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Abstract Due to the dynamic updating of real time spatial databases, the preservation of spatial asso-

ciation rules for dynamic database is a vital issue because the updates may not only invalidate some

existing rules but also make other rules relevant. Consequently, the dynamic updating of spatial rules

was handled bymany researchers through the incremental association rule mining algorithm. Accord-

ingly, in this paperwe have developed an incremental topological association rulemining of geograph-

ical datasets using probabilistic approach. Initially, the spatial database is read out and it is passed

through probability-based incremental association rule discovery algorithm to mine the topological

spatial association rules. Once the rules are mined from the spatial database, the assumption here is

that the database is dynamically updating for every time interval. In order to handle this dynamic nat-

ure, the proposed incremental topological association rule mining process is used in this paper. Here,

the candidate topological rule generation is done from the spatial association rules using the topolog-

ical relations such as, nearby, disjoint, intersects and inside/outside and the topological support is cal-

culated using the proposed probabilistic topological support model. Finally, the spatial clustering is

performed based on the mined spatial rules. From the experimentation, we proved that the maximum

accuracy reached by the proposed method is 83.14%which is higher than the existing methods, which

is defined as the ratio of the occurred rules and total number of topological data objects.
� 2016 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The collection of a large amount of spatial data is gathered

by various developing fields such as remote sensing, e-
commerce, and other data collection tools. Due to the huge
amount of spatial data, the extraction of information from

the spatial database (Ding et al., 2006) is one the most
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challenging task. In order to overcome the above challenge,
the automated information is discovered from the spatial
data, which leads to favorable fields of data mining or

knowledge discovery in databases (KDD) Mukhopadhyay
et al., 2014; Wu et al., 2014; Jiang et al., 2015. With the
help of KDD database useful information can be retrieved

from the data such as previously unknown values, hidden
information and uncertain values (Clementini et al., 2000;
Frawley et al., 1991). The classification of spatial data min-

ing (Shyu et al., 2006; Laube et al., 2008; Guo et al., 2015;
Ding et al., December 2008; Dao and Thill, 2012) is per-
formed based on the types of rules, which have been located
in the spatial database. Basically, the spatial association rule

can be represented as X? Y, in which the representation of
X and Y shows the predicate set. A few of the aforemen-
tioned predicate sets contain spatial data. Basically, the

large database contains various association relationships
but some association relationships are not occurring regu-
larly based on the concepts of minimum support and mini-

mum confidence. In a set of spatial objects S, the support
pattern of A is the probability that a member of spatial
object S satisfies the pattern A.

Then, the confidence measure of pattern A and B is the
probability that the pattern B occurs when the pattern A
occurs. The threshold value is given by the user to determine
the strong spatial association rules (Koperski and Han, 1995;

Han and Fu, 1995; Dong et al., 2012). Basically, the spatial
database is used to accumulate and control the spatial objects.
The spatial object consists of two components such as descrip-

tive component and spatial component. The components
based on the spatial data mainly include their geometry, which
is based on the type of point, line, surface, etc. Based on the

topological relationships, the spatial objects are related to each
other. The topological relationship (Pascucci et al., 2011; Fang
et al., 2010; Doraiswamy et al., 2014) is based on the represen-

tation of a spatial extent by a set of points and composition of
three subsets such as boundary, interior and exterior. In this
paper we have taken the topological relations, which have been
used as spatial predicates for complex objects. The spatial

predicates are named as adjacent, within, close and overlap.
A set of topological relations for geographical datasets using
probabilistic approach is used in this paper. In order to reduce

the computational overhead the topological relations are used
in the complex objects. The generated spatial database is
passed through the topological relations to mine the topolog-

ical spatial association rules. Basically, the spatial database is
dynamically updated for every time interval due to nature.
Here, a probability-based dynamic discovery of rules is per-
formed for the newly added database and the preservation of

the important spatial rules are computed based on the proba-
bility (Mohamed and Refaat, 2011) of occurrence in the exist-
ing and new database.

The organization of the paper is as follows: Literature
review is presented in Section 2. The problem definition and
contributions of the paper are presented in Section 3. Proposed

methodology: Incremental topological association rule mining
of geographical datasets using probabilistic approach is
presented in Section 4. In Section 5, the experimental results

and the Performance analysis of topological spatial rule
mining are presented. Finally, we conclude this paper in
Section 6.
2. Literature review

Literature presents various techniques for spatial association
rules’ mining and clustering. Here, we present the review of dif-

ferent works. Koperski and Han (1995) have proposed an effi-
cient method for mining strong spatial association rules in
geographic information databases. A spatial association rule

is a rule indicating certain association relationship among a
set of spatial and possibly some nonspatial predicates. A
strong rule indicates that the patterns in the rule have relatively
frequent occurrences in the database and strong implication

relationships. Several optimization techniques were explored,
including a two-step spatial computation technique (approxi-
mate computation on large sets, and refined computations

on small promising patterns), shared processing in the deriva-
tion of large predicates at multiple concept levels, etc. This
work faces issues when we incorporate the multiple concepts

into the mining algorithm without much computational over-
head. Clementini et al. (2000) have used objects with broad
boundaries, the concept that absorbs all the uncertainty by

which spatial data were commonly affected and allows compu-
tations in the presence of uncertainty without rough simplifica-
tions of the reality. The topological relations between objects
with a broad boundary can be organized into a three-level con-

cept hierarchy. The progressive refinement approach was used
for the optimization of the mining process. Even though the
rule mining process utilizes the optimization algorithm, the

mining for accurate spatial rules are completely missed due
to the random initialization.

Shyu et al. (2006) have customized the data mining algo-

rithms using visual content and potential objects extracted
from geospatial image databases with other relevant informa-
tion, such as text-based annotations. Queries utilizing the min-

ing results were also discussed in this paper. These mining and
query processing algorithms play an important role in
GeoIRIS-Geospatial Information Retrieval and Indexing Sys-
tem. The query processing for the multiple concept and topo-

logical relations pose manual preparation for the rule mining
processes. Laube et al. (2008) have investigated the support
and confidence measures for spatial and spatio-temporal data

mining. Using fixed thresholds to determine how many times
a rule that uses proximity is satisfied seems too limited. It
allowed the traditional definitions of support and confidence,

but does not allow to make the support stronger if the situation
is ‘‘really close”, as compared to ‘‘fairly close”. The traditional
measure of support and confidence are not suitable to mine the
spatial rules if they considered the topological relations.

