
Journal of King Saud University – Computer and Information Sciences 31 (2019) 22–34
Contents lists available at ScienceDirect

Journal of King Saud University –
Computer and Information Sciences

journal homepage: www.sciencedirect .com
MSP: Multiple Sub-graph Query Processing using Structure-based Graph
Partitioning Strategy and Map-Reduce
https://doi.org/10.1016/j.jksuci.2016.11.007
1319-1578/� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail addresses: fathimanitw@gmail.com (S. Fathimabi), rbvs66@gmail.com

(R.B.V. Subramanyam), soma@nitw.ac.in (D.V.L.N. Somayajulu).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
Shaik Fathimabi ⇑, R.B.V. Subramanyam, D.V.L.N. Somayajulu
Department of Computer Science and Engineering, National Institute of Technology Warangal, Telangana, India

a r t i c l e i n f o a b s t r a c t
Article history:
Received 14 June 2016
Revised 24 October 2016
Accepted 15 November 2016
Available online 25 November 2016

Keywords:
Graph database
Big data
Structure based graph partitioning
Parallel processing
Map-Reduce
Integrated Graph Index
In a distributed environment, the volume of graph database increases quickly because graphs emerge
from several autonomous sources. Sub-graph query processing is a challenging problem in distributed
environment. Centralized approaches proposed many algorithms, they mine frequent subgraphs from
the graph database and construct an index which is very expensive. These algorithms require more num-
ber of database scans to mine frequent subgraphs and they use filter and verify approach, which requires
many subgraph isomorphism tests. In this paper, we design a novel Map-Reduce based multiple subgraph
query processing framework, namely MSP. MSP processes multiple graph queries using distributed index.
The framework completely relies on the graph partition and indexing. Moreover, in order to improve its
performance, we propose several solutions to balance the workload and reduce the size of Integrated
Graph Index. We propose a structure-based partitioning technique and distributed way of building
Integrated Graph Index. This work uses two Map-Reduce rounds, the first Map-Reduce round partitions
the graphs and creating index for each partition, second Map-Reduce round processes sub-graph queries
and index maintenance. A good partitioning will reduce the index size by distributing the load equally to
the machines in the cluster and improves the performance of query evaluation. This graph partition and
Integrated Graph Index reduces the search space of query graphs. Our approach allows to add data graphs
incrementally to Integrated Graph Index while doing query processing. We experimentally show that our
approach decreases remarkably the execution time and scales the subgraph query processing to large
graph databases.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Graphs are widely used to model complex structures such as
protein interactions, chemical compounds and web data in many
applications (Willett, 1998). The contemporary world has huge
applications in graph databases. When a database is used to man-
age the data of objects that are represented by graphs, the database
falls into two categories. The first category is a single graph setting
where the graph database contains only one large graph. The sec-
ond category is the transaction graph database that consists of a
large number of relatively small graphs. Transaction graph data-
base is used in scientific domains such as chemistry, bio-
informatics etc. The graph query processing problems are classified
into two types. The first one is the Subgraph query processing
which is used to retrieve all the graphs in the database such that
a given query graph is a sub-graph of them. The second one is
super-graph query processing (Cheng and Ke, 2011) which is used
to retrieve all the graphs in the database such that the query graph
is a super-graph of them. This paper deals with the subgraph query
processing which has a wide range of applications. Sub graph
query problem is also known as subgraph isomorphism problem,
which belongs to NP- complete (Lubiw, 1981). Many graph data-
sets are increasing day by day. It is often hard to process large
graph database using a single machine because of their size and
complexity. PubChem project processes more than 30 million
chemical compounds, the storage size of which hits tens of ter-
abytes (Willett, 1998). In recent years the big data phenomenon
has emerged in a number of application domains and research
including pattern recognition (Kuramochi and Karypis, 2005),
social networks, chem-informatics (Willett, 1998), medical image

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2016.11.007&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jksuci.2016.11.007
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:fathimanitw@gmail.com
mailto:rbvs66@gmail.com
mailto:soma@nitw.ac.in
https://doi.org/10.1016/j.jksuci.2016.11.007
http://www.sciencedirect.com/science/journal/13191578
http://www.sciencedirect.com

Table 1
Notations.

Symbol Description

| g | Size of the graph, number of edges in the graph
D Graph database
G Set of graphs in graph database or particular partition
Q Set of query graphs
Aqi Answer set of a query qi
IGI Integrated graph index of graph database
IGIpno An integrated graph of particular partition of D
host(e) Set of graphs (IDs) that currently share e in IGIpno
freq(e) Number of graphs that have e in IGIpno

S. Fathimabi et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 22–34 23
databases (Euripides, 1997) graph-structured query processing,
graph data mining (Xifeng and Jiawei, 2002), close graph (Xifeng
and Jiawei, 2003), computational biology.

Meanwhile Map-Reduce (Dean and Ghemawat, 2008) has
gained a lot of attention from both industry and academia. MapRe-
duce (hadoop, 0000) provides distributed approach for processing
data intensive jobs with no difficulty of managing the jobs across
computers. The data centric approach adopted by MapReduce is
using the idea of moving computation to data. It uses distributed
file system (Shvachko et al., 2010) and (hdfs, 0000) that is particu-
larly optimized to improve the IO performance while handling
massive data. Another main reason for this framework is that
higher level details are hidden from programmers and allowed to
concentrate more on the problem specific computational logic. In
a multi user environment, graph queries are given by the number
of users. In this paper, we design a novel multiple subgraph query
processing, named MSP. MSP solves the problem of processing
multiple graph queries over large graph database (Angles, 2012).
We propose a distributed graph indexing and query processing
method using Hadoop, an open source implementation of Map-
Reduce. We first discuss naive approach which performs all pair-
wise subgraph isomorphism tests between the graph query set
and the graph data set takes long time. To reduce the number of
subgraph isomorphism tests, we introduce Structure-Based Parti-
tioning and Integrated Graph Index, which is used to do both filter
and verify the steps. Index maintenance is easier by using the Inte-
grated Graph Index. The contributions of our work are summarized
below:

� We propose an efficient multiple subgraph query processing
framework, MSP which can handle large- scale graph database
and set of query graphs.

