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Abstract The search time and significant loss in compression are the significant constraints of the

traditional fractal image compression. Hence the contemporary research contributions are aimed to

discover optimal solutions to speed up the search speed with minimal loss of image significance at

compression. Majority of the existing contributions achieve the search speed at the cost of decoded

image quality and vice versa. In regard to this, we proposed a cuckoo inspired fast search (CIFS)

technique for fractal image compression. Unlike the many of traditional models, which depend on 3

level wavelet classification, this proposed CIFS is using ordered vector of range blocks by their sim-

ilarity and ordered vector of range blocks by their coordinate distance. The experimental study

evinced that the proposed model is scalable and robust compared to PSO and GA based models

found in contemporary literature. The significant reduction in mean square error calculations is also

observed, since the only four transformations of the dihedral group are sufficient to compare for

similarity here in this proposed CIFS.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Fractal Image compression, which delivers a high ratio of
compression and max quality at decomposing is one of the sig-
nificant concepts that grabbed attention of research commu-

nity since its origin in 1987. The high encoding time due to
the complex search in identifying the similar blocks in given
image is the significant constraint of the traditional fractal

image compression, which has the iterated function system
(Barnsley and Sloan, 1990) as backbone of the fractal image
compression. Hence the decreasing encoding time in fractal

image compression is the significant objective for many
researchers. In order to do this, divergent techniques were con-
tributed (Wu and Lin, 2010; Wang et al., 2010; Wang and

Wang, 2008; Chao et al., 2007; Iano et al., 2006; Cardinal,
2001; Ismail et al., 2015).

The increase in general computing abilities of processors,
the bio inspired evolutionary and artificial intelligence

based solutions are considered in applications with high com-
putations. In this context many of contributions found in
contemporary literature were using evolutionary computation
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techniques such as genetic algorithm, fuzzy logic and Particle
swarm optimization to speed up the fractal image encoding.

This paper explores a cuckoo inspired fast search technique

for fractal image encoding. The objective of this work is to
limit the search iterations to determine the optimal domain
block for a given range block and also concentrate to reduce

the mean square error computations. Unlike many of the tra-
ditional models, which are grouping the domain blocks into
three classes based on their third level wavelength similarities,

the proposed model is relying only on two range block vectors.
First one is ordering the range blocks based on their similari-
ties and other is ordering the range blocks by their coordinate
distances. The proposed search strategy influenced by cuckoo

search successfully limits the maximum number of search iter-
ations to 6, hence reducing the overall count of mean square
error computations and search time phenomenally.

The rest of the contents are organized as follows, Section 2
presents the similar contributions found in contemporary liter-
ature. Section 3 explores the detailed description and approach

of the proposed model. Section 4 contains the description of
experimental study and performance analysis then followed
by Section 5 concluding the contributions of the work.

2. Review of related work

Wang et al. (2010) proposed a hybrid selection strategy based

genetic algorithm. The optimal domain selection from two
bands is evinced in hybrid select mechanism that delivered
the reduction of computational time hence the encoding time
reduction evinced. Wang et al. (2010), Wang and Wang

(2008) devised an encoding method for fractal images based
on modified gray level transform instead the search. In order
to improve the PSNR of resultant decoded image, this model

is adapting the fitting plane (Wang et al., 2010). The objective
of the model devised in Wang et al. (2010) is achieving PSNR
stability at lower and higher bits per pixel (bpp), which is

achieved. Chao et al. (2007) proposed a novel search strategy
that searches dissimilar domain blocks instead of similar
domain block for a given range block. Iano et al. (2006) pro-

posed a non-iterative approach, which is based on Fisher’s
domain classification for fractal coding. This approach uses
the modified set partitioning hierarchical trees coding.

An efficient classification technique based on average and

mean of pixel intensities was proposed by Jacobs et al.
(1992) with a fractal image encoding technique that classifies
the domain blocks based on average of pixel intensities. A sim-

ilar model was devised by Wang (2010a) that uses entropy fea-
ture set to group the domain blocks as different classes. The
graph based image segmentation by image content was

adapted in Wang (2010b), which prepares the search space
with partitions of the given input image and adaptive threshold
quad-tree approach also devised to speed up the image encod-
ing process. Kung et al. (2008) classifying the domain blocks

into 4 classes of edges by the features extracted using one
dimensional DCT. The similarity check was done using struc-
ture similarity index measurement (SSIM) instead mean square

error (MSE), which is in the aim of reducing computational
complexity. Chen et al. (2010) adapted domain block elimina-
tion strategy that discards the strictly irrelevant domain blocks

at range block usage initiated. This model performs domain
and range block similarity check using normalization instead
of MSE and SSIM. Palazzari et al. (1999) proposed a hardware
dependent fast encoding approach for fractal images. This
model divides the given image into blocks and initiates sequen-

tial process on each block by an individual processor. The con-
straint of this approach is resource complexity, since a
processor works only with related range blocks of the domain

block allocated for sequential process. Another no search
based fractal encoding approach is devised in Furao and
Hasegawa (2004), which is similar to the models noticed in