Qin et al. (2008) have proposed an efficient approach to
derive association rules from spatial data using Peano count
tree (P-tree) structure. P-tree structure provided a lossless and

compressed representation of spatial data. Based on P-trees,
an efficient association rule mining algorithm PARM with fast
support calculation and significant pruning techniques was

introduced to improve the efficiency of the rule mining process.
The P-tree based association rule mining (PARM) algorithm
was implemented and compared with FP-growth and Apriori

algorithms. Even though the tree-based mining algorithm are
effective than Apriori, the memory requirement to store the tree
structure is high as compared with the candidate-based meth-
ods. Dao and Thill (2012) have proposed a comprehensive

framework and library of algorithms of spatial analysis and
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visual analytics to resolve this fundamental challenge. The
framework was the first attempt in delivering a complete geo-
spatial knowledge discovery framework using spatial associa-

tion rule mining. The spatial analytics does not consider the
diversity constraints and automatic thresholding to group the
data objects. But, the requirements of significant rules and dis-

tance function are missing in this paper.
Krista and Borut (2009) have presented an agglomerative

hierarchical clustering algorithm for spatial data. It discovered

clusters of arbitrary shapes which may be nested. The algorithm
uses a sweeping approach consisting of three phases: sorting is
done during the preprocessing phase, determination of clusters
is performed during the sweeping phase, and clusters are

adjusted during the post processing phase. The properties of
the algorithm were demonstrated by examples. The algorithm
was also adapted to the streaming algorithm for clustering large

spatial datasets. It proves poor in offering high quality of the
clustering solutions, capability of discovering concave/deeper
and convex/higher regions, their robustness to outlier and noise.

Pilevar and Sukumar (2005) have proposed a clusteringmethod,
GCHL (aGrid-Clustering algorithm forHigh-dimensional very
Large spatial databases) by combining a density-grid based

clustering with axis-parallel partitioning strategy to identify
areas of high density in the input data space. The algorithm
worked well in the feature space of any data set. The method
operated on a limited memory buffer and requires at most a sin-

gle scan through the data. But, this algorithm does not consider
the kernel space for clustering the data objects and also, it uti-
lized the traditional distance measurement for clustering.

3. Problem definition and contributions of the paper

� Let a spatial database, SDB, Si; 0 6 i 6 n include ‘n’ spatial

objects with different attribute values. The first challenge of
finding useful information is formulated as searching prob-
lem that two series of thresholds should filter out the most
useful information which can be discovered from the spatial

database.
� Then, the second challenge is based on the topological rule
mining algorithm. Due to dynamic nature, the topological

spatial rules should be updated based on the added data-
base. Basically, the spatiotemporal datasets are used to
carry distance and other topological information based on

the geometric and temporal computation. The topological
relationships such as disjoints, meets, overlaps, contains,
covers, intersects and equals between two spatial objects
can change over time.

� Another important challenge is based on the dynamically
updated spatial database for every time interval. Due to
the dynamic updating of real time spatial databases, the

preservation of spatial association rules for dynamic data-
base is a vital issue because the updates may not only inval-
idate some existing rules but also make other rules relevant.

The above challenges are dealt with the following contribu-
tions made in the research:

� We have developed spatial association rule mining method
which is suitable for three different types of geometries such
as, point, line and polygon through candidate generation

process with three different constraint measures.
� We have proposed probabilistic topological support (PTS)

method (Miller, 2007) to perform the topological process.
Here, the candidate topological rule generation is done
from the spatial association rules using the topological rela-

tions such as, nearby, disjoint, intersects and inside/outside
and the topological support is calculated using the proposed
PTS model, which is defined as the ratio of the occurred
rules and total number of topological data.

4. Proposed methodology: Incremental topological association

rule mining of geographical datasets using probabilistic approach

The block diagram representation of proposed methodology is
shown in Fig. 1, in which the dynamic preservation of impor-

tant topological spatial rules is presented. The steps involved in
the proposed system are described as follows: (i) Initially, the
spatial database is considered as an input of the proposed sys-

tem. Here, the spatial database is represented in the form of
vector format. (ii) Then, the spatial database is read and
passed through spatial association rule mining algorithm

(Zaki, 2000) to mine the important spatial association rules
using probability threshold and relationship threshold mea-
surement. (iii) Once the rules are mined from the spatial data-
base, the assumption here is that the database is dynamically

updating for every time interval. So, in order to handle
dynamic nature, the topological spatial rules should be
updated but the full scan with the whole database is not

allowed. (iv) Here, the generated spatial rule is based on the
following predicates such as nearby, disjoint, intersects and
inside/outside. (v) Then, the topological spatial association

rules of previous and current database are combined. (vi)
Finally, the spatial rules are updated based on the probabilistic
approach.

4.1. Data pre-processing

At first, the input of the system is considered as spatial data,
which is stored in the shape file format. The shape file format

defined as the digital vector format which is used to store the
geometric location using the information based on the attri-
butes. The spatial database can be represented as follows:

SDB ¼ Si 0 6 i 6 n ð1Þ
The geometric locations can be represented using different

spatial representations such as point, line or polygon etc. Basi-
cally, the spatial objects are represented in the form of geom-

etry and its related coordinate information is in the form of X
and Y coordinates. The geometrical representation of spatial
data objects can be expressed as follows:

Si ¼ fLx;Ly;A1;A2;A3 . . .Amg ð2Þ
The attribute information of the spatial data object can be

generated based on the data object characteristics. Once the

shape file is read, the attribute information is converted to a
transaction data format. Using the transaction form of data-
base, the mining process (Agrawal and Srikant, 1994) is carried

out easily through the rule mining algorithm. Then, the set of
features are generated using the unique attribute value from
every attribute and stored in the transaction database. The

column value of the transaction database is selected from the



Figure 1 Block diagram representation of proposed methodology.
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feature value of every unique attribute value. Then, the row of
transaction database is considered as spatial data objects, in
which the representation values are based on the presence of
feature values in the corresponding spatial data objects.
4.2. Mining of spatial association rules

After generating the transaction database, it is given as input

to the apriori algorithm. The apriori algorithm (Agrawal
et al., 1993; Fang et al., 2010) is defined as association rule
mining algorithm, which is used for frequent mining process.