� We propose a simple but effective workload-aware distribution
strategy, Structure-Based data partition technique using
MapReduce to enhance the default data partition technique
provided by MapReduce.

� We introduce an efficient approach to build distributed way of
constructing Integrated Graph Index uses multiple edges and
vertex label based join.

� We design distributed algorithm to process queries and index
maintenance in one Map-Reduce round.

� We introduce maximum depth first code for Structure-Based
partition.

� We experimentally demonstrate the performance of the algo-
rithm on synthetic as well as real world large data sets.

The rest of the paper is organized as follows. We discuss related
work in Section 2. Section 3 presents preliminaries. The proposed
methods are presented in Section 4. Experimental results are dis-
cussed in Section 5. Finally, we conclude the paper in Section 6
(Table 1)
2. Related work

The use of graphs has become increasingly significant in model-
ing complicated structures. Now-a-days graphs are used to model
any kind of data. There exist many algorithms for solving the cen-
tralized and in-memory version of sub- graph query processing
task, most notable among them are Graph Grep (Giugno and
Shasha, 2002), Tree and graph search (Shasha et al., 2002), FGIndex
(Cheng et al., 2007), GIndex (Yan et al., 2005), ClosureTree (He and
Singh, 2006), TreePi (Zhang et al., 2007), graph indexing interms of
tree + delta (Zhao et al., 2007), a novel spectral coding in a large
graph database (Zou et al., 2008), GString (Jiang et al., 2007) Graph
containment and indexing is proposed in Chen et al. (2007). These
algorithms assume that the dataset is small and the mining task
finishes in a stipulated amount of time using an in-memory
method.

In (Kim et al., 2013) the Parallel Processing of Multiple Graph
queries using Map-Reduce (PPMG) approach extracting features
from data graphs every time to process query graphs. It takes a
long time. Luo et al. (2011) solved a single subgraph query process-
ing problem using an edge index.

Now-a-days many algorithms are processing a single large
graph using Map-Reduce. Pregel (Malewicz et al., 2010) proposed
vertex centric graph processing. Kang et al. (2011) developed a sys-
tem to analyze a single large graph such as web data or social net-
work. In (Kang et al., 2008) diameter estimation and mining with
Hadoop is described. In this paper, we focused on a large set of
small graphs. Solving the task of sub graph query processing on
distributed platforms like Map-Reduce is challenging for various
reasons. Two types of Data Partitions are available in the literature

� Default Graph Partitioning
� Density-Based Graph Partitioning

2.1. Default graph partitioning

It is the default split method used by Map-Reduce. It partitions
the graphs based on chunk size and it does not consider the char-
acteristics of the input data graphs during partitioning. The num-
ber of graphs is unequally distributed and load is not distributed
uniformly. However, for datasets where the size of the graphs in
a dataset varies substantially, we use density-based graph
partition.

2.2. Density-Based graph partitioning

Density-Based Graph Data Partitioning is presented in Aridhi
et al. (2015). This partition is suitable for datasets, where the size
of the graphs varies. It is based on characteristics of the input data
graphs, i.e. density of each graph during the creation of partitions.
It distributes the load equally to all machines on the cluster based
on density of graphs and not based on the labels on the edges and
structure of the graphs.

3. Problem definition

In this work we consider undirected, labeled and connected
graphs. We formally define a graph and the subgraph query prob-
lem which is solved in this paper. Then we describe the represen-
tation of graph data in Map-Reduce.

3.1. Definitions

Graph: A graph is denoted by a tuple g = (V, E, L, l) where V is
the set of vertices and E is the set of undirected edges such that

24 S. Fathimabi et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 22–34
E # VxV. L is the set of labels of vertices or edges, and the labeling
function l defines the mapping: VU E? L. We also denote the ver-
tex set and the edge set of graph g by V(g) and E(g) respectively.
We define the size of a graph g, denoted as |g|, as the number of
edges in g, that is | g | = | E(g) |.

Subgraph Isomorphism Given two graphs s = (Vs, Es, Ls, ls) and
g = (Vg, Eg, Lg, lg), s is said to be sub-graph isomorphic to g (s # g)
if and only if there exists an injective function f: Vs? Vg such that
(1) "v 2 Vs, we can have f (v) 2 Vg and ls (v) = lg (f (v)); (2)"(u, v) 2
Es, we can have(f (u), f (v)) 2 Eg, and fs [u, v] = fg [f (u), f (v)].

3.2. Problem statement

Let D = g1, g2, g3 . . .gn be a graph data set. Furthermore, let Q = q1,
q2, q3 . . .qx be a graph query set such that |Q|� |D| for each graph
query q 2 Q, we find all the graphs to which q is subgraph isomor-
phic from D. The result is AQ = Aq1, Aq2, . . . Aqx where Aqi = gj:gj 2 D,
qi # gj i.e. each Aqi contains the set of data graphs in D that are
super- graphs of qi .

This problem varies from existing sub-graph query processing
problem which processes one subgraph query at a time, but here
it processes a batch of queries at a time. The reasons why we
develop a solution to process batch of queries at a time are as
follows:

In a distributed environment, more queries are coming from
different sources at a time. Processing of queries that come in as
a high speed stream is useful for many applications that require
prompt query response. Here we integrate subgraph query pro-
cessing and index maintenance.

Moreover, batch query processing enables us to eliminate the
repeated process of common parts among queries and insert
graphs, so as to obtain a higher throughput.

Our goal in this paper is to develop an efficient distributed sys-
tem for processing multiple sub-graph queries using Integrated
Graph Index.

