
Journal of King Saud University – Computer and Information Sciences 30 (2018) 478–497
Contents lists available at ScienceDirect

Journal of King Saud University –
Computer and Information Sciences

journal homepage: www.sciencedirect .com
An UML profile for representing real-time design patterns
http://dx.doi.org/10.1016/j.jksuci.2017.06.005
1319-1578/� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author at: MIRACL laboratory, University of Sfax, Tunisia.
E-mail addresses: marouane.hela@gmail.com (H. Marouane), claude.duvallet@

univ-lehavre.fr (C. Duvallet), Achraf.Makni@fsegs.rnu.tn (A. Makni), Raf.bouaziz@
fsegs.rnu.tn (R. Bouaziz), bruno.sadeg@univ-lehavre.fr (B. Sadeg).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
Hela Marouane a,b,⇑, Claude Duvallet a, Achraf Makni b, Rafik Bouaziz b, Bruno Sadeg a

a LITIS laboratory, University of Le Havre, France
bMIRACL laboratory, University of Sfax, Tunisia

a r t i c l e i n f o a b s t r a c t
Article history:
Received 15 November 2016
Revised 20 June 2017
Accepted 25 June 2017
Available online 29 June 2017

Keywords:
UML profile
Design patterns
Object Constraint Language
Real-time database
Systems which manipulate important volumes of data need to be managed with Real-Time (RT) data-
bases. These systems are subject to several temporal constraints related to data and to transactions.
Thus, their design remains a complex task. To remedy this complexity, it is necessary to integrate design
methods to support data and transactions temporal constraints. Among the design methods, those based
on patterns have been widely used in several fields. However, despite their advantages, these patterns
present some shortcomings. Indeed, they do not manage efficiently the patterns variability and they
do not specify the pattern elements when they are instantiated. To overcome these limitations, we pro-
pose, in this paper, a new UML profile to (i) express the variability in patterns and (ii) to identify the pat-
tern elements in its instance. Besides, in order to well-capture the knowledge of the domain, the proposed
profile extends UML with concepts related to real-time databases and integrates OCL (Object Constraint
Language) to enforce the variation points consistency. Finally, we give an example of a RT pattern that
illustrates these UML extensions, where we implement the proposed profile and we validate the pattern
diagrams using the constraints we have proposed.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recently, many Real-Time (RT) systems (e.g. driver assistance
systems and control traffic systems) need to store large amounts
of data and to process them in order to operate efficiently. There-
fore, an RT database should be used. This database must have not
only have the same features of conventional databases (e.g., effi-
cient management of accesses to structured data), but requires also
efficient management of data and transactions timing constraints
(Ramamritham, 1993). The design methods already proposed for
traditional databases cannot be directly applied to model RT data-
base applications since there is no mechanism to deal with the rep-
resentation of time constraints. Besides, RT database applications
become more complex, leading to an extensive conceptual descrip-
tion and to a prohibitive complexity from the practical point of
view. Therefore, the design of these applications is a hard process
which requires the development of new design methods to support
both data structures and the dynamic behavior of RT applications,
based on RT databases. In order to successfully design such appli-
cations, we believe that a powerful design method (e.g. design pat-
terns (Gamma et al., 1995)) may improve the quality of
development process.

The design patterns are reusable abstract design elements that
can reduce the difficulty of systems modeling. These patterns pre-
sent mechanisms which successfully capture and promote best
practices in the software design. However, despite the benefits of
design patterns, the designer may spend a lot of time to under-
stand and to instantiate them. Thus, many researchers proposed
several notations in order to facilitate the specification of the pat-
terns and the documentation of their instances. These notations
facilitate the understanding of complex concepts. There exist in
the litterature different notations for documenting the patterns.
For instance, we can mention the natural languages, which are
imprecise and too ambigus, and the visual languages (e.g. the Uni-
fied Modeling Language (UML)). UML language is a standard
object-oriented modeling language for general-purpose software.
It is a commonly used language for visualizing, specifying and
cumenting artifacts of systems by providing a precise semantics
of its concepts (Rumbaugh et al., 1999). It provides a set of graph-
ical notations to capture different aspects of the developed system.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2017.06.005&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jksuci.2017.06.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:marouane.hela@gmail.com
mailto:claude.duvallet@univ-lehavre.fr
mailto:claude.duvallet@univ-lehavre.fr
mailto:Achraf.Makni@fsegs.rnu.tn
mailto:Raf.bouaziz@fsegs.rnu.tn
mailto:Raf.bouaziz@fsegs.rnu.tn
mailto:bruno.sadeg@univ-lehavre.fr
http://dx.doi.org/10.1016/j.jksuci.2017.06.005
http://www.sciencedirect.com/science/journal/13191578
http://www.sciencedirect.com


H. Marouane et al. / Journal of King Saud University – Computer and Information Sciences 30 (2018) 478–497 479
Among the benefits, these notations (such as diagrams and icons)
bring are (i) enhancing the communication between designers
(facilitating communication between all participants in the devel-
opment process), (ii) making easier the understanding of concepts
and models. Indeed, it is easier to learn the means to draw dia-
grams than how to write text, because the formers are more signif-
icant and more concrete than text written. Finally, these notations
can help people to grasp a lot of information more quickly than
written text.