The apriori algorithm can be generated in two phases such
as frequent itemset generation and association rule generation.
Initially, the frequent itemsets are generated based on the fea-
ture value which has more frequency among spatial data

objects. Here, the frequent combination of feature values can
be filtered using the constraint measure, called support. Sec-
ondly, the confidence measure is calculated based on the asso-

ciation rule that is generated from the frequent itemset. The
representation of standard spatial association rule can be rep-
resented as follows:

SAR ¼ A1 \ A2 \ Am ) B1 \ B2 \ Bm ð3Þ

where, the subset of antecedent feature values in the spatial
database is defined as A1, A2, Am and the subset of consequent
feature value can be denoted as B1;B2;Bm:. From the above

spatial association rule (SAR), we can say, if the existing value
of antecedent feature values A1, A2, Am same as consequent
feature value of B1, B2, Bm. In addition, the antecedent feature
values are co-exists in most of the spatial data objects. The
Rule SAR maintains the spatial data base with spatial associ-
ation rule measures such as support S and confidence C.

Supp ðA1\A2\AmÞ¼NumberofspatialobjectssatisfyA1\A2\Am

TotalnumberofspatialobjectsinSDB

Conf ðA1 \ A2 \ Am ) B1 \ B2 \ BmÞ

¼ supðA1 \ A2 \ Am \ B1 \ B2 \ BmÞ
supðA1 \ A2 \ AmÞ

Then, the other spatial data objects measurement like lift is
also used to calculate the importance level of association rules.
This lift measure is given as follows:

liftðA1 \ A2 \ Am ) B1 \ B2 \ BmÞ

¼ supðA1 \ A2 \ Am \ B1 \ B2 \ BmÞ
supðA1 \ A2 \ AmÞ � supðB1 \ B2 \ BmÞ
4.3. Mining of topological spatial association rules using input
data and spatial association rules

Generalization-based spatial data mining methods are used to

discover the relationship between the spatial and non-spatial
objects. However, the reflecting structure of the spatial objects
cannot be discovered by spatial data mining methods. Basically,
the spatial association rules contain different kinds of spatial

predicates, which represent the topological relationship between
the spatial objects such as adjacent-to, close-to, inside, intersec-
tion, near-by, etc. In addition, the spatial predicates can be rep-

resented in the form of spatial orientation such as left, right,
south, east, north, etc. More over the spatial
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predicates contain some information that has been based on the
distance such as close-to, far-away, etc. Thepreliminary concepts
based on the spatial association rule are discussed as follows:

Definition 1. In definition 1, two kinds of thresholds can be
introduced such as minimum support and minimum confi-
dence. Here, the minimum support is defined as the proportion

of transactions in the database based on the number of
itemsets. In a dataset S, the support of conjunction of
predicates A1 ^ A2 ^ � � � ^ Am can be denoted as rðA=SÞ. The
confidence rule of A ! B can be represented in a set S: The
representation of confidence rule can be denoted as
uðA ! B=SÞ that is defined as the ratio of rðA ^ B=SÞ Vs
rðA=SÞ. From definition 2, we can understand that B is

satisfied by a set of object member S when A is satisfied by the
same member of object set S: Here, 1-predicate is defined as
single predicate and the conjunction of k single predicates is

defined as the k-predicates.

Definition 2. Basically, the large spatial database is used to
generate the large number of spatial association rules. How-
ever, people are interested in the spatial patterns based on

the two concepts like large support and high confidence. Con-
sequently, the spatial association rule is generated with large
supports and high confidence, which is named as strong rule.

Here, the spatial association rule can be represented as follows:

A1 ^ A2 ^ � � � ^ Am ! B1 ^ B2 ^ � � � ^ Bn ð%cÞ
where, A1 ^ A2 ^ � � � ^ Am is defined as the least predicates,

B1 ^ B2 ^ � � � ^ Bn is defined as the spatial predicates and the
confidence of the spatial association rule can be represented
as c%.

Definition 3. If the support of A is greater than its minimum

support threshold, a set of predicate A is considered as large
in set S at level k: Accordingly, the confidence rule A ! B=S
is high when its confidence is greater than its corresponding

confident threshold.

Definition 4. If the predicate A ^ B is large in set S; the follow-
ing confidence rule A ! B=S is considered as strong and high
in set S.
4.3.1. Topological relations considered

Basically, the spatial relation is used to specify the location of
objects in space corresponding to the reference object. The
commonly used spatial relations are named as topological rela-

tions, directional relations and distance relations. The spatial
relations based on the topological rules are discussed in this
section. The topological model is based on the Dimensionally

Extended nine-Intersection Model (DE-9IM) standard, in
which the spatial relationship between the two regions is
described. Based on the DE-9IM model, the spatial relations
are not affected by rotation, translation and scaling process.

Some of the topological relations can be expressed as follows:

(i) Equals: equality is one of the important relations in the

topological concept. It is used to analyze whether the
particular condition already exists in a set or not. The
equal’s relation is shown below:
S1 � is aðp; l arg e townÞ ^ equalsðp; qÞ ^ is aðq;waterÞ
where, the two spatial objects such as p and q are topo-
logically equal.
(ii) Disjoint: disjoint is defined as no common points, which
is used to form the set of disconnected geometrics.
S2 � is aðp; schoolÞ ^ disjointðp; qÞ ^ is aðq; beachÞ
where, the spatial points of p and q are placed in disjoint

manner, in which p denotes the school and q denotes the
beach area.
(iii) Intersects: The two spatial data objects p and q are
placed in the overlapped manner. Here, the spatial data

objects p and q contain the common area that can be
shown below:
S3 � is aðp; l arg e townÞ ^ inter sec tsðp; qÞ
^ is aðq; small cityÞ

The above equation shows the intersection of both spa-
tial objects p and q does not contain the null area.
(iv) Touches: Here, the first spatial object p touches the next

spatial object q, in which at least one boundary point is
considered in common. However, the spatial object does
not contain any interior points.
S4 � is aðp; l arg e townÞ ^ touchesðp; eÞ
^ is aðe; highwayÞ
(v) Covers: one of the spatial objects q lies inside the spatial

object p; in which no point of q is placed in the exterior
of p:Here, every point of q covers the interior points of p
that can be represented as follows:

S5 � is aðp;worldÞ ^ coversðp; rÞ ^ is aðr; countryÞ
4.3.2. Spatial rule mining algorithm

In order to analyze the relational and transactional databases,

the data mining algorithms are used for recent researches. Most
of the data mining methods are used in the spatial objects with
exactly familiar location andfinite accuracy.Due to the different
sources, the spatial information is affected by various uncertain-

ties such as incompleteness, instability, indistinctness, impreci-
sion, and error (Worboys, 1998). Here, the technique is used
to mine the spatial association rules when the spatial informa-

tion is inaccurate. In order to calculate the strong spatial associ-
ation rules, the topological relations are proposed in this paper.
The topological relations are used to reduce the computational

complexity. However, the topological relations generate ineffi-
ciency due to intersection models. The spatial data mining pro-
cess can be classified based on the types of rules that can be
discovering in the spatial databases. The mining algorithm con-

tains three processing steps such as candidate topological rule
generation from spatial association rules, finding of topological
support using spatial database and filtering of rules.