3.3. Graph representation

Graph as a Single Line: Most of the Graph datasets are available
in the multi-line format. Some existing frequent subgraph mining
works (Mansurul and Mohammad, 2013) using Hadoop divides
the graphs into a set of files in the data preparation step and the
set of files are given as input to the MapReduce program. In this
work, we convert multi-line format of a graph into a single-line
format of graph. In a single-line format there exists a serialized
format g, which enumerates vertices and edges in g, i.e {| V (g) |,
| E(g) |, l(V (g)), E(g)} where e 2 E(g) is represented as from-gid,
to-gid, l(e). <graphid>,<no_of_vertices>,<no_of_edges><Labels of
all vertices>,<edgelist>

Graph id: a unique identifier for a single graph g.
No of vertices: total number of vertices in the graph.
No of edges: total number of edges in the graph.
Labels of all vertices: List of Labels of all the vertices of the
graph.

Edgelist: List of edges of the graph. Each edge contains three
elements.<sourceid,destinationid,edgelabel> For example: g2,4,4,
A,B,C,E,0,1,b,0,2,d,1,2,e,2,3,f. [Grouping as 3 pair will give a nice
example].
4. Proposed approach

In this section, we discuss the proposed approach for multiple
sub-graph query processing using structure based partitioning
and Integrated Graph Index in a distributed environment. The large
graph database has different types of graphs having different
labels. The first step is partitioning the graphs based on labels
and structure. The second step is construction of an Integrated
Graph Index for the partition of graphs. The third step is multiple
graph query processing using Integrated Graph Index.

First, we discuss the following Hadoop methods to design an
efficient algorithm using Map-Reduce:

In Mapper Combiner Design Pattern (IMCDP): In this pattern
Combiner is written inside the mapper logic. Instead of sending a
line by line output, the mapper does local aggregation by using
in mapper combine. It does not change the running time complex-
ity of the algorithm, but greatly reduces both the number and size
of key-value pairs that need to be shuffled from the mappers to the
reducers. Because of this reason, we use IMCDP.

Distributed Cache: It distributes application-specific large, read-
only files efficiently to all mappers. It is a facility provided by the
MapReduce framework to cache files required by all mappers, i.e.
to all task trackers (nodes). Using distributed cache we can dis-
tribute some common data across all task trackers. When we need
to distribute a file, multiple copies of the file would be maintained
for all task trackers to access.

In this paper the entire work is divided into four phases

� Graph partition
� Integrated Graph Index Creation
� Processing of set of sub-graph queries and Index Maintenance

The above steps are discussed in the following subsections.

4.1. Graph partitioning

4.1.1. Motivation and principle
The motivation behind dividing the input large graph database

into partitions is to get all similar graphs into one partition. In a
distributed environment, the efficiency of the algorithm depends
on how efficiently, we divide the data graphs and distribute them
to nodes on the cluster. A good partition technique distributes the
data efficiently and reduces the integration cost and the computa-
tion cost i.e. subgraph isomorphism testing cost. Some authors
divide the data as a pre-processing step on a single machine. But
in this paper, we divide the data graphs using Map-Reduce phases.
To process the graph queries, we need to check all the data graphs
which are available on the cluster. Instead of checking all the
graphs on all machines, we can check the graphs having similar
structure of query graphs. This approach is more efficient in terms
of both communication cost and computation cost. Graph partition
techniques are useful to get all the similar graphs to one machine.
With this motivation we develop a structure based graph partition
approach. In a distributed environment, heterogeneous data come
from different sources to process. If we know the Domain knowl-
edge well in advance, we can partition the graphs based on domain
knowledge. Domain based partition is more efficient for indexing
and query processing.

We propose two Graph Database partition techniques based on
labels and the structure of the data graphs as follows:

� Label-Based Graph Partition
� Structure-Based Graph Partition

4.1.2. Label-Based graph partition
In this partition the graphs having the same labels get into one

or more partitions. One Map-Reduce round is required for this par-
tition. Mapper reads a graph and prepares key and value, and the
key is the concatenation of all edges according to the lexicograph-
ical order and value is the concatenation of graph id and depth first

S. Fathimabi et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 22–34 25
traversal code of the graph. Each edge is represented by three
elements:

<source vertex label, edge label, destination vertex label>.
For lexicographic order, we first consider the source vertex

label, then edge label and at the last destination vertex label. The
reducer receives all graphs having similar types of label builds
Integrated Graph Index and stores in HDFS. Algorithm 1 shows
the procedure of label based graph partition. Fig. 1a shows the
graphs after label partition.

4.1.3. Structure based partition
In some applications, labels of vertices and edges are the same,

but the structure of the graphs is different. We propose a structure
based graph partition technique to bring all the graphs which have
similar labels and structures to one machine. We use both label
and the structure of the graph as a feature to partition the graphs.
To get the structure we use maximum depth first traversal code of
the graph. Based on maximum depth first traversal code, we parti-
tion the graphs. So it is more efficient compared to label based par-
tition. Two Map-Reduce jobs are used to do structure based graph
partition. The first Map-Reduce round is used to find each edge and
Figure 1. An example graph da
its frequency. Second Map-Reduce round is used to partition the
graphs based on maximum dfs code and to do graph integration.
Fig. 4 shows the overview of the structure based partition. Fig. 1a
shows the graphs after structure based partition. In this partition
we use distributed cache to store the result of first Map-Reduce
round and to read in second Map-Reduce round. Second Map-
Reduce round does structure based partition.

First Map-Reduce round is used to find the frequency of each
edge: In Algorithm 2 the Mapper uses IMCDP approach to do the
local aggregation at the mapper. Mapper reads the graph and
parses the edges and does local frequency count of edges for the
entire partition. It sends the edge value as key and local frequency
count as value. The reducer does the global aggregation of fre-
quency of edge and sends the edge as key and frequency as value.