Despite their benefits, graphical notations have some shortcom-
ings. Indeed, they lack clarity and expressive power. In addition,
they are sometimes imprecise and ambiguous since they do not
offer a well-defined semantics for different UML concepts. For
example, UML parameterized collaborations are too limited (they
do not explain precisely how to specify patterns with their usage
(Sunyé et al., 2000)). Furthermore, in the instantiation level, the
graphical notations do not identify accurately the pattern elements
and their roles in the pattern. Moreover, the notations are not
expressive enough to model specific domains. Indeed, in a particu-
lar domain design, UML should take into account the domain speci-
ficities. For instance, if we consider RT databases applications, we
find that these applications are complex and they have several
details that should be considered by the UML notations. They must
specify RT database features, such as the time-constrained data
and transactions. To overcome the shortcomings of the graphical
notations, UML defines a new package, named Profile, to extend
its syntax and its semantics. This profile provides three extension
mechanisms with specific names in order to annotate UML dia-
grams with quantitative information:

� �stereotype-name�: a stereotype which allows the definition
of extensions to the UML vocabulary. It is possible to associate a
tagged value and constraints to a stereotype.

� A tagged value: which is an attribute associated to a modeling
element in order to extend its properties with a certain kind
of details.

� A constraint: which is a semantic restriction added to a model
element. Usually, constraints are written in OCL (OMG, 2003).

The definition of a profile is very important as it allows adding
semantics as well as constraints to UML concepts (e.g., classes,
attributes and lifelines). Besides, it provides new vocabulary for a
particular domain by giving specific notations related to it. Thus,
we define, in this paper, a new profile, which represents a special-
ized variant of the UML 2.1.2. This profile provides UML extensions
to support RT database requirements. In addition, it aims at
extending UML with concepts in accordance with design patterns
representation. The development of this profile has three
motivations:

1. It represents the RT database applications concepts. A RT data-
base has two main features: the notions of (i) data temporal
consistency and (ii) the transactions RT constraints
(Ramamritham and Pu, 1995). Some of its data must not only
be logically consistent, but also temporally consistent, i.e. a data
must be used during its validity interval and two correlated
data must be used within their relative validity interval (a cer-
tain temporal window). RT data are classified into: (i) sensor
data collected from sensors, and (ii) derived data calculated
using the sensor data (Amirijoo et al., 2006). RT data are
updated through update transactions which can be executed
either periodically (to update sensor data) or sporadically (to
update derived data). Therefore, we can deduce that RT data-
bases have their own specificities. Thus, their design need to
have appropriate concepts in order to consider factors, such as
sensor data, derived data, the quality of data management, tem-
poral semantics of transactions and concurrency control mech-
anisms in order to meet the timing constraints of RT
applications (Idoudi et al., 2008). For this reason, in our work,
we define UML extensions to take into account all these
concepts.

2. It represents the patterns at the specification level. At this level,
our profile is beneficial, as: (i) it offers flexible patterns that
allow distinguishing between the fundamental elements and
the variable elements, and (ii) it facilitates the comprehension
of patterns instantiation.
It expresses the patterns at the instantiation level. At this level,
our profile has two advantages: (i) it ensures the traceability of
patterns elements since it identifies clearly the elements
belonging to each pattern, and (ii) it avoids ambiguity when
composing patterns by identifying the role played by each pat-
tern element.

Moreover, the proposed profile includes OCL constraints that
ensure the design patterns diagrams consistency and correctness,
i.e. the diagram respects all constraints, specified by the
designer. In this paper, we focus on the intra-diagram consis-
tency (for a given UML diagram, we check the consistency
between its elements). For this end, we propose OCL constraints
to deal with the dependence of variable elements in each pattern
diagram.

Furthermore, we evaluate the proposed profile based on some
criteria and we compare it with other existing profiles. Besides,
we illustrate our profile through a RT design pattern defined in
Marouane et al. (2012). We also implement the proposed profile
using MagicDraw UML tool and we incorporate it into the design
pattern diagrams and their instances. After that, we verify if the
elements of these diagrams are in accordance with the OCL
constraints.

The remainder of this paper is organized as follows. Section 2
overviews recent proposed UML profiles. Section 3 describes our
UML profile. This section defines also a set of well-formed rules
written in OCL in order to verify the patterns consistency and
correctness. Section 4 describes the case study methodology
that shows how we have organized and conducted our research.
Section 5 illustrates the profile, using a RT sensing pattern
defined in Marouane et al. (2012). It gives also two examples
of system models instantiating the pattern. Section 6 depicts
the implementation of the proposed profile and the verification
of the OCL rules on the UML diagrams of the pattern. In Sec-
tion 7, we give some concluding remarks and outline future
work.

2. Related work

2.1. UML Profiles for patterns representation

Several UML profiles have been proposed in the literature to
represent design patterns. They can be classified into three cate-
gories. The first one reveals design patterns at the specification
level (e.g., the profile proposed in Arnaud et al. (2008)). The second
category proposes extensions to show patterns at the instantiation
level (e.g., the profiles proposed in Dong et al. (2007) and Loo et al.
(2012)). In the third category, the extensions are proposed to pre-
sent patterns at both the two previously-mentioned levels (e.g., the
profiles proposed in Reinhartz-Berger and Sturm (2009) and Rekhis
et al. (2010)). These UML profiles are evaluated according to a set
of criteria for patterns specification (Table 1) and patterns instan-
tiation (Table 2). The criteria used are those defined in Rekhis
et al. (2010) (variability, consistency, expressivity, composition
and traceability), together with the completeness of the patterns
solution.



Table 1
Criteria for the representation of patterns at the specification level.

Criteria for patterns
specification

Signification

Variability Variability in a model is the representation of UML
elements that can differ from one system to another.
Indeed, variability is classified into optional and
alternative features. Thus, it is necessary to show the
optional elements which can be omitted in a pattern
instance according to the context.