Step 1: Candidate topological rule generation from spatial
association rules

Initially, the task relevant spatial objects are extracted from
the spatial database based on the spatial association rules. In

this paper, the spatial data such as tsunami and concord data
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are considered as a geographical dataset. All these types of
geographical datasets are stored in the relevant spatial data-
base, which have been further used in the mining process.

The storage of relevant database can be accomplished by the
spatial query implementation. The search space is partitioned
based on the topological intersection values, in which the space

is searched at a time for level one. The searching process is
starting from the iteration between the candidate generation
and evaluation phase. Candidate generation phase is based

on the refinement process, in which one or more allowed spa-
tial objects to the pattern to be refined. Here, the spatial asso-
ciation rules are used to generate the support, confident and
lift values of spatial objects. The candidate evaluation phase

is used to compare the candidate generated spatial pattern with
minimum support threshold. From the comparison results we
can say, the minimum support patterns are rejected in the can-

didate evaluation phase based on the support threshold. For
example, consider 50 geographical areas with tsunami based
on the spatial association rules. All these objects collected from

the tsunami areas are stored into the relevant spatial database
for further mining process. The example of spatial association
rule is represented as follows:

R1 ) ifp isgeographical area ^ p is heavyrain

^ pcontains sea ð55%; 70%Þ

R2 ) ifp isgeographical area ^ p is heavyflood

^ pcontains river ð15%; 60%Þ
where, the measures of support and confidence can be repre-
sented as ðS%;C%Þ. From the generated spatial association
rule, the minimum support rules only considered for further
processing. While considering the minimum support as 25%,

the association rules are considered above this minimum value.
Accordingly, the spatial association rule R2 can be neglected
for further process. Because, the support value is calculated

from the second rule is obtained as below 25%.
After generating the relevant spatial data base, the topologi-

cal relation such as within, overlap, touches, intersects and dis-

joint are applied to the spatial dataset of all the geographical
area based on the filtered minimum bounding rectangle (MBR)
predicates such as heavy rain, sea, river, cyclone, etc. Then, the

candidates generate the topological relations based on the gener-
ated relevant spatial database. Here, the candidate generates all
possible topological relations based on the generated spatial
association rules. Some of the candidate rules are generated from

the above mentioned spatial rule that is represented as follows:

CR11 ) is a ðp; geographical areaÞ
^ with inðp; heavyrainÞ ^ close toðp; sea Þ

CR12 ) is a ðp; geographical areaÞ
^ close toðp; heavyrainÞ ^ with inðp; sea Þ

CR13 ) is a ðp; geographical areaÞ
^ adjacent toðp; heavyrainÞ ^ with in ðp; sea Þ

CR14 ) is a ðp; geographical areaÞ
^ coversðp; heavyrainÞ ^ inside ðp; sea Þ

where,CR is defined as the candidate generated topological rule
and the number of candidate rules generated based on the first
rule (R1) can be represented as CR11;CR12; CR13 ;CR14 � � � etc.

Step 2: Finding of topological support using spatial database
Once the candidate topological rules are generated, the
topological support is calculated for every generated candidate
rules such as CR11;CR12;CR13 � � � etc:

PTSðRÞ ¼ OðRÞ
TðDÞ ) PðRÞ ð4Þ

where, the probabilistic topological support can be denoted as
PTSðRÞ; which is defined as the ratio of occurred rules OðRÞ to
the total number of topological data TðDÞ and PðRÞ is defined
as the probability of rule R within the database. Then, the

topological support is calculated from the generated candidate
rules that are represented as follows:

TCR11 ) is aðp;geographical areaÞ
^with inðp;heavyrainÞ^ close toðp;seaÞð34%Þ

TCR12 ) is aðp;geographical areaÞ
^ close toðp;heavyrainÞ^with inðp;seaÞð72%Þ

TCR13 ) is aðp;geographical areaÞ
^ adjacent toðp;heavyrainÞ^disjointðp;seaÞð49%Þ

TCR14 ) is aðp;geographical areaÞ
^ coversðp;heavyrainÞ^ insideðp;seaÞð88%Þ

where, TCR is defined as the topological support of particular
candidate rule. The PTS value of TCR11; TCR12; TCR13 and

TCR14 is measured as 34%,72%,49% and 88% respectively.

Step 3: Filtering of rules

Basically, the filtering process is used to reduce the
unwanted computations and increase the speed of the compu-
tation. Here, the filtering process can be done based on the
threshold process such as probability threshold and relation-

ship threshold which is given by the user. After generating
the topological support, the filtering rules are applied to select
the strong spatial association rules generated by the candi-

dates. When the threshold value of topological support is fixed
as 50%, the candidate rules are selected based on the fixed
threshold. If the value of topological support is above 50%,

the particular association rule is stored in the spatial database.
Accordingly, from the above calculated topological support,
the first candidate rule and third candidate rule are eliminated

and the second and fourth candidate association rules are
stored in the spatial database. Then, the filtered candidate
association rules are represented as follows: (see Fig. 2)

TCR12 ) is a ðp; geographical areaÞ
^ close toðp; heavyrainÞ ^ with in ðp; sea Þð72%Þ

TCR14 ) is a ðp; geographical areaÞ ^ coversðp; heavyrainÞ
^ inside ðp; sea Þ ð88%Þ
4.4. Incremental topological association rule mining

After generating the topological support using spatial dataset,
the assumption here is that the spatial database is updated
dynamically for every time interval due to environmental

changes. Due to the changes of spatial data, the topological
support also gets changed. This is one of the major challenges
faced by researchers. Basically, the whole update of topologi-

cal support makes the computational complexity. In order to
reduce this computational complexity, the incremental topo-
logical association rule mining is proposed in this paper. Here,



1 Input : SDB 
2 Output : mined value 
3 Parameters: SDB�spatial database 
4                      P_DB� predicate database 
5                       MBR� minimum boundary rectangles 
6 Begin 
7                   Relevant _SDB = extract _task _relevant _objects 
8                   MBR_P database = calculate MBR_P based on the relevant _SDB 
9                   MBR_P ===MBR predicates 
10                   P-DB = filter with min _supp(min _supp _threshold, MBR_P 

database) 
11 for (L=1, L!=max& P_DB!=null, L++) 
12  { 
13                  P_DB=calculate _P(L, P_DB, relevant _SDB) 
14                   P_DB=filter with min _supp(min _sup(L), P_DB) 
15                   mine _association rules(P_DB) 
16 } 
17 End 

Figure 2 Algorithmic description of mining spatial association

rules.
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the newly updated topologic support is added with existing
generated topological support. By doing this process, the com-
putation time is reduced and reduces the complexity of compu-

tation also.