Maximum Depth First Traversal code: Depth First Traversal
code of the graph starting from the edge having highest frequency
then select next highest frequency edge. Backward edges are con-
sidered first, and then forward edges. All rules are the same as the
depth first search code in gspan (Xifeng and Jiawei, 2002). If two
edges have the same frequency then select the edge according to
the lexicographic order of edge label.
tabase and query graphs.

Figure 2. IGI1 with g1.

26 S. Fathimabi et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 22–34
4.2. Efficient way of creating Integrated Graph Index

We used the approach proposed in Cheng and Ke (2011) to inte-
grate the graphs as an Integrated Graph Index. In addition to their
algorithm, we introduce two optimizations during the integration
to reduce the size of Integrated Graph Index. Given a set of graphs
G, the concept of graph integration is to merge all the graphs in G
into a single compact graph IGI, where the repeated common sub-
structures of the graphs are eliminated in G as much as possible.

The two optimizations proposed to reduce the size of Integrated
Graph Index are

� Parallel Edges
� Vertex Label based Join

4.2.1. Parallel edges
Between two vertices two or more edges exist which are called

Parallel Edges. We can represent parallel edges as a single edge
with multiple edge labels. While integration of Vertex labels is
matched, edge labels are different therefore, instead of adding sep-
arate vertex and edge in the integrated graph, we can add parallel
edges to the vertices. This will reduce the Integrated Graph Index
size. The labels and pointers are stored in header table.

4.2.2. Vertex label based join
Depth First Traversal is not matched during integration use ver-

tex label to integrate the graphs this is called Vertex Label based
join. In this approach if the vertex label and edge label are not same
in the integration process, instead of adding new vertex, it con-
nects to the vertex with this label in the existing integrated graph.
It reduces the number of vertices in the graph by utilizing the
existing vertices. Fig. 5 shows the example to perform vertex label
based join. The methods required to initialize integrated graph and
Integrated Graph Index creation are shown in Algorithm 4. For the
example graph database given in Fig. 1a and set of query graphs
given in Fig. 1b, the integration process is explained. Fig. 2 is the
IG after g1 is placed into IG. Fig. 3 shows the IGs after integration
of g2, g3, g4 and we can identify the multiple edges. Fig. 5 shows
an Example for Label based join.

Normal approach of graph integration is to first mine frequent
subgraphs from G and then merge the graphs in G by sharing their
frequent subgraphs in descending order of frequency. However fre-
quent subgraph mining is costly, especially when database update
is frequent or queries come as a stream.

Figure 3. IGI1 and its edge table and index table.

S. Fathimabi et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 22–34 27
We propose an efficient algorithm to merge a set of graphs

into a compact graph by utilizing the statistics of the edge fre-
quency of the graphs in G. Let G be a set of graphs and IGI be
the compact graph of G, called as Integrated Graph Index (IGI).
We keep the information of the graphs of G at the edges in
IGI, while eliminating duplicate edges shared among edges of
G. We first define the frequency of an edge e in IGI denoted as
freq(e), as the number of graphs in G that share e in IGI. For
the purpose of query processing, we also associate with each
edge in IGI the set of graphs (IDs) in G that share e, denoted
as host(e). The basic idea of graph integration is to use the fre-
quency of the edges in the current IGI to guide the merging of
an incoming graph into IGI. More specifically, when merging a
graph g into IGI, we find all the edges in g that are also in IGI
and pick the one edge that has the highest frequency in IGI,
we simply break the tie by the lexicographic order of the edge
labels. Then using this edge as starting edge in both g and IGI,
we perform a simultaneous depth-first traversal of both g and
IGI to find their common subgraph.

Let e0 be the starting edge and e1 be the next edge to visit in the
depth-first traversal of g. Let E1 be the set of edges that we can
choose to visit next to e0 in the depth-first traversal of IGI. We find
an edge in E1 that matches e1 to visit. If there are multiple edges in
E1 matching e1, we choose the one with the highest frequency to
visit. This process continues until we meet an edge in g that cannot
be matched in IGI. The matched edges in the simultaneous depth-
first traversal form a common subgraph of g and IGI. We merge g
into IGI by sharing their common subgraph, while we create new
edges in IGI for those edges in g that have not been matched.
The matched edges in the simultaneous depth-first traversal form
a common subgraph of g and IGI. We merge g into IGI by sharing
this common subgraph, while we create new edges in IGI for those
edges in g that have not been matched.

Note that we match edges by (lu, le, lv) i.e the definition of a dis-
trict edge. There may be multiple instances of the distinct edge e0
in g. In this case, we run the simultaneous depth-first traversal
multiple times starting at each instance of e0 in g. Among the mul-
tiple traversals, we pick up the largest common subgraph of g and
IGI, and we merge g into IGI by sharing this subgraph. During this
process we use a common subgraph with parallel edges and vertex
label based join. The parallel edges are useful to reduce the number
of edges of IGI and vertex label based join is used to reduce the
number of vertices in IGI.

To find the edge that has the highest frequency in IGI as a start-
ing edge for the simultaneous depth-first traversal, we construct
an edge table to keep the set of distinct edges in IGI. Each distinct
edge ed in the edge table has a list of pointers to the instances of ed
in IGI and the first pointer is to the instance which has highest fre-
quency. Algorithm 4 presents the construction of Integrated Graph
Index (IGI). For each incoming graph gi, the algorithm first finds the
frequency of each distinct edge of gi from the edge table and then
picks up the edge e0 that has the highest frequency, where e0
points to its instance e in IGI. Then for each instance e1 of e0 in
gi, the algorithm finds the largest common subgraph of gi and IGI.
For each subgraph we apply vertex label based join and multiple
edges techniques. We then pick the largest matching subgraph g
and merge gi into IGI by sharing g. Then, a corresponding new
edges is created in IGI for each edge in gi but not in g. During the
merge, for each edge in gi, we also increment the frequency and
update the index of its matching edge in IGI to assist future inte-
gration. It may be noted that the graph IDs in each index(e) is auto-
matically sorted since the graphs are merged into IGI in the
ascending order of their IDs. Finally IGI is outputted when all the
graphs in IGI are merged.