Consistency The introduction of variability using extensions can
generate some inconsistencies (e.g., if a fundamental
actor is associated to an optional use case, then the
resulting model is incoherent). Then, some rules need
to be specified to ensure the pattern correctness and
consistency. These rules are generally expressed in
OCL. Therefore, the correct patterns instantiation
depends on whether or not the defined rules inherent
to the variability consistency are respected.

Expressivity In order to have more flexible and understandable
patterns, it is necessary to define expressive visual
notations based on UML. It is also essential to
differentiate between the notations used for pattern
specification and those employed for pattern
instantiation in order to improve the expressivity of
design languages.

Completeness A pattern solution is complete if the proposed
solution contains the functional, the structural and
the behavioral views. It is important to note that
completeness of a pattern is a key factor for
understanding the context of the pattern use. In
addition, the completeness criterion guarantees that
all the required information is present. So, we
propose to present the pattern solution as a mini-
system composed of the functional view (a UML use
case diagram), the structural view (a UML class
diagram) and the behavioral view (a UML sequence
diagram). Thus, it is necessary to define UML
extensions for each diagram.

Table 2
Criteria for patterns representation at the instantiation level.

Criteria for patterns
instantiation

Signification

Traceability This criterion consists of easily identifying the
pattern elements in a model instantiation of the
pattern. Explicit representation of the key pattern
elements can assist the traceability of the pattern,
because it allows tracing back the pattern from a
complex model (Bouassida et al., 2006).

Composition A pattern may be composed or integrated with other
patterns to resolve design problems in a software
design. Therefore, if different patterns are combined
in a model, UML extensions must clearly differentiate
the elements belonging to each design pattern. This is
mainly important when there are overlapping
elements between the composed patterns.

480 H. Marouane et al. / Journal of King Saud University – Computer and Information Sciences 30 (2018) 478–497
2.1.1. UML Profiles for patterns specification
Arnaud defined in Arnaud et al. (2008) UML extensions for the

explicit representation of the pattern variation points in the func-
tional, static and dynamic views. Indeed, the author proposed
extensions to express the variation points and the variants in the
use case diagram and in the sequence diagram. In addition, he
introduced extensions for the use case diagram to represent the
fundamental and the optional use cases. The author extended also
the class diagram with a UML extension to indicate that this dia-
gram is associated with a use case.

The use case diagram represents the input diagram for the
instantiation process where the designer selects the functionality
variants based on the proposed extensions. Thus, we think that
the extensions are very useful, but their application to the use case
diagram is limited. Indeed, the use case diagram is too abstract and
cannot allow the designer identifying, for example, the optional
attributes or methods according to the requirements of the mod-
eled application. Thus, the proposed UML profile fulfills partially
the variability criterion. Moreover, it does not cover the traceability
and the composition criteria. In fact, the suggested extensions do
not allow the visualization of the pattern elements in a design dia-
gram modeled using patterns instantiation. Besides, the author
proposed to represent the pattern static view with elementary sep-
arated packages that refer to a functionality variant. Therefore, the
profile is not full expressive.

2.1.2. UML Profiles for patterns instantiation
The profile introduced by Dong et al. (2007) focuses on the pat-

terns instantiation level. The authors suggested extending the UML
class diagram to allow designers to visualize the patterns elements
in the design model created using the patterns instantiation. This
profile includes the stereotypes �PatternClass�, �Pat-
ternAttribute� and �PatternOperation� which identify respec-
tively the classes, the attributes and the operations belonging to
each instance of a pattern. Each stereotype has an associated
tagged value to display the pattern name and the role names of
each element (classe, attribute and operation). Therefore, the pro-
posed profile satisfies the traceability and the composition criteria
in the static view. However, it does deal neither with the behav-
ioral view nor with the functional view. Besides, this profile fails
to satisfy the criteria required to the pattern specification.

Unlike the profile proposed in Dong et al., Loo et al. introduced
extensions for the UML sequence diagram to visualize the pattern
roles and the different types of interaction groups for a design pat-
tern (Loo et al., 2012). In fact, the authors defined the following
stereotypes: (i)�PatternRole�, used to determine the pattern role
of a message and a lifeline instantiated from a pattern, (ii) �Patt
ernInteractionFragment�, specifies that a pattern role exists in a
particular pattern, (iii) �PatternDisengage�, indicates that a pat-
tern role is removed from a design pattern, and (iv) �Pat-
ternEngage� applied to specify that a new pattern role is added
to a particular design pattern. However, the defined profile does
not propose extensions for the pattern specification, which
decreases the extensions expressivity. Moreover, this profile
expresses partially the variability in the sequence diagram using
the interaction operators (e.g., using the operator alt). But, it does
not represent explicitly the variable elements (i.e., messages and
lifelines) in this diagram. Besides, this profile does not propose
extensions to identify the variations points in the static view.

2.1.3. UML Profiles for specification and instantiation of patterns
Reinhartz-Berger et al. defined an Application based on DOmain

Modeling approach (ADOM-UML) that provides new extensions to
denote how many times a model element can appear in a particu-
lar context (Reinhartz-Berger and Sturm, 2009). Indeed, authors
proposed four extensions, named �optional single�, �optional
many�, �mandatory single� and �mandatory many�. Each
extension has the min and the max tagged values which define
respectively the smallest and the largest multiplicity boundary.
These extensions allow expressing the variability in domain-
specific design patterns. They extended the UML use case diagram
(functional view), the UML class diagram (static view) and the UML
sequence diagram (behavioral view) to differentiate between fun-
damental and optional elements in a pattern.