Step 1: Mining topological spatial association rules from sta-

tic database

This section shows the mining of topological spatial associ-
ation rules from the static database. Here, the spatial database

values are not changed dynamically. From the static database,
the topological spatial association rules are mined incessantly.
Then, the mined static spatial association rules are stored in

the rule set 1. At first, 100 spatial association rules are stored
in the static database. For example, the topological spatial
association rules from static database are represented as

follows:

TCR12 ) is a ðp; geographical areaÞ
^ close toðp; heavyrainÞ ^ with in ðp; sea Þð72%Þ

TCR14 ) is a ðp; geographical areaÞ
^ coversðp; heavyrainÞ ^ inside ðp; sea Þ ð88%Þ

Then, the spatial association rules are updated due to envi-
ronmental changes. So, the number of spatial association rules
is changed as 110, here 10 rules are newly updated due to

dynamic nature. Due to this updating process, the topological
relations are affected easily. In order to handle this situation,
the updated rules are taken out and the spatial association
rules and topological support are applied. The spatial associa-

tion rules of updated data can be expressed as follows:

UR1 ) if p isgeographical area ^ p is heavyflood

^ pcontains sea ð51%; 79%Þ
UR2 ) if p isgeographical area ^ p is cloudy

^ pcontainsmountains ð19%; 46%Þ

Here, UR1 and UR2 denote the first and second updated
rules respectively. After generating the spatial association rule,
all possible topological relations are calculated using candidate

generation phase that can be shown below:
CUR11 ) is aðp ; geographical areaÞ
^ adjacent toðp ; heavy floodÞ ^ intersetsðp; seaÞ

CUR12 ) is aðp ; geographical areaÞ
^ close toðp ; heavy floodÞ ^ with inðp; seaÞ

CUR13 ) is aðp ; geographical areaÞ
^ inðp ; heavy floodÞ ^ touchðp; seaÞ

CUR14 ) is aðp ; geographical areaÞ
^ coversðp ; heavy floodÞ ^ insideðp; seaÞ

where, CUR is defined as the candidate topological rule based
on the updated dataset. After generating the candidate topo-
logical rule, the topological support is generated for the
updated spatial database. Some of the topological support rep-

resentations of the updated spatial database can be expressed
as follows:

TCUR11 ) is aðp;geographical areaÞ
^ adjacent toðp; heavyfloodÞ^ intersetsðp;seaÞð25%Þ

TCUR12 ) is aðp;geographical areaÞ
^ close toðp; heavyfloodÞ^with inðp;seaÞð47%Þ

TCUR13 ) is aðp;geographical areaÞ
^ inðp; heavyfloodÞ^ touchðp;seaÞð63%Þ

TCUR14 ) is aðp;geographical areaÞ
^ coversðp; heavyfloodÞ^ insideðp;seaÞð77%Þ

where, the topological support of candidate generated rule for
updated spatial dataset is defined as ðTCUR. After generating

the topological support for updating datasets, the filtering pro-
cess is done based on the probability threshold and relation-
ship threshold. Here, the threshold value is fixed as 50% to

filter the topological support relations. Based on the fixed
threshold value, the filtered topological support of updated
database can be represented as follows:

TCUR13 ) is aðp ; geographical areaÞ
^ inðp ; heavy floodÞ ^ touchðp; seaÞð63%Þ

TCUR14 ) is aðp ; geographical areaÞ
^ coversðp ; heavyfloodÞ ^ insideðp; seaÞð77%Þ

Step 2: Merging of topological spatial association rules of
static database and updated database

After generating the spatial association rule and topological

support of updated spatial database TCUR, which is merged
with already existing static database TCR. Before the merging
process, the available static and updated databases are shown

below:

TCRS
12 ) is a ðp; geographical areaÞ

^ close toðp; heavyrainÞ ^ with in ðp; sea Þð72%Þ

TCRS
14 ) is a ðp; geographical areaÞ ^ coversðp; heavyrainÞ

^ inside ðp; sea Þ ð88%Þ

TCURD
13 ) is aðp ; geographical areaÞ ^ inðp ; heavy floodÞ

^ touchðp; seaÞð63%Þ

TCURD
14 ) is aðp ; geographical areaÞ ^ coversðp ; heavy floodÞ

^ insideðp; seaÞð77%Þ
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where, TCRS is defined as the static database and TCURD is

defined as the dynamic database. Then, the merging process
is done between both static and updated databases that can
be represented as follows:

PTSðTCRS
12; TCR

S
14Þ () PTSðTCURD

13; TCURD
14Þ

While performing the merging process, the updated data-

base is searched in the static database whether it is available
or not. Initially, the updated topological association rule is
merged with the static topological rule. Here, the merging pro-

cess can be calculated as follows:

PTSðR1Þ ¼ UPTSSðR12Þ þ PTSSðR12Þ
2

� �
¼ 0þ 72

2

� �
¼ 36%

PTSðR2Þ¼ UPTSDðR14ÞþPTSSð14Þ
2

� �
¼ 77þ88

2

� �
¼ 82:5%

PTSðR3Þ¼ UPTSSðR13ÞþPTSSðR13Þ
2

� �
¼ 0þ63

2

� �
¼ 31:5%

where, PTSDðR1Þ is defined as the dynamic probabilistic topo-

logical rule based on rule one (R1) which is calculated to be

36%. Here, the first static topological rule TCRS
12 is matched

with the dynamic database. Then find the average value of

TCRS
12 and matched value. If no value is matched with the

TCRS
12 means consider the matched value as zero. Then, the

average between the probabilistic topological support of

TCRS
12 value and its matched value is calculated.