Wang et al. (2010), Wang and Wang (2008).
Zhang and Wang (2012) proposed a diamond search

approach that uses wavelet transformation for domain block
classification. A parallel search process using GPU (Graphics

Processing Unit) was adapted for fractal image compression
in Haque et al. (2014). The significant reduction in encoding
time due to parallel search was observed in experimental study.

Another GPU based parallel search model was proposed in
Chauhan et al. (2012). This approach uses GPU cluster that
divides given set of domain blocks into slave machines and

triggers the range blocks for compatibility check to these slave
machines in pipelined manner. This ends for range block if
matching domain block is found, this process is iterative and

iterates till all range blocks find the matching domain block,
Wang and Zheng (2013) proposed a classification strategy that
classifies domain blocks using absolute Pearson correlation
coefficient in order to restrict the search to a specific class.

The existing contributions found in contemporary litera-
ture, which are briefed in the above discussion are centric to
improvise the domain classification and (or) parallel process.

None of the models are evincing any contribution to redefine
the search process. In order to minimize the search iterations
Lin and Chen (2012) proposed a PSO based search optimiza-

tion with third level wavelet classification. This model is classi-
fying the domain blocks into 3 classes, which is based on
HAAR wavelet transformation. Further search is performed

using Particle Swarm Optimization Technique on specific rele-
vant class of the domain blocks. A novel dihedral group for-
mation strategy is also adapted that limits the compatibility
check of range block to 4 images of the domain block, hence

the mean square error calculations are also reduced to half
of the actual computations required. Similarly the search opti-
mization was done using rank selection mechanism based

genetic evolutions in Kulkarni (2015). These models achieved
177 times and 150 times reduction in search iterations and
78% and 66% reduction in mse calculations respectively.

Though the use of PSO and GA with Rank Selection Mecha-
nism claimed significance performance, but evinces that search
reduction is probabilistic and is dependent on the selection of
domain block to initiate the search. Since the search under GA

and PSO is usually initiated at random domain block, which
could be directed to least optimistic search path.

In contrast to these models, our proposal is cuckoo inspired

search, which is with a specific number of search iterations as
compared to traditional cuckoo search (Yang and Deb, 2009)
with maximum iterations of 15. Our search model is limited to

1–6 search iterations where 1 in best case and 6 in worst case.
The existing models are classifying the domain blocks but the
proposed model is ordering the range block by their similarity

and coordinate distance, this finds minimal mse computations
with 96% reduction and search iterations reduced by 224 times
when compared with full search.
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3. Fractal image encoding by cuckoo inspired fast search

Fractal image compression performs the encoding by the fol-
lowing two properties

(1) Property of local self-similarity property.
(2) Partitioned Iterative Function System.

The exploration of the traditional fractal image compres-
sion under these properties is explained with an example in
Section 3.1.

3.1. Fractal image compression

Let f be the given gray scale image of square with length and

breadth as m (let say m is 128), Then partition the image into
square blocks of size h � h (in this example h is 8), which are
referred as domain blocks. The total number of overlapping

domain blocks from the given image f is 14,661 (which can

be estimated as ðm� hþ 1Þ2). Partition the given image into
non-overlapping blocks called range blocks of size n (here in
this example n is 4) such that 2 � n= h. The total number

of range blocks of given image f is 1024 (which can be esti-
mated by (m/n)2) blocks. In order to find the fractal transfor-
mation of each range block rb, the most compatible domain
block db will be traced from the pool of domain blocks, the

compatibility check of a range block and domain block
demands the size of both blocks be same, hence the all domain
blocks will be reduced to the size n � n.

Danahy et al. (2007) devised a technique called logical
transformation based image resizing, which is used here in this
contribution to resize the domain blocks to the size reflected by

range blocks. The description of the model called logical trans-
formation that adapted to resize the domain blocks into the
size of range blocks follows.