Besides, the defined profile proposed extensions to visualize
explicitly the patterns elements in a particular design model. In
fact, for each model role defined in a design pattern, a correspond-
ing stereotype is created with the same name of this role. The
design model element playing this role owns this stereotype. Thus,
this profile improves the readability of the design model, but it



H. Marouane et al. / Journal of King Saud University – Computer and Information Sciences 30 (2018) 478–497 481
does not keep trace of the pattern name when instantiated. This
profile needs new stereotypes for each defined model role, which
makes the number of stereotypes infinite and thus uncontrollable.
In addition, such stereotype is ambiguous and confusing, espe-
cially, when model roles have the same names. In fact, the
ADOM-UML approach fails to satisfy the composition criterion
since it does not keep trace of the pattern name when instantiated.
Each pattern diagram normally contains different participants,
such as classes, attributes and methods. These participants play
certain roles materialized by their names. When the design pattern
is instantiated, the role names of its participants may be adapted to
reflect the application domain. Therefore, pattern-related informa-
tion represented by the role names is lost, which makes difficult to
determine in which patterns a modeling element (e.g., class, attri-
bute and method) takes part in an application design. In this case,
the designers are not able to take trace of this information in the
application design.

In order to fill these gaps, Rekhis et al. presented a profile,
named UML-RTDP (UML-RT Design Pattern) (Rekhis et al., 2010),
which uses some extensions introduced in MARTE profile (OMG,
2011) to specify the RT domain aspects. In addition, the UML-
RTDP profile proposes extensions focusing on the RT design pat-
terns specification and the patterns instantiation. In fact, this pro-
file allows distinguishing the extensions used in the specification
of the patterns from those used in the patterns instantiation, which
allows ensuring the expressivity criterion.

At the specification level, this profile introduces extensions to
distinguish explicitly between the fixed part and the variable parts,
which expresses the variability of the patterns. In fact, this profile
defines the following extensions: (i)�mandatory�, used to repre-
sent fundamental elements (i.e., classes, association and lifelines),
(ii) �optional�, applied to specify optional elements (i.e., classes,
association, attributes and methods), (iii) �extensible�, used to
indicate if a class is extensible by adding new attributes and/or
operations, and (iv) �variable�, used to show that the method
implementation varies according to the pattern instance. However,
the UML-RTDP profile has limits in representing the variability cri-
terion. First, it proposes extensions to express the variability in the
static view (UML class diagram) and in the behavioral view (UML
sequence diagram), but it does not define extensions that express
the variability in the functional view. Second, it does not give
extensions for certain pattern participants (e.g., attributes and
messages). Indeed, it does not provide extensions (i) to represent
explicitly the fundamental attributes and operations, and (ii) to dif-
ferentiate between optional and fundamental messages in a
sequence diagram. This makes the pattern instantiation a difficult
task since the designer is not able to distinguish between funda-
mental elements and variable elements.

Besides, the UML-RTDP profile integrates some OCL constraints
ensuring the consistency in the static view of patterns. However,
authors did not validate these constraints; they did not verify the
consistency of the patterns diagrams using the OCL. Furthermore,
the UML-RTDP profile did not include constraints to check the con-
sistency of the other views, such as the behavior view. This can
generate some inconsistencies which may result in incorrect pat-
tern instances. For this reason, it is necessary to define constraints
that enable the verification of consistencies of UML diagrams com-
posing a pattern.

At the instantiation level, the defined profile proposes exten-
sions to express explicitly the information about the role played
by a design model element participating in the pattern instance.
Indeed, authors suggested the following stereotypes to extend
the class and the sequence diagrams: �PatternClass�, �Pat-
ternInteraction� and �PatternLifeline�. The first one is used to
specify that the class is instantiated from a design pattern. The
two other stereotypes are used to define respectively the pattern
role of an interaction and a lifeline in a specific sequence diagram
instantiated the design pattern. Each stereotype has two associated
tagged values which are named PatternName (to indicate the name
of the pattern) and ParticipantRole (to show the role played by the
element in the pattern). Therefore, these extensions fulfill the
traceability and composition criteria. However, this profile is lim-
ited because it defines extensions allowing only specifying classes,
lifelines and interactions that play a role in a pattern, but it does
not specify essential elements used to represent the properties
and the behavioral features of an object (attributes, operations
and messages). This means that it is difficult (i) to trace these pat-
tern elements, and (ii) to differentiate between the pattern ele-
ments and the added elements.

Park et al. developed a PICUP (Pattern Instance Changes with
UML Profiles) design method with the DPUPs (Design pattern in
UML profiles) (Park et al., 2013). This design method helped pre-
serving the quality of UML pattern-based design during perfective
and corrective design maintenance for software systems by reduc-
ing the number of design pattern defects. The authors specified the
design pattern using the UML profile extended from UML meta-
model (M2). This profile was used to verify the conformance of
design patterns instances to design patterns. Conformance check-
ing can be achieved with UML class diagrams and OCL constraints.