Step 3: Filtering

After performing the merging process, the filtering process

is applied to the dynamic database based on the probability
threshold and user threshold. When the threshold value is fixed
as 75%, the spatial association rules above the threshold value
only stored in the spatial database. After filtering, the final

association rules stored in the spatial database is represented
as follows:

TCR14 ) is a ðp; geographical areaÞ ^ coversðp; heavyrainÞ
^ inside ðp; sea Þ ð88%Þ
4.5. Apply the spatial rules of the static database to spatial data
clustering

These steps read out spatial feature matrix as input and the
clustering is carried out using the three dimensional variable
which contains x, y and associate vector value. The clustering

is done using the MKPCA method (Gladis et al., 2015). The
most conventional method for clustering is k-means clustering
which partitions data space into k partitions based on the iter-

ative procedure. The problem of finding the distance and spec-
ifying the group information by k-means algorithm provides a
chance of developing probabilistic clustering algorithm. The

probabilistic clustering is about finding the membership prob-
ability based on the probabilistic distance. Here, the proba-
bilistic distance is further modified with multiple kernels
where, exponential and tangential kernel functions are utilized.

The major advantages of kernel space are that the data can be
easily separable if the range of data values are exposed in dif-
ferent interval using kernel function. This separation makes
the algorithm more easy to find the similar data points. The
main characteristic of Kernel Methods, however, is their dis-

tinct approach to this problem. Kernel methods map the data
into higher dimensional spaces in the hope that in this higher-
dimensional space the data could become more easily sepa-

rated or better structured. Here, we select exponential and tan-
gential kernel for converting data into kernel space. The
exponential kernel behaves almost non-linearly and the

higher-dimensional projection is possible with the non-linear
power. The tangential function maintains good regularization
and the decision boundary will be highly non-sensitive to noise
in training data.

Let assume that SF be the spatial feature matrix to be
given as input for the proposed MKPCA. At first, initial cen-
troids, C ¼ fc1; c2; c3 . . . ckg are randomly generated based on

the given user input about the number of cluster required (k).
Once the centroids are randomly generated, membership
probability PjðyÞ is computed for the every spatial data

object with the centroids using the following mathematical
formulae.

PjðyÞ ¼ DðyÞ
djðyÞ ; j ¼ 1; 2; . . . n ð5Þ

DðyÞ ¼ pn
j¼1djðy; cjÞ

pk
i¼1pj–idjðy; cjÞ ð6Þ

djðy; cjÞ ¼ exp �EDðy; cjÞ^2=r2
� �

þ tanhðEDðy; cjÞÞ ð7Þ

where, y indicates the spatial data objects, DðyÞ indicates the

distance matrix of the input spatial data, dj is distance between

spatial data object with cluster centroid. In the above formu-
lae, exponential and tangential functions are utilized to convert
data space into kernel space after finding Euclidean distance in
between spatial data objects and centroids.

Then, new centroids Ck are again generated based on the
following formulae.

Ck ¼
X
i¼1;2;n

mkðyiÞP
j¼1;2;nmkðyjÞ

 !
yi ð8Þ

mkðyiÞ ¼
pkðyiÞ2
dkðyi; ckÞ

ð9Þ

where, mkðyiÞ is the membership degree of the data point yi
and PkðyiÞ is the membership probability.

5. Results and discussion

The experimental results of the proposed method are discussed
in this section and the proposed incremental spatial association
rules are discussed in detail with three different geographical

dataset such as tsunami and concord dataset.

5.1. Experimental set up

Platform: The proposed spatial data mining method is imple-

mented using Matlab 8.2.0.701 (R2013b) with a system config-
uration of 2 GB RAM Intel processor and 32 bit OS. Datasets
utilized: The datasets are taken from MATLAB tool and the



Table 3 Sample rule mined from the tsunamis data.

{Validity|definite tsunami}? {Cause|Earthquake}{Val_Code|4}

{Cause|Earthquake}? {Validity|definite tsunami}

{Cause|Earthquake}{Validity|definite tsunami}? {Cause_Code|

1}{Val_Code|4}

{Val_Code|4}{Validity|definite tsunami}? {Cause_Code|1}

{Num_Deaths|0}

{Cause_Code|1}{Val_Code|4}? {Desc_Deaths|0}{Validity|

definite tsunami}

{Val_Code|4}{Validity|definite tsunami}? {Cause_Code|1}

{Cause|Earthquake}

{Cause_Code|1}{Val_Code|4}? {Cause|Earthquake}{Validity|

definite tsunami}

Table 4 Sample topological rule mined from the tsunamis

data.

Close_to{Validity|definite tsunami}? with_in{Cause|

Earthquake}^adjacent_to {Val_Code|4

Covers{Cause|Earthquake} ? close_to{Validity|definite

tsunami}

Inside{Cause|Earthquake}^adjacent_to{Validity|definite

tsunami}? disjoint{Cause_Code|1}^nearby{Val_Code|4}

Table 5 Sample rule mined from the concord data.

{{RT_NUMBER|0} => {ADMIN_TYPE|0

{ADMIN_TYPE|0} => {RT_NUMBER|0}

{RT_NUMBER|0} => {CLASS|5}
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description of those datasets are given in Table 1. Tsunamis:
These data are from Global Tsunami Database which is col-
lected by U.S. National Geospatial Data Center (NGDC) with

National Oceanic and Atmospheric Administration (NOAA).
These data contain the following attributes such as, Year,
Month, Day, Hour, Minute, Second, Val_Code, Validity, Cau-

se_Code, Cause, Eq_Mag, Country, Location, Max_Height,
Iida_Mag, Intensity, Num_Deaths, Desc_Deaths with the spa-
tial attributes like, geometry, X, Y. Concord: These data are

distributed by MassGIS (Geographic and Environmental
Information (MassGIS) to the NAD83 datum. This data set
was constructed by concatenating Massachusetts Highway
Department road shapefiles for the Maynard and Concord

USGS Quadrangles. The following attributes like, streent-
name, RT_number, Class, Admin_type, length are retained
with spatial attributes like, geometry, bounding box, X, Y.

Landareas: These data are collected from worldmap region.
This worldmap(region) sets up an empty map axes with projec-
tion and limits suitable to the part of the world specified in

region. Region can be names of continents, countries, and
islands as well as ‘World’, ‘North Pole’, ‘South Pole’, and
‘Pacific’. The spatial attributes are geometry, bounding box,

X, Y, country name.
Evaluation metrics: To analyze the performance of the spa-

tial rule mining algorithm, a number of rules mined are
utilized.

5.2. Experimental results

This section presents the experimental results of the proposed

spatial data mining method. Table 2 shows the sample data
objects of tsunamis data.