The logical system transform converts binary data into a
sum of primary implicates representation. The logical
transform, is useful for quickly determining the Boolean
minimized form (vector y) from an input signal. Unlike other

common transforms, the inverse operation of the logical
transform is not a mirror image of the forward transform.
Instead, the original binary data are generated from the

sum of primary implicates through a process called implicate
expansion.

In order to do this the search for compatible domain block

visits all domain blocks available. The mean square error (mse)
observed between a range block rb and a domain block db are
used to estimate their similarity. Less mse indicates the more

similarity between the given blocks. The mean square error
between rb and db can be calculated by using Eq. (1).

msedb!rb ¼ 1

n� n

XjDGj

dgi¼1

ðdbdgi � rbdgiÞ2 ð1Þ

Here in the Eq. (1), n � n is the size of the range block, dgi
is the index of the image in dihedral group, |DG| is the size of
the dihedral group (which is 8), dbdgi is the dihedral group

image of the domain block db at index dgi and rbdgi is the dihe-
dral group image of the range block at index dgi.

In order to check the fractal similarity between domain and
range blocks, the dihedral group (of 8 orientations) of images
will be formed from the domain block. The dihedral group
contains 8 orientations and they are

(1) Original domain block.
(2) Domain block db flipped horizontally (in 900) that forms

dbh.

(3) Domain block db flipped vertically (1800) that forms dbv.
(4) Domain block db flipped horizontally and vertically

(2700)that forms dbhv.

(5) Domain block db flipped on diagonal line (x = y) that
forms dbd.

(6) Diagonally flipped domain block dbd flipped again hor-
izontally (in 900) that forms dbdh.

(7) Diagonally flipped domain block dbd flipped again verti-
cally (in 1800) that forms dbdv.

(8) Diagonally flipped domain block dbd flipped again hor-

izontally and vertically (in 2700) that forms dbdhv.

Hence the total number of domain block images to be com-

pared to range block in order to find the compatibility are
(m � h + 1)2 � 8 (results 117128 for given example). Here 8
indicates the total number of images in the dihedral group of

each domain block and (m � h + 1)2 indicates the total num-
ber of domain blocks. This confirms that the total number of
mse calculations required for each range block for the given
example is 117128 and total number of mse calculations for

encoding the given image f is 119939072 (which is estimated
as 117128 � 1024). Hence it is clear that search for a compat-
ible domain block for given range block is computationally

complex that further escalates the process complexity of fractal
encoding.

3.2. Cuckoo search

Cuckoo search is a search technique stimulated by the
holoparasite act of some cuckoo birds. The species of type

cuckoo is unable to complete its reproduction cycle without
proper host (nest of the other type of birds that contains eggs
resemble to cuckoo bird egg). The Cuckoo bird places its egg
(s) in the nest of host. The strategy of search followed by a

cuckoo bird is adapted in numerous fields (Qin et al., 2014;
Mohapatra et al., 2015; Sun et al., 2016). Cuckoo search exe-
cutes under three traditional rules (Yang and Deb, 2010) and

they are

(i) Cuckoo selects a host nest randomly to place the egg.

(ii) The nest contains most compatible eggs that compared
to cuckoo egg enables the reproduction of the cuckoo.

(iii) The finite number nests (usually the 15) Yang and Deb,
2009 are adapted for cuckoo search.

The probability factor to notify the cuckoo egg as artifact
by a host bird is fPðaÞ9a 2 ð0; 1Þg. In order to optimize the ini-

tial nest of the search, search follows the techniques such as
Levy flights and random walks (Yang and Deb, 2009).

3.3. Nest formation

Each nest is representing a domain block db such that dihedral
transformations of that block as eggs. The fractal transforma-

tion allows the eight Dihedral transformations (which are



Cuckoo inspired fast search algorithm for fractal image encoding 465
considered as the eggs placed in the nest represented by respec-
tive domain block db) as shown in Table 1.The index {h, v, hv,
dh, dv, dhv} represents the respective dihedral transformation

of the domain block db. The transformation of the db can be
as flip the db along horizontal dbh, vertical dbv and both hori-
zontal and vertical dbhv, further flip the db on main diagonal

line as dbd then flip dbd horizontal dbdh, vertical dbdv and both
horizontal and vertical dbdhv. In order to transform the domain
block, the center of the domain block is considered as coordi-

nate origin. The final group of dihedral transformations of
domain block db is {‘‘domain block (db)”, ‘‘horizontal flip
(dbh) ”, ‘‘vertical flip (dbv)”, ‘‘horizontal and vertical flip (dbhv)-
”, ‘‘diagonal flip (dbd)”, ‘‘diagonal and horizontal flip (dbdh)”,

‘‘diagonal and vertical flip (dbdv)”, ‘‘diagonal, horizontal and
vertical flip (dbdhv)”} ðfdb; dbh; dbv; dbhv; dbd; dbdh; dbdv; dbdhvgÞ.