The authors distinguished between a stereotype and a stereo-
type instance. Actually, each stereotype was declared with the
stereotype keyword above or in the front of the name of the pat-
tern element. These stereotypes did not allow differentiating
between the fundamental elements and the variable elements.
Thus, the UML profile did not express the variability in the pattern.
However, the stereotype instance was expressed with the stereo-
type keyword string, surrounded by a pair of guillemets above or
in front of the model element name. Moreover, the associations,
the properties and the methods instantiated from the pattern were
defined respectively with the following stereotypes: �Pat-
ternAssociation�, �PatternProperty� and �PatternOperation�.
The ‘‘Pattern” at the name of the stereotype was substituted by a
particular pattern name. The stereotypes used at the instantiation
level allowed determining easily the pattern elements. Hence, the
UML profile can express adequately the traceability and the com-
position criteria.

To conclude, none of the above-studied profiles satisfies all the
criteria of the patterns specification and instantiation. We note
that the UML profiles satisfying both patterns specification and
instantiation criteria have some limitations. For instance, the
UML-RTDP profile has limitations in expressing the variability in
the patterns. Furthermore, the above-studied profiles do not deal
with the RT design patterns since they do not provide extensions
to represent RT features. The UML-RTDP profile is the only one that
provides extensions to fulfill the RT domain requirements. But,
these extensions are not very expressive since they do not express
clearly the RT databases requirements (e.g., the two kinds of RT
attributes: sensor attributes and derived attributes). In order to
overcome these weaknesses, we define, in this paper, a UML profile
(i) that is used for the design patterns representation, and (ii) that
takes into account the already-presented criteria as well as the
specificities of the RT database applications. This profile allows
us obtaining understandable, complete, expressive and consistent
patterns.

2.2. RT UML profiles

Several researches defining UML extensions for RT applications
have been proposed. For instance, we can mention TURTLE (Timed
UML and RT-LOTOS Environment) profile (Apvrille et al., 2004) and
RT-UML profile (Douglass, 2004). The basic concepts of RT-UML
were integrated in the UML standard through the UML profile for



482 H. Marouane et al. / Journal of King Saud University – Computer and Information Sciences 30 (2018) 478–497
Schedulability, Performance and Time (denoted SPT profile) (OMG
et al., 2005). The SPT profile which is extended from UML 1.4 does
not specify a full methodology. It has some limitations related to
expressive power and flexibility. For this reason, this profile is
replaced by the MARTE profile which is an UML OMG standard
for the Modeling and Analysis of RT Embedded systems (OMG,
2011). This profile extends UML 2.0 to support the aspects of time,
hardware and software resources and Non-Functional Properties
(NFP). However, the notions of RT data and RT transactions which
are the basic features of RT databases do not taken into account in
MARTE. Thus, Idoudi et al. introduced the UML-RTDB (UML-Real-
Time DataBase) profile to take into account the RT database
requirements only in the structural model (class diagram)
(Idoudi et al., 2008). This profile specifies RT classes and two kinds
of RT attributes: sensor and derived attributes in order to satisfy
the requirements of current RT applications. Moreover, this profile
represents explicitly the type of RT operations through the stereo-
types �periodic�, �sporadic� and �aperiodic�. Nevertheless,
the UML-RTDB does not mention how to specify some properties
of RT databases, especially non-functional properties despite their
importance in enhancing the software development quality.

The UML/MARTE profile was introduced to express RT data-
bases features in a structural model (Louati et al., 2012). In
Louati et al. (2012), some concepts were inspired by the UML-
RTDB and the MARTE profiles. The UML/MARTE profile supports
all RT databases features, i.e. time-constrained data, time-
constrained transactions, concurrency, schedulability, non-
functional properties, etc. However, it does not supply extensions
for the behavioral view. Moreover, it does not mention how to
specify the values of certain constraints (e.g., the triggered time
of a sporadic transaction). From the previous UML RT profiles
description, we conclude that a new profile should be introduced
to represent the RT databases features and the non-functional
properties in both structural and behavioral models.

Nevertheless, the only UML extensions, defined for representing
RT databases characteristics, remains insufficient to specify design
patterns. Indeed, they must be generic designs intended to be
instantiated in order to model any system that needs RT database
environment. For this reason, additionally to the UML notations,
expressing RT databases features, we need notations distinguishing
the commonalities and differences between systems in the pattern
domain. We need also extensions for the explicit representation of
the pattern elements roles in a design model instantiating the
pattern.
3. DP-RTDB profile

In this section, we propose DP-RTDB (Design Pattern-Real Time
DataBase), a UML profile for patterns. It represents an extension of
UML 2.1.2. Our profile takes into account not only the RT databases
aspects, but also the variability and the aspects relative to the pat-
terns. Indeed, the DP-RTDB profile provides extensions that allow
(i) expressing the variability in a pattern, (ii) specifying the roles
played by each pattern element in its instance and (iii) represent-
ing RT databases requirements as well as the non-functional
properties.

To define our profile, we imported some extensions from the
existing profiles. We proposed also new extensions. Each stereo-
type and its tagged values are presented on the UML diagrams
using notes.
3.1. UML extensions for modeling RT database features

This sub-section summarizes the UML extensions supporting
the modeling of RT database features. Some stereotypes were
inspired by the UML-RTDB profile (Idoudi et al., 2008) used in
the UML class diagram. We applied these stereotypes also on the
UML sequence diagram. Moreover, the stereotype �nfp� was
imported from the MARTE profile (OMG, 2011). Besides, we
defined a new stereotype that represents explicitly the database
system storing RT data and managing RT operations. We describe
below the purpose of using each stereotype:

� �sensor� stereotype. We used this stereotype to extend Class
and Lifeline meta-classes. It indicates that the measurement is a
sensor data (data issued from sensors). This stereotype has the
same meaning of the �sensor� stereotype defined in Idoudi
et al. (2008), which extends only theProperty meta-class.