Table 3 shows the sample spatial rules mined from the tsu-

namis data. From the table, rules state that most of the spatial
data objects are affected with tsunami due to the cause of earth
quake. Also, if the spatial data objects are closely affected with

earthquake and tsunami, then cause code and validity code are
one and four. If spatial data objects are nearer to cause code
one, then most of the spatial data object face earthquake
and tsunami. Table 4 shows the sample topological rules mined
Table 1 Description of datasets.

Tsunamis Concord Landareas

Number of spatial data objects 162 609 537

Geometry type Point Line Polygon

Number of attributes 21 9 5

Table 2 Sample dataset (tsunamis).

Geometry X Y

‘Point’ 128.300000000000 �3.80000000000000

‘Point’ �156 19.5000000000000

‘Point’ 157.950000000000 �9.02000000000000

‘Point’ 143.850000000000 42.1500000000000

‘Point’ �155 19.1000000000000
from the tsunamis data. Table 5 shows the sample rule mined
from the concord data. Table 6 shows the sample rule mined
from the landareas data.

Fig. 3 represents the visualization of input data. Fig. 3.a
and b shows the visualization of tsunamis data and concord
data respectively.
{CLASS|5} => {RT_NUMBER|0}

Table 6 Sample rule mined from the landareas data.

{X |-180} => {CLASS |Antarctica}

{Y|-84} => {CLASS | Africa and Eurasia}

{{X|-95}{Y|-100}? {CLASS | Great Britain}

year Month Validity

1950 10 ‘questionable tsunami’

1951 8 ‘definite tsunami’

1951 12 ‘questionable tsunami’

1952 3 ‘definite tsunami’

1952 3 ‘definite tsunami’



  
(a) Visualization of tsunamis data (b)Visualization of concord data 

 

(c)Visualization of landareas data 

Figure 3 Visualization of input data.
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5.3. Performance analysis of topological spatial rule mining

This section shows the performance analysis of the proposed

topological spatial rule mining using spatial measures. We
have considered three input datasets such as tsunamis, concord
and landareas datasets. Then, the results are calculated based
on the various values of topological measures such as support,

confidence and percentage.

5.3.1. Spatial rules mined from input data using various support

measures

This section shows the mining of spatial rules from the input
data which has been selected from the tsunami and concord
dataset. Fig. 4 shows the mining of spatial rules based on the

various support measure using tsunami data. While increasing
the topological measure, the number of rules used for mining
process is reduced. Here, thresholds are varied from 0.2 to

0.6 and the results are analyzed with five different support
thresholds. For the support of 0.2, the proposed method
obtained 114 rules while the topological measure is maintained

as 33% in tsunamis data. For the support value of 0.5, the
number of rules used in the propose method varies from 84
to 20 based on the topological measures. From the Fig. 4(a),
we can conclude that the number of rules are reduced by

increasing the topological measures.
Fig. 4(b) shows the number of spatial rules mined for con-

cord data using support measures. Here, the thresholds vary

from 0.2 to 0.6 and the topological measures vary from 15%
to 17%. When the support measure is considered as 0.4, the
proposed method generated only two numbers of rules. When

the support is taken as 0.2, the number of rules obtained in the
proposed method is 508. Furthermore, increasing the support
measures from 0.2 to 0.3, the number of rules used in the pro-

posed method is getting reduced as 176 from 508. From the
Fig. 4(b), we can say, the changing of topological measures
does not affect the number of rules. Here, the numbers of rules

are maintained constantly by increasing the topological mea-
sures. The reason behind this property is that the support
has more influence on mining the rules than the topological

measure. We can see that, for various support values, the num-
ber of rules is different. However, the numbers of rules used in
the proposed method are reduced by increasing the support
threshold. Finally, we can conclude that, while the increasing

values of support threshold from 0.2 to 0.6, the number of
rules used in the proposed method is getting reduced from
508 to zero value.

5.3.2. Spatial rules mined from input data using various
confidence measures

In this section, the performance analysis of the proposed spatial

rule mining method is discussed and the results are obtained for
various values of confidence measures using tsunami dataset.
While fixing the confidence value, the generated rules are calcu-

lated based on the topological measures. Here, the values of
topological measures are changed from 33.3% to 33.6%.When
the number of confidence value is fixed as 0.24, the number of

rules obtained in the proposed method is 302. Then for the
same confidence value, the generated rule is altered based on
the topological measures. When the topological measure is

changing from 33.4% to 33.5%, the number of rule generation
is reducing from 157 to 84. For the confidence value 0.22, the
proposed method does not generate any kind of rules.
From the Fig. 5(a), we can conclude, the numbers of generated

rules are increased based on the various topological
measures.



  
(a) Rules mined for tsunami data (b) Rules mined for concord data 

Figure 4 Spatial rules mined from input data using various support measure.
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Fig. 5(b) shows the mining of spatial rules for concord
dataset using various confidence measures. Here, the numbers

of generated rules are maintained constantly for all of the
topological measures. Here, thresholds are varied from 0.2 to
0.25 and the results are analyzed with five different confidence
thresholds. Here, the more numbers of rules are generated for

the confidence value 0.2. Then further increasing the confi-
dence threshold as 0.21, the number of confidence rules is gen-
erated as 176. Again the confidence threshold is increased to

0.22, 13 numbers of rules are generated for the corresponding
topological measures. Here, the numbers of rules is indepen-
dent of the topological measures. The topological measure-

ment values can be changed from 15% to 17%. The number
of generated rule in the proposed method is reduced based
on the increasing value of confidence measures. The less num-

ber of rules is generated based on the following confidence
measure such as 0.22, 0.24 and 0.25. From the figure, we prove
that the proposed method maintained constant rules based on
the topological measures.

5.3.3. Spatial rules mined from input data using various
incremental percentages

This section shows the performance analysis of spatial rule
mining based on the various incremental percentages. Fig. 6
(a) shows the mining of spatial data which are collected from
the tsunami dataset, in which the mining process is carried

out based on the various incremental percentages and the
changes of topological measures. Here, some of the incremen-
tal percentages do not generate the number of rules. From the

figure, we can say, while changing the percentage value as 70,
there are no rules generated. Further increasing the percentage
as 80, the number rules are generated as 114. While fixing the

percentage value as 50, the proposed method generated the 114
 
(a) Rules mined for tsunami data

Figure 5 Spatial rules mined from input d
for 33.4% of topological measure. Further increasing the topo-
logical measure as 33.6%, the generated rules are reduced as

84%. Again increasing the topological measure from 33.65
to 33.8%, the generated rules are maintained constantly.
Finally, the rule generation becomes zero for the topological
measurement value of 35%.

