gradual
improvement as the number of terms increases. However, when
the number of terms reaches a certain value, the performance
tends to be stable with a slight tendency to improvement. Fig. 4
also discloses that the ability of the RA-based PSC to find classifiers
for BCLs varies. It is the highest for the Analysis BCL and the lowest
Best F1 using 410 terms Best F1 using any number of terms

Best F1 No. of terms

0.286 0.299 480
0.272 0.286 450
0.375 0.375 370
0.286 0.286 20
0.192 0.338 400
0.264 0.264 250
0.279 0.308 328



Fig. 4. Performance of the RA-based PSC.

Table 3
Performance of the RA-based PSC.

BCL Average F1 over all experimental Cases Best F1 using 410 Best F1 using any No. of terms

Best F1 No. of terms

Knowledge 0.660 0.690 0.742 140
Comprehension 0.704 0.776 0.794 460
Application 0.553 0.627 0.654 160
Analysis 0.785 0.881 0.900 390
Synthesis 0.639 0.721 0.758 150
Evaluation 0.634 0.767 0.779 390
Macro Avg-F1 0.663 0.744 0.771 282
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for the Application BCL, however, it is comparable for the Compre-
hension, Evaluation, Synthesis, and Knowledge BCLs.

Besides, Table 3 summarizes the results of the RA-based PSC
performance in terms of the evaluation criteria specified earlier.
The average values in the last row of the table can be interpreted
as follows; the average ability of the RA-based PSC to build a BCLs
classification system, regardless of the number of terms used for
each BCL, is 0.663; the Macro-Average F1 of the best classification
system composed of BCLs classifiers obtained using 410 terms is
0.744; and the Macro-Average F1 of the classification system com-
posed of the best BCLs classifiers obtained using different number
of terms is 0.771.

The comparison between the RA-based PSC and the PSC with
the generic initialization mechanisms provides evidence on the
key role of the RA-based initialization mechanisms for improving
the performance of PSC when applied to high dimensional data
classification. As discussed above, the generic initialization mecha-
nisms fail in the high dimensional space to initialize the PSC parti-
cles with good starting positions and, consequently, they converge
prematurely to a local solution far away from the global one. By
initializing particles using RA-based initialization mechanism, the
particles are positioned at a promising region of the search space
and thus, the convergence of the PSC is likely speed-up.

6.3. RA-based PSC with feature selection approaches

In the previous experiments, the TF approach was used to select
k terms for each experimental case. In the current set of experi-
ments the objective is to investigate the impact of feature selection
approaches on the performance of the RA-based PSC. Therefore, the
following term selection approaches are examined: Mutual infor-
mation (MI), Chi Square (v2), and Information Gain (IG), and con-
sequently the corresponding RA-based PSC variants are
abbreviated as follows: RA-based PSCTF, RA-based PSCMI, RA-
based PSCv2, and RA-based PSCIG.

The results of these experiments, shown in Table 4, illustrate
the outperformance of the RA-based PSCIG in terms of the average
performance over all experimental cases, outperformance of the
RA-based PSCv2 in terms of the best F1 of the BCLs classifiers using
a specific number of terms, the comparable performance of the RA-
based PSCTF, RA-based PSCv2, and the RA-based PSCIG in terms of
the best F1 for each BCL obtained using different numbers of terms.



Table 4
Performances of the RA-based PSC Variants.

BCL RA-based PSCTF RA-based PSCMI

Average F1 over all
experimental Cases

Best F1 using 410
terms

Best F1 using any
No. of terms

Average F1 over all
experimental Cases

Best F1 using 490
terms

Best F1 using any
No. of terms

Best
F1

No. of
terms

Best
F1

No. of
terms

Knowledge 0.660 0.690 0.742 140 0.465 0.623 0.623 500
Comprehension 0.704 0.776 0.794 460 0.547 0.719 0.730 480
Application 0.553 0.627 0.654 160 0.400 0.571 0.571 500
Analysis 0.785 0.881 0.900 390 0.680 0.933 0.933 470
Synthesis 0.639 0.721 0.758 150 0.543 0.676 0.727 190
Evaluation 0.634 0.767 0.779 390 0.576 0.706 0.746 480
Average 0.663 0.744 0.771 282 0.535 0.705 0.722 436