3.4. Nest search

The nest search is redefined such that the search limited to
fixed number of nests. In order to this, the levy flights (Yang

and Deb, 2009) technique is adopted. The metrics used in this
levy flight technique to initiate the search are:

Ordered range blocks by the dihedral transform similarity

(i) Order the range blocks by their pixel coordinates dis-
tance appearing in original image, which enables each
range block to begin the search for compatible nest from

the nests of those fixed for its neighbor range block.
(ii) Order the range blocks by their pixel coordinates dis-

tance appearing in original image that initiates search

from the nest fixed for the neighbor nest under coordi-
nate distance, if compatible nest is not found under first
levy factor.

Hence the range blocks will be order in two dimensions
called (i) by their similarity and (ii) by their coordinate dis-

tance. Here, the center of the each range block is considered
as coordinate

3.4.1. Ordering of the range blocks

In order to simplify the search for appropriate domain block
for each range block, the range blocks will be ordered by their
similarity. In regard to this each range block follows the other
range block that contains minimal Mean Square Error. This

practice helps to identify the compatible domain block by
one iteration of search under the transitive property
(Bianchi, 2000), which is as follows.

If ðmsedb!rbi � 0Þ ^ ðmserbi!rbiþ1
� 0Þ then msedb!rbiþ1

� 0 ð2Þ
Table 1 Fractal transformations of the dihedral group.
Here in the Eq. (2), msedb!rbi is the mean square error of the

domain block db and range block rbi exists at ith range block
of the range blocks ordered by their similarity. Similarly
mserbi!rbiþ1

is the mean square error of the range blocks rbi
and rbi+1 exists in sequence of positions i and i+ 1 in range

blocks ordered by their similarity.
If mserbi!rbiþ1

–0, then search continues on other factor of

the levy flights .In order to this, the range blocks will be
ordered such that range block rbi is followed by other range

block rbi+1, if the distance between rbi and rbiþ! is minimal
than the distance between rbi and other range block. This fac-
tor enables to initiate search at a nest represented by a domain

block db that contains the coordinate of the range block, fur-
ther the search can limit to the nest represented by db and its
neighbor nests (Je and Park, 2013).Nests concerned to the

domain blocks of top, bottom, left and right represents the
top, bottom, left and right portions in image. Hence the overall
nest search is limited to (66).

Further the nest compatibility check will be performed,

which is as follows:
The respective domain block of the nest selected for com-

patibility check, all of the eight Dihedral transformations are

performed and the best Dihedral index along with correspond-
ing contrast offset c, brightness offset b, and MSEs respective
to the range block involved in search process can be obtained.

If any of the MSEs is found to be nullified, then the search will
be stopped and range block placed in the nest obtained, else
continues search under the factors considered for levy flights.
The offsets of contrast c, brightness b can be computed as

follows.

c ¼ n2hdbo; rbi � hdbo; vihrb; vi
n2hdbo; dboi � hdbo; vi ; b ¼ hrb; vi � chdbo; vi

Prb

ð3Þ

Here in this equation Eq. (3) Prb represents the total num-
ber of pixels found in range block and v is the 8 � 8 matrix,
such that 1 is the value of all entries, and h. .i is the scalar pro-
duct of the matrices (multiple vectors) that accentuating the
geometric significance. The sub-sampled domain block that is
denoted by dbo, the o represents the index

fdb; dbh; dbv; dbhv; dbd; dbdh; dbdv; dbdhvg of optimal dihedral
group image of db.

The search criterion of levy factors limits the compatibility

check to specific number of nests, which is at most to 6 itera-
tions. Nest nbn is fixed for neighbor block under similarity;
nest nebn represented by domain block contains the coordinate
of the input range block or the nests represented by the neigh-

bor domain blocks (64) of the domain block representing
nebn. The MSE calculation is also limited to four dihedral
images, which are shown in Table 2.