� �derived� stereotype. We used this stereotype to extend the
Class and Lifeline meta-classes. It indicates that the measure-
ment is a derived data i.e., data is calculated using sensor data.
This stereotype has the same signification of the �derived�
stereotype defined in Idoudi et al. (2008), which extends only
the Property meta-class.
We used these two stereotypes to extend the Class and the Life-
linemeta-classes since the sensor data and the derived data rep-
resent objects characterized by the attributes: value, unit,
timestamp and validity duration.
We did not consider the tagged values associated to the �sen-
sor� and �derived� stereotypes introduced in Idoudi et al.
(2008) since these attributes are represented as fields associ-
ated to each RT data stored in the database.

� �rtDatabase� stereotype. A RT database is, by definition, a
database system having several components, such as transac-
tions, concurrency control and storage management
(Stankovic et al., 1999). Thus, the design of a RT database is to
consider these components. So, we define the �rtDatabase�
stereotype which extends the meta-class Class and the meta-
class Lifeline. This stereotype specifies the database system stor-
ing RT data (sensor and derived data) and managing RT opera-
tions (e.g., concurrency control and updating the data).

� �periodic� and �sporadic� stereotypes. We used them to
extend Operation and Message meta-classes. The �periodic�
stereotype indicates that a transaction is executed periodically.
The �sporadic� stereotype shows that a transaction is exe-
cuted sporadically (the method is executed in the demand).
These stereotypes have the same signification of the �peri-
odic� and �sporadic� stereotypes (Idoudi et al., 2008) which
extend only the Operation meta-class.

The deadline and period attributes were inspired by the UML-
RTDB profile (Idoudi et al., 2008). The deadline attribute associated
to �periodic� and �sporadic� stereotypes specifies the time by
which the transaction execution must be achieved. The period
attribute which is related to the �periodic� stereotype determi-
nes the periodicity of the transaction.

Besides, we defined the following attributes:

� triggeredTime attribute: The sporadic transactions have to
derive a new data item from sensor data items when the latter
are updated; that is why we introduced the triggeredTime attri-
bute. We associated it to the stereotype�sporadic� in order to
define the time at which the transaction is executed.

� policy attribute: A transaction has to read or write data items. A
reader transaction may read RT data items and read or write
non-RT data items. However, a writer transaction has only to
write RT data items. Hence, we defined the policy attribute to
specify the type of each transaction. We associated this attri-
bute to both �periodic� and �sporadic� stereotypes.

� priority attribute: A transaction is scheduled according to its pri-
ority, which is assigned to the transaction based on its deadline



H. Marouane et al. / Journal of King Saud University – Computer and Information Sciences 30 (2018) 478–497 483
(Earliest Deadline First Scheduling Policy). Thus, a high priority
transaction is executed before a lower priority transaction. This
is true only if a high priority transaction is ready for execution.
If no higher priority transaction is ready for execution, then a
lower priority transaction is executed, if it is ready. As a conse-
quence, data conflicts resolution should be based on transaction
priorities. So, the priority assignment policy is important to con-
trol the concurrency between transactions. In fact, we defined
the priority attribute which takes an integer parameter. We
associated this attribute to both �periodic� and �sporadic�
stereotypes.

� �nfp� stereotype: It is imported from NFP Modeling sub-
profile of MARTE (OMG, 2011). This stereotype extends the
Property meta-class to show that the attributes are used to sat-
isfy non-functional requirements, such as duration and
frequency.

3.2. UML extensions for patterns specification

Design patterns are generic designs intended to be instantiated
to model different systems. Thus, it is necessary to define UML
extensions expressing the variability in patterns in order to assist
the designer in distinguishing the commonalities and differences
between the different systems. For this reason, we extended the
functional, structural and behavioral views with UML extensions
representing explicitly the optional and fundamental elements.
Actually, the class diagram, the sequence diagram and the use case
diagram were extended with the following stereotypes: (a)
�mandatory�, used to specify the fundamental elements (i.e.
classes, attributes, methods, relations, use cases, actors, lifelines,
messages and combined fragments) that must be instantiated
when the model is applied to a specific application, and (b) �op-
tional�, used to express optional features (i.e., classes, attributes,
operations, relations, use cases, actors, lifelines, messages and
combined fragments) that can be omitted in a pattern instance.
These stereotypes have the same meaning with the stereotypes
�optional� and �mandatory� defined in Rekhis et al. (2010).
The stereotypes which are introduced in Rekhis et al. (2010)
extended only the UML class diagrams, especially the classes and
the relations.

Besides, we extended the use case diagram and the class dia-
gram with the �variant� and �variationPoint� stereotypes.
For the use case diagram, the latter is used to specify an abstract
use case which can be expressed differently, while the former is
applied to designate that the use case represents a specific realiza-
tion of the variation point.

For the class diagram, we modeled variation point using UML
inheritance and stereotypes (the stereotypes were used to give
more semantics to the UML classes): each variation point was
expressed by an abstract class and a set of sub-classes. The abstract
class was stereotyped �variationPoint� and each sub-class was
defined with the stereotype �variant�. These two stereotypes
have the same signification with the stereotypes defined in Ziadi
et al. (2003).

Moreover, we proposed the �alternative� stereotype to
extend the sequence diagram. This stereotype was used to express
alternative messages. In fact, it indicates that the designer must
choose at least one message or a sequence of messages according
to a given condition when the pattern is instantiated.