BCL RA-based PSCv2 RA-based PSCIG

Average F1 over all
experimental Cases

Best F1 using 500
terms

Best F1 using any
No. of terms

Average F1 over all
experimental Cases

Best F1 using 430
terms

Best F1 using any
No. of terms

Best
F1

No. of
terms

Best
F1

No. of
terms

Knowledge 0.601 0.667 0.719 250 0.633 0.698 0.700 380
Comprehension 0.688 0.716 0.746 500 0.696 0.735 0.750 490
Application 0.626 0.741 0.741 460 0.678 0.755 0.755 430
Analysis 0.856 0.918 0.918 470 0.869 0.900 0.929 100
Synthesis 0.69 0.730 0.750 420 0.692 0.697 0.758 320
Evaluation 0.681 0.75 0.765 40 0.680 0.704 0.732 360
Average 0.69 0.754 0.773 357 0.708 0.748 0.771 347
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Moreover, the results (Table 4) reveal a low performance of the RA-
based PSCMI in all aspects of evaluation criteria.

Finally, Fig. 5 graphically represents the performances of the
four RA-based PSC variants in all the experimental cases. A com-
parative look at the performance patterns indicates that the RA-
based PSCTF and the RA-based PSCMI have a similar pattern that
is characterized by a gradual improvement with the increase in
the number of terms, followed by a long period of wavy pattern
with a slight tendency to improvement. Conversely, the perfor-
mance patterns of the RA-based PSCv2 and the RA-based PSCIG
Fig. 5. Performances of the
are characterized by a high and wavy curvature, particularly when
the number of selected terms is lower than 100 terms. Moreover,
the performance of the RA-based PSCMI is the lowest, whereas
the performance of the RA-based PSCIG is the highest, particularly
when the number of selected terms is less than 150.

6.4. RA-based PSC approach versus ML approaches

In order to evaluate the performances of RA-based PSC
approaches, the following ML techniques have been adopted:
RA-Based PSC Variants.



Fig. 6. Performances of the PSC-based approaches in comparison with those of the ML approaches.
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k-nearest neighbor (kNN), Naïve Bayes (NB), Support Vector
Machine (SVM), decision tree algorithm (J48), a rule based ML
algorithm, (RIPPER, JRip), Adaptive Boosting method (AdaBoost),
and Bayesian Networks (ByesNet). Fig. 6 presents the performances
of RA-based PSC approach and the ML approaches in terms of
Macro-Average F1 for all experimental cases. It can be seen that
most of the ML approaches except J48, AdaBoost, and JRip have
similar performance patterns. It is also clear that the performance
of J48 and AdaBoost deteriorates sharply as the number of selected
terms increases, whereas, the performance of JRip tends to be
unstable. Furthermore, the performances of SVM is comparable
with the RA-based PSC when the number of selected terms falls
in the range of 260–370, whereas, for most of the remaining exper-
imental cases, RA-based PSC approach outperforms SVM. On the
other hand, the performance of NB and kNN are comparable and
lower than SVM, yet higher than the performance of BayesNet.

Table 5 presents a comparison between RA-based PSC and ML
approaches in terms of Average F1 over all experimental cases for
each BCL. The values of the Macro-Average F1 given in the last
row indicate that the average ability of RA-based PSC to build a
question classification system is higher than those of ML tech-
niques. Among the ML techniques, the J48 and AdaBoost have
the lowest abilities to build a question classification system. The
abilities of kNN, NB, and BayesNet are higher than those of the
J48 and AdaBoost and the abilities of kNN and NB are comparable.
Table 5
Average Performance of the RA-based PSC approaches vs. the ML approaches.

BCL Classifier

ML Approaches

kNN NB SVM J48

Knowledge 0.590 0.461 0.563 0.270
Comprehension 0.679 0.649 0.696 0.296
Application 0.455 0.462 0.481 0.244
Analysis 0.730 0.797 0.803 0.433
Synthesis 0.552 0.578 0.662 0.177
Evaluation 0.559 0.609 0.561 0.257
Macro- Average F1 0.594 0.593 0.628 0.280
In addition, the ability of the SVM is higher than those of kNN and
NB.