The merge of each gi into IGI takes only linear time in the
size of gi, assuming the number of instances of a distinct edge
in gi is a constant for most datasets. The total complexity of
Algorithm 4 is O(n|G|) where n is the average size of the graphs
in G. In the worst case, when every graph in G consists of only
one distinct edge (ie all edges are identical), the complexity is O
(n2|G|). However, even n2 is small for graphs in a transaction
graph database.

Example 1: Fig. 1 shows a set of graphs G that consists of four
graphs g1,g2, g3 and g4. Initially, the integrated graph IGI = g1, which
is shown in Fig 2. IGI x:1 means that the edge has a label x and

Figure 4. An overview of structure based graph partition and Creation of Integrated Graph Index: The result of algorithm 2 is loaded into distributed cache for structure based
partition. Algorithm 3 shows the procedure to do structure based partition and creation of Integrated Graph Index. In Algorithm 3, the Mapper reads the graph and prepares
maximum DFS code to send Maximum DFS code as key and the value is concatenation of graph id and Maximum DFS code.

Figure 5. Example of Label based join.

28 S. Fathimabi et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 22–34
frequency 1. Fig. 3 shows the IGI after integration of g2, g3 and g4
in Fig. 3a–c respectively, and edge table with pointers. The index
table for IGI is shown in Fig. 3d.

The graph integration method is simple and efficient. It has sev-
eral advantages.

� By allowing the descending order of edge frequency when
merging the graphs, we are able to integrate the graphs into
the position that many other graphs are integrated into. This
approach uses the principle of using frequent subgraphs as
the integration guidance to extract the common sub-graphs of
many graphs.

� Graph integration approach is very fast since it does not
involve any expensive operation such as frequent subgraph
mining or subgraph isomorphism test. The most costly step
is to perform the depth-first traversal that is linear in size
of the graph g. The edge frequency used to guide the integra-
tion can be easily collected and maintained during the inte-
gration process.

� Integrated Graph Index keeps all neighborhood information of
the graphs. By utilizing Integrated Graph Index we can extract
common subgraphs.
4.3. Graph query processing and index maintenance

We now discuss how to do query processing and index main-
tenance using IGI. This step does both the query processing and
index maintenance simultaneously. Instead of doing query pro-
cessing and index maintenance separately, here we combine both
steps in one step to eliminate the redundant work and number of
Map-Reduce rounds. We first give the overall framework and
then present the details of each step. In this phase the required
Integrated Graph Index files are loaded from HDFS. And another
input is query graphs and new graphs to insert. Algorithm 5
shows the entire process required for this phase. The framework
of our query processing system consists of three major steps as
follows:

Table 3
Graph Partition Table.

IGI file name Graph Ids
IGI1 filename Q1, Q2, Q3, G150
IGI3 file name Q4, Q5, G100

Table 4
Result of query processing.

Query Id Graph Ids

Q1 G1, G2, G4
Q2 G2
Q3 G2

S. Fathimabi et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 22–34 29
� Partition of input graphs based on Integrated Graph Index
feature.

� Input graphs Integration.
� Query graph verification and index maintenance.

4.3.1. Partition of input graphs based on Integrated Graph Index
feature

When the sequence of query graphs and new graphs to insert
are issued, we first need to do preprocessing step. Here input
graphs mean both query graphs and new graphs to insert. To pro-
cess the input graphs first partition the input graphs according to
the structure of IGIs.

Feature Table: Depth First Traversal of all IGIs is placed in a
table and stored in a file. The format of Feature table is feature
and its file name, which contains that particular IGI. Table 2 shows
the format of Feature table.

Filter the IGIs: The number of input graphs is partitioned based
on the structure of IGIs which is in Feature Table. From the feature
table we get maximum dfs code of each IGI. For each query graph
Table 2
Feature table for IGIs.

Feature IGIpno File Name

1 2 B B y 2 3 B C z 3 5 C D w 3 2 C B w 2 0 B A z 0
1 A B x 0 4 A B x

IGI1 filename

Maximum dfs code of IGI2 IG2 filename
we check if all edges of query exist in that IGI or not. If all edges do
not exist in any IGI then we can filter that query. That means the
result for that query graph is null. For new graphs to insert into
IGI we check all the edges of new graph in IGI we select which
IGI has more edges of that new graph. Based on edges existence,
the graphs are divided and placed in a table. The result of input
graph partition is stored in graph Partition table. The format of
graph partition table is shown in Table 3.

Graph Partition Table: After filter step the result is stored in
Graph partition table and its format is shown in Table 3.
4.3.2. Input graphs integration
After the input graphs partition apply Algorithm 4 to integrate

all the input graphs that belong to each IGI. For each group of
queries we get one Query Integration Index. Query integrated
index graphs are loaded into distributed cache for the next step
verification.
4.3.3. Verification
During verification step we load only required IGIs based on

preprocessing step. We load only these Integrated Graph Index
files from HDFS instead of all IGIs. Load the required IGIs from
HDFS. The integrated Graph Index files are loaded into a number
of machines. All the input graphs are loaded into distribute cache
to make them available to all machines and the result of prepro-
cessing is loaded into distributed cache i.e shown in Table 3.
According to the IGI filename get all the query numbers. During
query processing verify if the structure of query exists in IGI or
not. If it exists then send it to the answer. In case of new graphs
insert graph ids in edge index table and edge table. When we
add any new graphs to IGI at the end we will store updated IGI
on HDFS. For the example given in Fig. 1, the final result is shown
in Table 4. Instead of getting edges for each query from IGI, when
we process the first query, the edges <ABx>, <BBy> and their graph
ids are placed in table and are used for further queries and this will
reduce the I/O time.
5. Experiments

This section presents an experimental results that demonstrate
the performance of our approach on synthetic and real datasets. In
the following experiments, we aim to determine the efficiency of
Integrated Graph Index on centralized approach and distributed
approach. In particular, we compare index creation time, query
processing time and index maintenance cost. It first describes the
used datasets and implementation details. Then, it presents a dis-
cussion of the obtained results.