Fig. 6(b) shows the performance analysis of the proposed
spatial rule mining method for concord data using various
incremental percentages. Here, various number of percentage

values generate the various number of spatial rules. Here, five
percentage thresholds are considered for mining spatial rules
for concord dataset. While increasing the topological mea-

sures, the numbers of generated rules are getting reduced lin-
early. For the percentage value of 50, the proposed method
obtained 508 spatial rules, which is analyzed based on the

topological measures. For the same percentage value 50, the
generated spatial rules are changed like 508 to 216 based on
the topological measures. Again the numbers of generated
rules are reduced from 216 to 28, based on the corresponding

topological measure of 22%. When the number of percentage
measure is fixed as 90%, the proposed method obtained 461
rules. Then, the generated rules are changed based on the topo-

logical measures in the range of 17% to 23%. From the Fig. 6
(b) we can prove that, the number of rules generated in the
proposed method reduced based on the topological measures.

5.4. Performance analysis of spatial clustering

The analysis of the proposed MKPC spatial data clustering

method performed on the static database is discussed here.
The performance of proposed MKPC is compared with
Probabilistic clustering (PC) (Ben-Israel and Iyigun, 2008),
K-medoid clustering (Pilevar and Sukumar, 2005) and grid
 
(b) Rules mined for concord data 

ata using various confidence measures.



(a) Rules mined for tsunami data (b) Rules mined for concord data 

Figure 6 Spatial rules mined from input data using various incremental percentages.

(a) Accuracy for Tsunami data (b) Accuracy for Concord data

 
(c) Accuracy for landareas data 

Figure 7 Clustering accuracy of three input datasets.
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clustering (Zhang and Couloigner, 2005). Here, three input
data such as, tsunamis, landareas and concord are given as
input to the proposed method and the results obtained are

plotted in Fig. 7a, 7.b and 7.c respectively. The experimenta-
tion is conducted 10 times for the random centroids and the
Table 7 Statistical analysis of clustering accuracy on three datasets

Tsunam

PC Mean 53.70

Variance 213.63

MKPC Mean 66.66

Variance 0

K-medoid Mean 61.35

Variance 28.89

Grid Mean 57.92

Variance 134.08
average performance is taken for comparison. From Fig. 7a,
the proposed MKPC method obtained 66.6% while the
65.1% are obtained by the PC method when the number of

cluster is three. For the same input number of cluster, K-
medoid and grid clustering methods obtained the accuracy of
56.7%. When we increase the number of clusters, the proposed

method shows the same accuracy value. From Fig. 7b, for con-
cord data, we obtain the accuracy of 72.1% and 46.2% for the
proposed and existing methods when we fix the number of
cluster as three. Here, the existing K-medoid and grid cluster-

ing obtained the accuracy of 56.7%. From Fig. 7c, for landar-
eas data, we obtain the accuracy of 100% and 100% for the
proposed and existing methods when we fix the number of

cluster as two. For the same number of clusters, the
K-medoid and grid clustering methods obtained the accuracy
of 68% and 67% respectively. From Fig. 7, we prove that

the proposed MKPC algorithm provided better accuracy as
compared with Probabilistic clustering (PC).

Table 7 shows the statistical analysis of clustering accuracy

on three datasets. In Table 7 and 8, bold indicates the better
performance. From the table, we understand that the proposed
MKPC clustering outperformed the existing algorithms in
Tsunami and Concord datasets in terms of mean and variance.

The average performance of the proposed MKPC in terms of
clustering accuracy is 66.66% which is high compared with the
existing PC, K-medoid and grid clustering. Also, the variance

of the proposed MKPC is less as compared with other cluster-
ing algorithm. This ensured that the proposed algorithm does
not have much change on the performance even though the

centroids are initialized randomly. The performance compar-
ison of the concord dataset shows that the proposed MKPC
clustering obtained the 64.4% which is higher as compared
with other clustering algorithms. While analyzing the
.

i Concord Landareas

50.65 88.08

458.55 556.47

64.40 83.14

86.86 531.13

61.35 61.35

28.89 28.89

57.92 57.92

134.08 134.08



Table 8 Pair-wise statistical test of algorithms on clustering

accuracy.

PC MKPC K-medoid Grid

PC – 1 1 1

MKPC 1 – 0.025 0.025

K-medoid 1 0.025 – 0.1

Grid 1 0.025 0.1 –
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performance of landareas data, the PC shows good perfor-
mance in terms of mean value and K-medoid shows the better

performance in terms of variance. Overall, the proposed
MKPC outperformed in two datasets in terms of mean and
variance.

Pair-wise statistical tests (p-test) is widely applied for statis-
tical validation. The advantages of the p-test are that it tests all
pair wise differences, is simple to compute, and reduces the

probability of making a Type I error. It is also robust with
respect to unequal group sample sizes. Pair-wise statistical tests
are conducted here to evaluate the algorithmic performance by
combining different algorithms. Here, statistical test is con-

ducted on the clustering accuracy values by combining two dif-
ferent algorithms. Table 8 shows the p values of different
combinations of algorithms. For the hypothesis testing, p

value should be less than 0.1. From the table, we understand
that the hybrid model rejects null hypothesis in most of the
combinations by reaching the value of 0.025. The table again

shows that the statistical test almost always returns lower p
values for the proposed hybrid model than for other algo-
rithms and more often rejects the null hypothesis. Overall, it
is known that the proposed hybrid model is more likely to

reject the null hypothesis.

6. Conclusion

In this paper, we proposed the incremental topological associ-
ation rule mining of geographical datasets using probabilistic
approach. Here, topological relations, such as nearby, disjoint,

intersect, inside and outside were considered in the probability-
based incremental association rule discovery algorithm, which
utilized the probability threshold and relationship threshold to

filter the spatial rules. In addition, the mining of the topolog-
ical spatial association rules is dynamically processed using the
probabilistic approach. Finally, the mined topological spatial

rules were used for spatial data clustering. For the experimen-
tation, three datasets, such as tsunami, landareas and concord
data are utilized and the performance analysis of the proposed
method is performed based on the various measures, such as

support, confidence and incremental percentage. Also, the spa-
tial clustering proved that the accuracy of the proposed
method is 66.66%, 64.40% and 83.14% on tsunami, concord

and landareas datasets respectively.
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