On the other hand, Table 6 presents a comparison between RA-
based PSC approach and the ML approaches in terms of the best F1
obtained using specific number of terms for all classifiers. The
results demonstrate that the RA-based PSC approach outperforms
ML approaches. Among ML approaches, SVM and JRip are compa-
rable while performance of the BayesNet is poorer. Meantime,
the performances of the NB and kNN are comparable and fall in
between those of the BayesNet and J48. Additionally, the AdaBoost
has the lowest performance.

Finally, Table 7 summarizes a comparison between RA-based
PSC approach and the ML approaches in terms of the best F1
obtained using different numbers of terms for each classifier. The
comparison revealed that BayesNet performs slightly better than
PA-based PSC and JRip, whose performances are comparable.
SVM has higher performance than kNN and NB, which themselves
have comparable performance. J48 technique exhibited lower per-
formance than kNN and NB, yet better than AdaBoost, which show
the lowest performance.

7. Discussion

In this section several aspects of the RA-based PSC model of
question classification are discussed in light of the above results.
RA-Based PSC

Jrip AdaBoost BayesNet

0.734 0.227 0.485 0.660
0.704 0.317 0.646 0.704
0.508 0.218 0.586 0.553
0.746 0.279 0.740 0.785
0.595 0.230 0.583 0.639
0.587 0.124 0.379 0.634
0.646 0.233 0.570 0.663



Table 6
The Best Macro-Average F1 for RA-based PSC and ML approaches.

BCL Classifier

kNN using 160
terms

NB using 380
terms

SVM using 370
terms

J48 using 90
terms

JRip using 360
terms

AdaBoost using
30 terms

BayesNet using
100 terms

RA-based PSC using
410 terms

Knowledge 0.667 0.489 0.588 0.786 0.800 0.513 0.776 0.690
Comprehension 0.733 0.719 0.778 0.678 0.780 0.643 0.742 0.776
Application 0.511 0.558 0.591 0.579 0.700 0.244 0.595 0.627
Analysis 0.868 0.852 0.909 0.607 0.769 0.417 0.821 0.881
Synthesis 0.717 0.653 0.745 0.577 0.642 0.341 0.667 0.721
Evaluation 0.612 0.778 0.708 0.528 0.655 0.383 0.604 0.767
Average F1 0.685 0.675 0.720 0.626 0.724 0.423 0.701 0.744

Table 7
Comparison of the Best Classifier for each BCL between RA-based PSC and ML approaches.