3.3. UML extensions for patterns instantiation

The design patterns were specialized and instantiated by a
specific application. Thus, we needed new extensions distinguish-
ing between the pattern participants and the specific added ele-
ments. For this reason, we extended our profile to support
instantiation of structural, behavioral and functional views of
design patterns. For instantiation of structural design patterns,
our stereotypes aim at visualizing the basic pattern elements
(classes, attributes and operations) in an application model. To
define notations for classes, attributes and operations, we based
our work on the UML profile proposed by Dong et al. (2007). Thus,
we imported the following stereotypes: (a) �PatternClass�, asso-
ciated with a class to indicate that this element is an instantiated
pattern class and is not added by the designer, and (ii) �Pat-
ternAttribute� and �PatternOperation�, which show respec-
tively that an attribute and an operation play a role in the design
pattern. In the design of a specific application, apart from the
instantiation of the elements that play a role in the pattern, the
designer can add some specific elements relative to the applica-
tion. Thereby, it is important to distinguish between the pattern
elements and the specific elements. Thus, we defined the new
�ApplicationClass�, �ApplicationAttribute� and �Applica-
tionOperation� stereotypes which indicate respectively that the
class, attribute and operation are added by the designer and they
constitute specific application elements.

In order to identify a model element which plays a role in the
pattern sequence diagram, we imported the stereotype �Pat-
ternLifeline� from the profile defined in Rekhis et al. (2010). This
stereotype was used to distinguish between the instantiated pat-
tern lifelines and the specific lifelines. The UML profile proposed
in Rekhis et al. (2010) does not deal with the messages and the
combined fragments which represent essential elements in the
sequence diagrams. Thus, we defined the �PatternMessage�
and �PatternFragment� stereotypes. The former stereotype was
used to indicate that the message takes part in a sequence pattern
instance. The latter is associated with a combined fragment to
reveal that this element is instantiated from the pattern sequence
diagram.

Besides, we proposed the �ApplicationLifeline� and �Appli-
cationMessage� stereotypes to show respectively that a lifeline
and a message are added by the designer as specific elements
according to the modeled application.

As the use case diagram is a part of the pattern solution, we pro-
posed new extensions to represent explicitly the patterns element
roles in the functional view. We introduced new stereotypes called
�PatternUseCase� and �PatternActor�. The first one was used
to specify that the use case is instantiated from the pattern, while
the second stereotype, it was used to indicate that the actor is
instantiated from the use case diagram of the pattern. We pro-
posed also the �ApplicationActor� and �ApplicationUseCase�
stereotypes to specify respectively that an actor and a use case
are specific elements for the modeled application which instanti-
ates the pattern.

The proposed stereotypes allow distinguishing easily the pat-
tern elements and the specific elements, which makes easier to
validate the patterns instances using tools.

For each of these stereotypes, we adapted the tagged value
pattern proposed in Dong et al. (2007) to specify not only the
exact role of an element in a pattern class diagram, but also the
role of an element in a pattern sequence diagram and in a use
case diagram. This tagged value has the following format: {pat-
ternName, role}, where patternName is the name of the pattern
and role is the name of the role played by the element in the pat-
tern. �PatternAttribute� and �PatternOperation� notations
may be confused when two different operation or attribute roles
defined within different class roles have the same name. This
ambiguity can be confusing for tools during validation of a pat-
tern instance. In order to overcome this limitation, we kept infor-
mation about the class name of an attribute or an operation.
Thus, we added the className for the �PatternAttribute� and
�PatternOperation� stereotypes. So, these stereotypes have the



484 H. Marouane et al. / Journal of King Saud University – Computer and Information Sciences 30 (2018) 478–497
following tagged value {patternName, className.role} to indicate
that the attribute or the operation is associated with the class
whose name is className in the pattern. The information class-
Name allows eliminating the ambiguity when two different oper-
ation or attribute roles of different class roles have the same
name.

We proposed to extend the class, the sequence and the use
case meta-models by the above described stereotypes as shown
in Fig. 1 (for structural view), Fig. 2 (for behavioral view) and
Fig. 3 (for functional view). These figures depict the relationships
between the UML meta-classes in order to facilitate the under-
standing of OCL rules explained in the next section. In fact,
Fig. 1 illustrates the UML class diagram meta-model. The latter
provides the essential elements (class, classifier, attribute, opera-
tion and association) linked through the associations and the
inheritance relationships. The structural elements are described
by properties (defined with the Property meta-class). The concept
of Property has two object properties with cardinality 1. At the
instance layer, it is determined if an instance of the class Prop-
erty is representing an attribute (contained by a class) or a
non-attribute (contained by an association). Besides, the meta-
model supports the definition of operations (the Operation
meta-class) representing the functions and the methods of a
class.

Fig. 2 displays the UML sequence diagrammeta-model. The Life-
line meta-class represents a specific object. Lifelines communicate
with each other throughmessages (Messagemeta-class). Each mes-
sage triggers two events: send event and receive event. The Inter-
action meta-class refers to the unit of behavior that focuses on
the exchanges of information between a set of objects in the dia-
gram. InteractionFragment is a piece of an interaction. The aggrega-
tion between the Interaction and the InteractionFragment specifies
composite interaction, in the sense that an interaction can enclose
other sub-interactions.
Fig. 1. Stereotypes for extens
Fig. 3 shows the UML use case diagram meta-model. This meta-
model covers the basic elements of a use case diagram: Actor, Use-
Case, Extend and Include. The Actor meta-class denotes the roles
adopted by external entities that interact with the system directly.
The UseCase meta-class refers to a set of actions representing the
behavior of the system. The use cases can have relationships
between them. Basically, a use case can include (or may be
included in) other use cases and can extend (or may be extended
by) other use cases.