4. Experimental study and performance analysis

Execution of proposed algorithm is carried out on Core i5-

5200U; 4 GB RAM 1 TB Hard-Disk, 2 GB Graphics with
Windows 10. The implementation of proposed method is car-
ried out on NVIDIA Ge Force GTX 480 GPU Using CUDA

language. Experimental results are carried out on 3 standard
test images.

The similarity check between each range block and all 8

dihedral transformations of domain block given in Table 2
should be performed in order to find the domain block that



Table 2 Relations observed between F[10] and F½0 1� at dihedral transformation.

db dbh dbv dbhv dbd dbdh dbdv dbdhv

Third level high and low frequency bands ðHL3Þ Fþ½1 0� Fþ½1 0� F�½1 0� F�½1 0� Fþ½0 1� Fþ½0 1� F�½0 1� F�½0 1�
Third level low and low frequency bands ðLL3Þ Fþ½0 1� F�½0 1� Fþ½0 1� F�½0 1� Fþ½1 0� F�½1 0� Fþ½1 0� F�½1 0�

Table 3 Input factors obtained from

given image.

M (image size) 256

N (Range block size) 8

R (Number of range blocks 1024

D (Number of domain blocks) 58081
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reflects optimal similarity with given range block. The results
F[1 0] and F½0 1� of Dihedral transformations explored Table 2,

which are indicating that F�½1 0� and F�½0 1� are the same. Hence

the mse calculations can be reduced to 4 that optimizes the
encoding time.

The edge directions represented by dihedral transformation

set {db, dbh, dbv, dbhv} and {dbd, dbdh, dbdv, dbdhv} are identical,
which is due to the similarity between jF½1 0�j and jF½0 1�j Lin and

Chen, 2012. Hence the mse computations can be limited to 4. If
both db and rb belongs same region then the mse calculation

limits to {db, dbh, dbv, dbhv}, else mse calculations are required
(a) )b(Original Decoded by PSO with 
Wavelet Classification 

Figure 1 The original and decoded Ba

(a) Original (b) Decoded by PSO 
with Wavelet 
Classification 

Figure 2 The original and decoded L
only on {dbd, dbdh, dbdv, dbdhv} (Kulkarni, 2015). Therefore the
mse computations restricted to 4 and total mse calculations are

reduced to the half of the computation count observed in full
search.

4.1. Encoding

Upon discovery of the compatible nest, together with the cor-
responding contrast offset c, brightness offset b, position (x, y)

of the respective domain block db of the nest encountered and
compatible dihedral image
fdbjjdbhjjdbvjjdbhvjjdbdjjdbdhjjdbdvjjdbdhvg of the db constitutes
the fractal code of the given range block rb.

Table 3 shows the input factors obtained from the test
images Barbara, Lena and Pepper all of size (512 � 512).
Figs. 1–3 shows original images Barbara, Lena, Pepper and

their decoded images by CIFS and other benchmarking models
called PSO with Wavelet Classification (Lin and Chen, 2012)
and GA with Ranking Selection Mechanism (Kulkarni, 2015).
(c) Decoded By GA 
with Ranking 
Selection 
Mechanism 

(d) Decoded by 
CIFS 

rbara images of algorithms adapted.

(c) Decoded By GA with 
Ranking Selection 
Mechanism 

(d) Decoded by CIFS 

ena images of algorithms adapted.



(a) Original (b) Decoded by PSO 
with Wavelet 
Classification 

(c) Decoded By GA with 
Ranking Selection 
Mechanism 

(d) Decoded by CIFS 

Figure 3 The original and decoded Pepper images of algorithms adapted.

Table 4 Performance metrics and the results obtained from full search, PSO with wavelet classification (Lin and Chen, 2012), GA

with RSM (Kulkarni, 2015) and CIFS.

Full

search

PSO with wavelet classifier

(Lin and Chen, 2012)

GA with rank selection

mechanism (Kulkarni, 2015)

Cuckoo inspired

fast search

Max number of MSE calculations 475799552 2673031 3171997 2119680

Max search iterations per range block 58081 326 387 258

Search optimization (times of reduction

compared to full search

0 177 150 224

PSNR (in decibels) 28.91 27.404 27.643 28.001

CPU time in sec (C++ program) 1433.281 8.344 9.5552067 6.3701378

GPU time in Sec (CUDA program) 102.37721 0.596 0.6825148 0.4550098

Figure 5 Comparison of PSNR observed for proposed CIFS

Cuckoo inspired fast search algorithm for fractal image encoding 467
The metrics listed in Table 4 were compared for PSO with
wavelet Classifier, GA with RSM and proposed CIFS, which

are evincing the advantage of CIFS over other two models
(Lin and Chen, 2012; Kulkarni, 2015).The maximal number
of search iterations for each range block (in the case of a

non-fractal image) are 326 (which is 177 times less than the
search iterations observed for full search), 387 (which is 150
times less than the full search) and 258 in respective order of

PSO with Wavelet Classification (Lin and Chen, 2012), GA
with RSM (Kulkarni, 2015) and proposed model called CIFS
shown in Fig 4.