Classifier ML Approach RA-Based PSC

kNN NB SVM J48 JRip AdaBoost BayesNet

BCL Best
F1

No. of
Terms

Best
F1

No. of
Terms

Best
F1

No. of
Terms

Best
F1

No. of
Terms

Best
F1

No. of
Terms

Best
F1

No. of
Terms

Best
F1

No. of
Terms

Best
F1

No. of
Terms

Know 0.667 150 0.640 140 0.692 120 0.786 90 0.836 140 0.588 20 0.776 90 0.742 140
Comp 0.786 390 0.742 420 0.808 460 0.852 30 0.780 40 0.807 20 0.813 30 0.794 460
Appl 0.578 340 0.591 330 0.591 330 0.651 10 0.732 340 0.564 10 0.744 340 0.654 160
Anls 0.873 190 0.909 260 0.909 320 0.758 100 0.833 100 0.586 10 0.862 210 0.9 390
Synt 0.737 130 0.704 170 0.769 210 0.618 80 0.737 110 0.390 80 0.704 140 0.758 150
Eval 0.750 290 0.807 270 0.750 440 0.642 10 0.714 140 0.704 90 0.759 150 0.779 390
Average 0.732 248 0.732 256 0.753 313 0.718 53 0.772 145 0.607 38 0.776 160 0.771 282
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In the first place, the obtained results indicates that the standard
PSC in not effective for high dimensional data classification, and
therefore, a specialized mechanisms such as RA-based initializa-
tion mechanism, need to be integrated in the PSC model of data
classification. In fact, there are four factors that might have con-
tributed exclusively or in combination to the poor performance
of the standard PSC in the current high dimensional space: The first
factor is the sparseness of the high dimensional search space,
which make the distance measures between the PSC particles in
the whole dimension space meaningless (Richards and Ventura,
2004). Although increasing the swarm size was proposed to help
PSC to overcome the sparseness problem, it has been reported in
Nouaouria and Boukadoum (2009) that increasing the size of the
swarm cannot remedy the problem when the computational bud-
get is fixed. The second factor is the tendency of the particles to
converge to non-optimal solution as the space dimensions
increases, which is attributed to the position updating mechanism
which takes place in all dimensions simultaneously (Hendtlass,
2009). The third factor is the high sensitivity of the PSC to its con-
trol parameters settings such as inertia weight, w, and learning fac-
tors, c1 and c2, where slightly different settings may lead to
substantially different performance (Rezaee Jordehi and Jasni,
2013). Two issues that exacerbate the effects of this factor is the
absence of a formal analytical model to fine-tune the control
parameters values and the unsuitability of the parameters that
work well for the low dimensional space for the high dimensional
spaces (Wang, 2011). The fourth factor is the heavy dependence of
the PSC performance on the initial swarm (Clerc, 2008; Richards
and Ventura, 2004). Although many generic initialization mecha-
nisms have been proposed and shown impressive results, recently
it has been reported that the generic initialization mechanisms
perform poorly in high dimensional spaces (Kazimipour et al.,
2014, 2013). Although in this research, a specialized initialization
mechanism is proposed to enable the PSC to mitigate the adverse
effects of curse of dimensionality, other ideas can be also investi-
gated such as controlling the search behaviour of the PSC in a
way that guide it towards promising region of the search space.
Secondly, the results of the RA-based PSC with the four feature
selection approaches, Table 4, shed light on the role of these
approaches for the proposed RA-based PSC model of questions
classification. The variations in the performances of the four RA-
based PSC variants are a direct result of the variation in the
employed term selection mechanisms. In specific, each approach
uses a different metric to determine the relationship between a
given term and BCL, and, therefore, different ranked lists of terms
are generated. In each experimental case, the top k terms from
each ranked lists are used to represent data instances in the subse-
quent PSC learning stage, and consequently, different PSC perfor-
mances are obtained

Thirdly, the performance of RA-based model of questions classi-
fication can be considered promising and competitive as compared
to the best ML approach. More precisely, the performance can be
evaluated based on the classification accuracy and the computa-
tion time. Concerning the classification accuracy in terms of F1-
measure, three forms of F1-measure are adopted, that are: the
average F1 performance over all experimental cases, the best F1
obtained using certain number of terms for all classifier, and the
best F1 performance obtained using different number of terms for
each classifier. The results indicate that the PSC outperforms the
ML approaches in the first and second form of F1-measure
(Table 5,6) and also in the third form (Table 7) with exception to
Bayesian Network (BayesNet) and JRip classifiers where PSC per-
forms competitively with them.

In order to confirm the above conclusions statistically, a test of
the statistical significance, a t-test (Two Paired Samples, 2-tails)
using 95% confidence interval, has been conducted between RA-
based PSC approach and each ML approaches. In each test, the null
hypothesis is that there is no differences between the two
approaches in the Macro-Average F1 over all experimental cases.
The tests results are presented in Table 8. For each test case, the
mean and standard deviation of the Macro-Average F1 data of each
approach and the differences between them are given, followed by
the results of the test, which are found in the values of ‘‘t”, ‘‘t-crit”,
and ‘‘P value”, and finally the result of the test is given in ‘‘sig” in



Table 8
t-Test of statistical Significance.