30 S. Fathimabi et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 22–34
5.1. Experimental setup

5.1.1. Datasets
The datasets used in our experimental study are described in

Table 5 Real world graph datasets which are taken from an online
source that contains graphs extracted from the PubChem website.
PubChem contains one million chemical structures. Each graph has
23.98 vertices, 25.76 edges, 3.5 distinct vertex labels, 2.0 distinct
edge labels on average, and the total number of distinct vertex
labels and distinct edge labels is 81 and 3, respectively. The size
of PubChem dataset is 434 MB. For our tests, we generate 3 lakhs
graphs. We also randomly generate several sets of graph queries
Table 5
Real life biological datasets.

Graph dataset Number of graphs Average size of each graph

Yeast 79,590 23.2
P388 41,470 26
SN12C 40,002 31.2
OVCAR-8 40,514 31.3
NCI-H23 40,351 31.5
MOLT-4 39,763 30
PC-3 27,507 32
SF-295 40,269 32
SW-620 40,530 31
and new graph to insert, which contain various numbers of queries
ie | Q | = 10, 100, 200, 300 up to 2000.
5.1.2. Implementation platform
We implement this work in Java and using Hadoop (version

1.2.1) an open source version of Map-Reduce. The database files
are stored in the Hadoop Distributed File System(HDFS) an open
source implementation of GFS (Ghemawat et al., 2003). All the
experiments of our approach were carried out using a local cluster
with 9 nodes. The processing nodes used in our tests are equipped
with a Hardware:1 + 8 Node Cluster Front-end: HP Proliant
DL380P Gen8, 2 x Intel xeon CPU E5-2640 (2.5 GHz/ 6-
core/15 MB/95w) processor, 64 GB RAM, 333 X 600 GB HDD
machine; Storage: HP MSA2040 SAN SFF/ 24 x 300 GB HDD/
8⁄16 GB POETS; OS: Rocks Cluster 6.1.1 + CentOS 6.5 Server with
Hadoop1.2.1.

Data Node: Intel xeon E5-2640 (2.5 GHz / 6-core/15 MB/95w)
processor, 16 GB RAM, 2 X 300 GB HDD machines.

5.2. Experimental results

5.2.1. IGI creation on centralized vs distributed platform
This experiment shows the time variation for centralized

approach and distributed approach. Centralized approach means

Figure 6. Integrated Graph Index building time versus number of data graphs.

Figure 7. IGI creation time using label based partition vs structure based partition.

S. Fathimabi et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 22–34 31
only single machine without using Hadoop. Single machine config-
uration:Intel i3 processor, 8 GB RAM, 500 GB Hard disk. For this
experiment we used synthetic data set consisting of 12,000 graphs.
Table 6 shows the time taken for centralized and distributed
approach. This shows distributed approach is scalable to large
graph datasets.

5.2.2. Query processing time on centralized vs distributed platform
In this experiment we conducted query processing on 12,000

data graphs which are shown in Table 5 with different numbers
of query graphs. It takes less time for hadoop and it scales well
to large graph databases. Table 7 shows the time versus number
of query graphs. As the number of queries increase the time also
increases.

5.2.3. Integrated Graph Index building time versus number of data
graphs

In this experiment we used synthetic dataset consisting of
12,000 graphs and we executed on 9 node cluster machine. We
first test the Integrated Graph Index creation time for number of
data graphs. Here the time is initially not increasing because even
if we increase graphs the data are distributed to a number of
machines so it takes the same time. Fig. 6 shows the time variation
according to the number of data graphs.

5.2.4. Integrated Graph Index creation time using label based partition
vs structure based partition

In this experiment we used synthetic dataset consists of 12,000
graphs and we executed on 9 node cluster machine. This experi-
ment is conducted using both Label based partitioning algorithm
and Structure based partition algorithm. In this experiment we
used synthetic datasets shown in Table 5 and we executed on 9
node cluster machine. Fig. 7 shows the time taken for LP and SP
techniques. LP is taking less time compared to SP partition.

5.2.5. Query processing time for label based partition versus structure
based partition

This experiment is conducted to compare Label Based partition
and structure based partition. Fig. 8 shows the comparison of query
processing when we use label based partition and structure based
partition. Structure based partition takes less time compared to
Label based partition.
Table 6
Integrated Graph Index creation on centralized vs distributed.

Dataset Size (Number of
graphs in thousands)

Time taken for Centralized
Algorithm in minutes

Time taken for
Hadoop (minutes)

0.5 0.6 0.66
1 2 0.7
2 4 0.8
4 7 1.5
6 9 3.42
8 15 5.2
12 25 7.3

Table 7
Query processing time on centralized platform vs distributed platform.

Number of query
graphs

Time taken for Centralized
Algorithm in mins

Time taken for
Hadoop

1 0.05 0.04
10 18 14.6
40 47 19
80 85 26
100 105 30 Figure 8. Query processing time using label based partition vs structure based

partition.

Figure 9. Query processing time using structure based partition versus PPMG.