Since the compression process is lossy, the decoded image

quality is estimated by Peak Signal Noise Ratio (PSNR),
which is calculated as shown in Eq. (4).
Figure 4 Comparison of Search optimization against full search.

and models adapted from Lin and Chen (2012) and Kulkarni

(2015).
PSNR ¼ 10log10
255� 255

mseoi!di

� �
ð4Þ

Here in the Eq. (4) mseoi?di is the mean square error
observed between original image oi and decoded image di.
The PSNR observed from decoded images are 27.404,

27.643, 28.001 in respective order of models in Lin and Chen
(2012), Kulkarni (2015) and proposed CIFS. These PSNR val-
ues are evincing that the proposed model CIFS out performs

as compared to other two models (Lin and Chen, 2012;
Kulkarni, 2015) (Fig. 5). GA with RSM retains decoded pic-
ture quality compared to PSO with wavelet classification,
whereas PSO with wavelet classification reduces search itera-



Figure 6 Completion time observed on CPU for PSO with

Wavelet Classification, GA with RSM and CIFS.

Figure 7 Completion time observed on GPU for PSO with

Wavelet Classification, GA with RSM and CIFS.
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tions and MSE calculations compared to GA with RSM. The
proposed CIFS is found to be best with minimal search itera-

tions, minimal MSE calculations and maximal PSNR com-
pared to other two models.

The search completion time observed in respective order of

full search, PSO with Wavelet classification, GA with RSM
and proposed CIFS for Central Processing Unit (implemented
by C++) are 1433.281, 8.344, 9.5552067 and 6.3701378s, for

Graphics Processing Unit (GPU) (implemented by CUDA) are
102.37721, 0.596, 0.6825148 and 0.4550098s. The values
observed for the metric called search completion time clearly
evince that CIFS search is much faster compared to other

two models as shown in Figs. 6 and 7

5. Conclusion

This paper devises a cuckoo inspired fast search (CIFS) tech-
nique to accelerate the encoding process of a fractal image.
The CIFS is using vectors of range blocks that are ordered

by their similarity and coordinate distance respectively. The
Cuckoo search is modified such that search performs only on
limited nests (maximum six) and initial nest selection for

search process is done by levy flights strategy. The factors used
for the levy flights strategy are (i) The nest identified for the
predecessor range block of the vector (that ordered by similar-

ity) may be compatible or (ii) The nest represented by the
domain block that contains the coordinates of the range block
or nests represented by its neighbor blocks are compatible. The
overall MSE calculation reduces to 224 times compared to full
search. The completion time under CPU and GPU are also
assessed, which are evincing that CIFS completion time is best
and robust. The performance analysis of the CIFS is done by

comparing with other contributions called PSO with Wavelet
Classification (Lin and Chen, 2012), GA with RSM
(Kulkarni, 2015) found in contemporary literature. The CIFS

has achieved optimal speed (224 times faster than the full
search) compared to PSO with Wavelet Classification (177
times faster than the full search) and GA with RSM (150 times

faster than the full search). The CIFS completion time on CPU
(6.3701378s) and GPU (0.4550098s) is significantly lesser than
the respective completion times on CPU (8.344) and GPU
(0.596) implementation of PSO with Wavelet Classification

and respective completion times on CPU (9.5552067) and
GPU (0.6825148) implementation of GA with RSM. The
PSNR observed for respective decoded images of full search,

PSO with Wavelet Classification, GA with RSM and proposed
CIFS are 28.91, 27.404, 27.643 and 28.001 decibels respec-
tively. These results evince that the PSNR obtained for pro-

posed CIFS is near (with the difference of 0.909) to the
PSNR observed for full search model, which is minimal com-
pared to other two models (Lin and Chen, 2012; Kulkarni,

2015) considered. This work can be extended further to mini-
mize the number of MSE calculations occurred to order the
range blocks by their similarity, which will be the future direc-
tion of our research.
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