Pair of Approaches Group 1 Group 2 Difference t-test Results

Mean Std Dev Mean Std Dev Mean Std Dev Std Err t p-value t-crit Sig

RA-based PSC & kNN 0.594 0.133 0.663 0.113 �0.068 0.028 0.004 �17.501 1.01E-22 2.010 Yes
RA-based PSC & NB 0.593 0.142 0.663 0.113 �0.070 0.034 0.005 �14.698 1.37E-19 2.010 Yes
RA-based PSC & SVM 0.628 0.139 0.663 0.113 �0.035 0.030 0.004 �8.234 8.4E-11 2.010 Yes
RA-based PSC & J48 0.23 0.197 0.663 0.113 �0.433 0.302 0.0428 �10.115 1.4E-13 2.010 Yes
RA-based PSC & Jrip 0.656 0.043 0.663 0.113 �0.021 0.072 0.010 �2.030 0.048 2.012 Yes
RA-based PSC &AdaBoost 0.209 0.090 0.663 0.113 �0.454 0.196 0.028 �16.396 1.6E-21 2.010 Yes
RA-based PSC & BN 0.568 0.062 0.663 0.113 �0.095 0.095 0.013 �7.080 5.0E-09 2.010 Yes
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the last column. As shown in table 8, in all t-test cases, there is sta-
tistical significance between the two approaches, because P-value
is less than 0.05 and the t value is less than t-crit. These results sug-
gest the rejection of the null hypothesis, which means that there
are differences between these approaches.

The above comparison between RA-based PSC approach and ML
approaches provides experimental evidences on the effectiveness
of RA-based PSC approach in solving the questions classification
task. Obviously, the proposed initialization mechanism plays a crit-
ical role in improving the performance of PSC for high dimensional
data classification. As regards ML approaches, the variations in
their performances are ascribed to the underlying mechanism used
by each approach to overcome the curse of dimensionality prob-
lem. The performance of the k-NN approach, which classifies a
new object by examining the class values of the k most similar data
instances, is affected by two main factors: the distance concentra-
tion and hubness of the search space. The distance concentration
problem refers to the tendency of distances between all pairs of
points in high dimensional space to become almost equal and,
therefore, the meaningfulness of finding the nearest neighbours
in high dimensional spaces (Aggarwal et al., 2001). Hubness of
the search space refers to the skewness of k-occurrence of the
number of times a point appears among the k nearest neighbours
of other points in a data set (Radovanović et al., 2009). As the
dimensionality increases, this distribution becomes considerably
skewed and hub points emerge (points with very high k-
occurrences). It is an inherent property of high dimensional vector
spaces, and its influence on applications based on measuring dis-
tances in vector spaces is highly passive.

NB approach mitigates the effects of dimensionality by making
a conditional independence assumption that dramatically reduces
the number of parameters to be estimated, however, its perfor-
mance is negatively affected by this assumption, because it seldom
holds in practice. In fact, it has been shown that this assumption of
NB is only a sufficient but not a necessary condition for the opti-
mality of the NB (Domingos and Pazzani, 1997). Although, Bayes-
Net relaxes the conditional independence assumption, its
performance in high dimensional applications is affected by the
requirement of an initial knowledge of many probabilities (Mittal
and Cheong, 2004). With regard to the SVM, although it can bypass
the curse of dimensionality by providing a way of controlling
model complexity independent of the dimensionality, increasing
the dimensionality affects its performance in many practical cases.
For example, the characteristics of the data set (i.e. if the number of
Table 9
Execution Time for some Experimental Cases.

No. of Terms kNN NB SVM J48

100 0.141 0.109 0.114 0.48
200 0.234 0.171 0.177 0.58
300 0.28 0.156 0.187 0.86
400 0.328 0.187 0.234 1.44
500 0.609 0.234 0.338 1.2
dimensions is much greater than the number of data samples) and
the selection of SVM parameters (kernel function and its parame-
ters, and the margin parameter, C) are very serious problem in high
dimensional data (Vapnik, 2013).

On the other hand, the poor performance of AdaBoost in the
questions classification problem is expected, because AdaBoost
was previously reported to perform poorly with high dimensional
data (Lusa, 2015; Dudoit et al., 2002; Schapire, 2003). As reported
in Lusa (2015), when it is easy to overfit the training data with the
base classifier, AdaBoost performs exactly as its base classifier,
which can explain its poor performance in high dimensional data
classification. The poor performance of J48 approach is ascribed
to the strict hierarchical partitioning of the data used by J48 as a
decision tree algorithm, which imparts disproportionate impor-
tance to some features and a corresponding inability to effectively
leverage all the available features (Aggarwal and Reddy 2013).