Figure 10. Performance evaluation on Integrated Gra

32 S. Fathimabi et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 22–34
5.2.6. Query processing time for structure based partition versus
existing algorithm PPMG

In this experiment we used synthetic datasets and we executed
on 9 node cluster machine. This experiment is conducted to com-
pare Structure Based Partition and PPMG (Kim et al., 2013). Fig. 9
shows the comparison of query structure based partition and
PPMG. There is lot of difference in the time taken for PPMG and
our approach. Our structure based partition takes very little less
time compared to earlier algorithm PPMG.
5.2.7 Integrated Graph Index creation using REAL datasets
In this experiment we used different real datasets and recorded

running time for Integrated Graph Index creation. We consider five
real datasets and showed the time required to create the Integrated
Graph Index. The time is shown in Fig. 10.
5.2.8. Query processing time analysis using real datasets
In this experiment we used real datasets shown in Table 5 and

we executed on cluster machine. Here we used different numbers
ph Index creation versus number of data nodes.

Figure 13. Query processing time versus graph partition technique.

Table 8
Database updates time.

S. Fathimabi et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 22–34 33
of query graphs and we recorded execution times. It is shown in
Fig. 11. We executed for the number of query graphs. If query
graphs are more then running time is more.

5.2.9. Integrated Graph Index creation time versus graph partitioning
technique

In this experiment we analyzed different graph partitioning
techniques and running time to create Integrated Graph Index.
We used real datasets shown in Table 5. We executed on 9 node
cluster machine. Here we used four partitioning techniques default
graph partition, density based graph partition, label based graph
partition and structure based graph partition. In this experiment
we recorded Integrated Graph Index creation time for different
partition techniques. Here we compared four partition techniques.
Default partition is taking long time compared to all other partition
techniques. Structure based partition is taking least time compared
with label based partition and density based partition, it is shown
in Fig. 12.

5.2.10. Query processing versus graph partitioning technique using
real datasets

In this experiment we analyzed the query processing time for
different partition techniques. Here we used real datasets shown
Figure 12. Integrated Graph Index creation time versus graph partition technique.

Figure 11. Number of query graphs versus running time.

Operation Insert Query processing Both

Total update time (seconds) 70 60 80
in Table 5. We executed on 9 node cluster. We recorded the run-
ning time for query processing here we used 100 queries. For struc-
ture based partition is taking less time compared to all other
partition techniques. It is shown in Fig. 13.
5.2.11. Evaluation on database updates using real datasets
In this experiment, we show that in addition to efficient index

construction and fast query processing, our index also has a very
low maintenance cost. We consider three different scenarios of
updates: insertion, query processing only and both. We use yeast
dataset for this experiment which is shown in Table 5. For insertion
only, we start with a database of 60 K graphs and insert another
10 K graphs. For both we use database of 60 K graphs and ran-
domly choose to insert graphs into it from another 10 K graphs
and 100 query graphs. The final database size we obtain at the
end of all updates in each case 60 K. This experiment we conducted
on 9 node cluster machine. The running time is recording and is
shown in Table 8. From this experiment we came to know that
both insert and query processing can be done simultaneously with
same computational complexity and IO complexity.
6. Conclusions

In this paper we presented distributed methods to process mul-
tiple graph queries at a time instead of processing single query
graph. This approach makes optimum utilizing of resources. We
proposed two techniques to partition the data graphs based on
labels of graphs and structure of graphs. Structure based approach
is more efficient for query processing on large graph datasets. Effi-
cient ways of Creation of Integrated Graph Index is reducing the IG
size compared to normal of Integrated Graph Index creation. Struc-
ture based partition reduces the communication cost and compu-
tation cost for query processing even though it takes two
mapreduce rounds. This MSP is suitable for graph database where
commonality of graphs is more. In future we want to demonstrate
how frequent subgraph mining can get benefits from graph index-

34 S. Fathimabi et al. / Journal of King Saud University – Computer and Information Sciences 31 (2019) 22–34
ing and we want to implement using in-memory distributed
framework Spark.

References

Angles, Renzo, 2012. A comparison of current graph database models. In: Data
Engineering Workshops (ICDEW) (Ed.), IEEE 28th International Conference.
IEEE, pp. 171–177.

Aridhi, Sabeur, d’Orazio, Laurent, Maddouri, Mondher, Mephu Nguifo, En-gelbert,
2015. Density-based data partitioning strategy to approximate large-scale
subgraph mining. Inform. Syst. 48, 213–223.

Chen, Chen, Yan, Xifeng, Yu, Philip S., Han, Jiawei, Zhang, Dong-Qing, Gu, Xiaohui,
2007. Towards graph containment search and indexing, Proceedings of the 33rd
international conference on Very large data bases. VLDB Endowment, pp. 926–
937.

Cheng, James, Ke, Yiping, Wai-Chee Fu, Ada, Xu Yu, Jeffrey, 2011. Fast graph query
processing with a low-cost index. VLDB J. 20 (4), 521–539.

Cheng, James, Ke, Yiping, Ng, Wilfred, Lu, An, 2007. Fg-index: towards verification-
free query processing on graph databases, Proceedings of the 2007 ACM
SIGMOD International Conference on Management of Data. ACM, pp. 857–872.

Dean, Jeffrey, Ghemawat, Sanjay, 2008. Mapreduce: simplified data processing on
large clusters. Commun. ACM 51 (1), 107–113.

Euripides, G., Petrakis, M., Faloutsos, A., 1997. Similarity searching in medical image
databases. IEEE Trans. Knowl. Data Eng. 9 (3), 435–447.

Ghemawat, Sanjay, Gobioff, Howard, Leung, Shun-Tak, 2003. The google file system.
ACM SIGOPS operating systems review, vol. 37. ACM, pp. 29–43.

Giugno, Rosalba, Shasha, Dennis, 2002. Graphgrep: a fast and universal method for
querying graphs, Proceedings 16th International Conference. Pattern
Recognition, vol. 2. IEEE, pp. 112–115.

hadoop. http://hadoop.apache.org. [].
hdfs. http://hadoop.apache.org/hdfs/. [].
He, Huahai, Singh, Ambuj K., 2006. Closure-tree: an index structure for graph

queries. In: Data Engineering, 2006. ICDE’06, Proceedings of the 22nd
International Conference. IEEE. 38-38.