Another aspect of comparison between the RA-based PSC
approach and ML approaches is the computation time efficiency
(learning time and classification time). In terms of classification
time they are comparable, whereas, in terms of learning time,
Table 9 reports the learning times for several experimental cases
(No. of selected terms = 100, 200, 300, 400, and 500) as measured
in C++ clock function of time. The very long learning time required
by the RA-based PSC approach compared with ML approaches is
noticeable. However, in most practical cases, the learning time is
not of crucial, and it may last up to hours for most applications,
because it is not achieved in real time. Nonetheless, for some
real-time applications, it is of key importance and in these cases,
explicit parallelization of the inherent distributed system may
overcome the challenge.

Finally, an important aspect of models in educational context is
the model interpretability, where the model should be transparent
to the learner (O’Shea et al., 1984). In this respect, the all ML
approaches, except SVM, offer more or less understandable models,
especially NB, which has a comprehensive visual representation,
whereas, RA-based PSC model is classified as black-box approach,
which means that it has low interpretability. Nonetheless, the
results of the RA-based PSC model of questions classification raises
several interesting insights that deserves further investigations by
practitioners from education perspective. In particular, it indicates
that the performance of the classification model is highly depen-
dent on the questions domain for which the model is developed.
It is because the classification of questions depends on superficial
linguistic analysis of the questions, which induce a set of keywords
JRip Ada Boost Bayes Net RA-Based PSC

1.56 0.59 0.2 283.62
3.79 1.17 0.2 560.76
5.15 1.25 0.34 853.42
6.3 1.64 0.47 1139.47
6.76 1.62 0.39 1420.23



Table 10
Performance of Rule-based Approach.

BCL Best F1

Knowledge 0.466
Comprehension 0.627
Application 0.554
Analysis 0.509
Synthesis 0.558
Evaluation 0.552
Average 0.544
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for each BCL class from the dataset in the training phase of the
model. This is in contrast to the common thought that the Bloom’s
taxonomy provides a general set of keywords and action verbs for
each cognitive level, which can be used to classify a question
regardless of its domain. In order to verify this insight, additional
experiments have been conducted to automatically classify the
question data set using a set of rules in a form of if (t1 v t2 . . . v
tn) then BCLi,where the t1, t2, . . . tn are a set of action verbs recom-
mended by Bloom’s taxonomy for BCLi. The results of this experi-
ments, shown in Table 10, suggest that the development of the
question classification system based on Bloom’s taxonomy should
be context-dependent. This particularly emphasize the importance
of using automatic methods to discover the discriminative terms
and action verbs for each BCL, instead of depending on pre-
specified context-independent sets.

Another insight is drawn from the experimental results of RA-
based PSC, Fig. 4, is the variation in the classification accuracy
among different BCLs. It is the highest for the Analysis BCL, and
the lowest for the Application BCL, however, it is comparable for
the pairs Comprehension-Evaluation, and Knowledge-Synthesis
BCLs. Experimentally, this variations is attributed to the variation
in the characteristics of the questions instances for each BCL. In
other words, the availability of the discriminative terms for a given
BCL affects the ability of the RA-based PSC to find its optimal clas-
sifier. However, from education point of view this may add a new
dimension, by which the BCLs can be interrelated, in addition to
the hieratical interrelation proposed by Bloom’s Taxonomy.
8. Conclusion

This research proposes a swarm intelligence-based approach,
namely particle swarm classification, to design a classification
model for classifying educational questions into the six cognitive
levels of Bloom’s taxonomy. Based on a deep analysis of several
aspects of the high dimensional search space and its effects on
the performance of the PSC, it proposes a Rocchio Algorithm-
based as an initialization mechanism to mitigate the curse of
dimensionality effects by initializing the PSC particles at a promis-
ing region of the search space. The experimental results confirm
the key role of the RA-based initialization mechanism for improv-
ing the performance of PSC for high dimensional data classification.
The results also demonstrate that feature selection approaches
play a role in the performance of the PSC. Moreover, a comparison
between PSC and seven ML approaches has led to the following
interesting conclusions:- First, the RA-based PSC approach is more
effective than ML techniques for the high dimensional questions
classification. Second, although the learning time of RA-based
PSC is much longer than ML techniques, they are comparable in
classification time. Finally, although the RA-based model of ques-
tions classification corresponds to lower model interpretability, it
has raised questions concerning the set of keywords of each
Bloom’s cognitive levels and the interrelation among them, which
need further investigation from educational perspective.
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