Haoliang Jiang, Haixun Wang, Philip S Yu, and Shuigeng Zhou. Gstring. A novel
approach for efficient search in graph databases. In Data Engineering, 2007.
ICDE 2007. IEEE 23rd International Conference on, pages 566–575. IEEE, 2007.

Kang, U., Charalampos, Tsourakakis, Ana Paula, Appel, Faloutsos, Christos, Leskovec,
Jure, 2008. Hadi: fast diameter estimation and mining in massive graphs with
hadoop. ACM Trans. Knowledge Discovery from Data (TKDD) 5 (2), 8.

Kang, U., Tsourakakis, Charalampos E., Faloutsos, Christos, 2011. Pegasus: mining
peta-scale graphs. Knowl. Inf. Syst. 27 (2), 303–325.

Song-Hyon Kim, Kyong-Ha Lee, Hyebong Choi, and Yoon-Joon Lee. Parallel
processing of multiple graph queries using mapreduce. In The fifth
international conference on advances in databases, knowledge, and data
applications (DBKDA 2013), pages 33–38. Cite- seer, 2013.

Kuramochi, Michihiro, Karypis, George, 2005. Finding frequent patterns in a large
sparse graph⁄. Data Min. Knowl. Disc. 11 (3), 243–271.

Lubiw, Anna, 1981. Some np-complete problems similar to graph iso-morphism.
SIAM J. Comput. 10 (1), 11–21.

Yifeng Luo, Jihong Guan, and Shuigeng Zhou. Towards efficient subgraph search in
cloud computing environments. In Database Systems for Advanced
Applications, pages 2–13. Springer, 2011.

Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel. A system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD International Conference
on Management of data, pages 135–146. ACM, 2010.

Mansurul A Bhuiyan and Mohammad Al Hasan. Mirage: an iterative mapreduce
based frequent subgraph mining algorithm. arXiv preprint arXiv:1307.5894,
2013.

Dennis Shasha, Jason TL Wang, and Rosalba Giugno. Algorithmics and applications
of tree and graph searching. In Proceedings of the twenty-first ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 39–52.
ACM, 2002.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
hadoop distributed file system. In Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, pages 1–10. IEEE, 2010.

Willett, Peter, Barnard, John M., Downs, Geoffrey M., 1998. Chemical similarity
searching. J. Chem. Inf. Comput. Sci. 38 (6), 983–996.

Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern mining. In
Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International
Conference on, pages 721–724. IEEE, 2002.

Xifeng Yan and Jiawei Han. Closegraph: mining closed frequent graph patterns. In
Proceedings of the ninth ACM SIGKDD inter- national conference on Knowledge
discovery and data mining, pages 286–295. ACM, 2003.

Xifeng Yan, Philip S Yu, and Jiawei Han. Graph indexing based on discriminative
frequent structure analysis. ACM Trans. Database Syst. (TODS), 30(4):960–993,
2005.

Shijie Zhang, Meng Hu, and Jiong Yang. Treepi: a novel graph indexing method. In
Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on,
pages 966–975. IEEE, 2007.

Peixiang Zhao, Jeffrey Xu Yu, and Philip S Yu. Graph indexing: tree+ delta¡= graph.
In Proceedings of the 33rd international conference on Very large data bases,
pages 938–949. VLDB Endowment, 2007.

Zou, Lei, Chen, Lei, Xu Yu, Jeffrey, Lu, Yansheng, 2008. A novel spectral coding in a
large graph database, Proceedings of the 11th international conference on
Extending database technology: Advances in database technology. ACM, pp.
181–192.

http://refhub.elsevier.com/S1319-1578(16)30116-1/h0005
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0005
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0005
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0010
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0010
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0010
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0015
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0015
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0015
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0015
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0020
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0020
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0025
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0025
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0025
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0030
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0030
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0035
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0035
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0040
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0040
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0045
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0045
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0045
http://hadoop.apache.org
http://hadoop.apache.org/hdfs/
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0060
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0060
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0060
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0070
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0070
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0070
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0075
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0075
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0085
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0085
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0085
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0090
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0090
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0120
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0120
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0150
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0150
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0150
http://refhub.elsevier.com/S1319-1578(16)30116-1/h0150

	MSP: Multiple Sub-graph Query Processing using Structure-based Graph Partitioning Strategy and Map-Reduce
	1 Introduction
	2 Related work
	2.1 Default graph partitioning
	2.2 Density-Based graph partitioning

	3 Problem definition
	3.1 Definitions
	3.2 Problem statement
	3.3 Graph representation

	4 Proposed approach
	4.1 Graph partitioning
	4.1.1 Motivation and principle
	4.1.2 Label-Based graph partition
	4.1.3 Structure based partition

	4.2 Efficient way of creating Integrated Graph Index
	4.2.1 Parallel edges
	4.2.2 Vertex label based join

	4.3 Graph query processing and index maintenance
	4.3.1 Partition of input graphs based on Integrated Graph Index feature
	4.3.2 Input graphs integration
	4.3.3 Verification

	5 Experiments
	5.1 Experimental setup
	5.1.1 Datasets
	5.1.2 Implementation platform

	5.2 Experimental results
	5.2.1 IGI creation on centralized vs distributed platform
	5.2.2 Query processing time on centralized vs distributed platform
	5.2.3 Integrated Graph Index building time versus number of data graphs
	5.2.4 Integrated Graph Index creation time using label based partition vs structure based partition
	5.2.5 Query processing time for label based partition versus structure based partition
	5.2.6 Query processing time for structure based partition versus existing algorithm PPMG
	5.2.7 Integrated Graph Index creation using REAL datasets
	5.2.8 Query processing time analysis using real datasets
	5.2.9 Integrated Graph Index creation time versus graph partitioning technique
	5.2.10 Query processing versus graph partitioning technique using real datasets
	5.2.11 Evaluation on database updates using real datasets

	6 Conclusions
	References