These meta-models contain concepts that suffer from a lack of a
precise semantics. Therefore, we extended the UML concepts by
the above described stereotypes. These stereotypes enhance con-
ceptual semantics onto the various UML concepts. In other word,
we added the stereotypes to the UML elements in order to assist
the designer in differentiating between (i) the fundamental ele-
ments and optional elements, (ii) the pattern elements and the
specific elements and (iii) the RT concepts and the non-RT
concepts.

3.4. Definition of OCL constraints

The introduction of variability using stereotypes makes easier
the understanding of patterns, but, it can generate some inconsis-
tencies. For example, if a mandatory class inherits from an optional
class, the resulting model is incoherent. Thus, we proposed to
define constraints expressed in OCL in order to reduce the impact
of variable elements, ensuring then the consistency and the cor-
rectness of patterns diagrams. In fact, these constraints can be
applied to ensure the consistency between the (i) elements of the
static view, (ii) the elements of the functional view and (iii) the ele-
ments of the behavioral view of design patterns. The expression of
these constraints is based on the auxiliary operation (isStereotyped
(S)) which indicates whether or not an element is stereotyped by a
string S. It is formalized in Ziadi et al. (2003) using OCL as follows:
ion of class meta-model.



Fig. 2. Stereotypes for extension of sequence meta-model.

Fig. 3. Stereotypes for extension of use case meta-model.

H. Marouane et al. / Journal of King Saud University – Computer and Information Sciences 30 (2018) 478–497 485
Context Construct::Class::isStereotyped(S:string):Boolean

isStereotyped = self.extensions � > exists(E j E.
ownedEnd.type.name = S)

In order to ensure the consistency of the static view of design
patterns, we applied only the following constraints defined in
Rekhis et al. (2013):

Constraint CC1: Each association related to an optional class
must be stereotyped �optional�.
Context Class inv:

self.isStereotyped (’optional’) implies self.ownedAttribute
� > forAll(a j.

a.owingAssociation.isStereotyped (’optional’)).

In the UML 2.2 meta-model, an inheritance relationship is mod-
eled by the Generalization meta-class related to the Classifier meta-
class by two associations representing the generic class and the
specialized class. Thus, the second constrqint is written as follow:



486 H. Marouane et al. / Journal of King Saud University – Computer and Information Sciences 30 (2018) 478–497
Constraint CC2: Each class which inherits the feature of an
optional super class must be stereotyped �optional�.
Context Classifier inv:

self.generalization � > forAll (c j c.general.isStereotyped
(’optional’)).

implies self.isStereotyped (’optional’).
In addition to the two previously-mentioned constraints, we
proposed the following:

Constraint CC3: Each class, which inherits the feature of a super
class defined with the�variationPoint� stereotype, must be
stereotyped �variant�.
Context Classifier inv:

self.generalization � > forAll (c j c.general.isStereotyped
(’variationPoint’)) implies self.isStereotyped (’variant’).

Constraint CC4: Each attribute and each operation associated
with an optional class must be stereotyped �optional�.
Context Class inv:

self.isStereotyped (’optional’) implies self.ownedAttribute
� > forAll (p j.

p.isStereotyped (’optional’)) and self.ownedOperation � >
forAll (op jop.isStereotyped (’optional’)).

In addition to the static view, the functional and behavioral
views represent a part of the pattern solution. Thus, it is necessary
to verify the consistency and the correctness of the UML diagrams
representing these views. Therefore, we proposed to define OCL
constraints for the UML use case diagram and for the UML
sequence diagram.

For the functional view, we defined the following OCL:
Constraint CU1: If an included use case is mandatory, the

including use case must be mandatory, too.
Context UseCase inv:

self.isStereotyped (’mandatory’) implies self.including
Case.isStereotyped (’mandatory’).

Constraint CU2: If a use case is stereotyped �variant�, it
should have one extended use case stereotyped�variationPoint�.
Context UseCase inv:

self.isStereotyped (’variant’) implies self.extendedCase.is
Stereotyped (’variationPoint’).

Constraint CU3: each use case which inherits an optional super
use case must be stereotyped �optional�.
Context redefinableElement inv:

self.isStereotyped (’optional) implies self.redefinedEle
ment.isStereotyped (’optional’).
For the behavioral view, we proposed the following constraints:
Constraint CS1: Messages which are associated to an optional

lifeline must be optional.
Context Lifeline inv:

self.isStereotyped (’optional’) implies self.interaction.
message � > forAll(m j m.isStereotyped (’optional’)).

Constraint CS2:Messages related to an optional combined frag-
ment must be optional.
Context InteractionFragment inv:

self.isStereotyped (’optional’) implies self.EnclosingInter
action.message � > forAll(m j m.isStereotyped (’optional’)).

Constraint CS3: If a message is mandatory, then the sender and
the receiver lifelines must be mandatory. In addition, if this mes-
sage is related to a combined fragment, the latter must be
mandatory.
Context Message inv: self.isStereotyped (’mandatory’)
implies.

self.sendEvent.Message.Interaction.lifeline � > forAll(l j l.
isStereotyped.

(’mandatory’)) and self.receiveEvent.Message.Interaction.
lifeline � > forAll(l1 j l1.isStereotyped (’mandatory’)) and.

self.Interaction.InteractionFragment � > forAll(f j f.
isStereotyped (’mandatory’)).
3.5. Evaluation of the DP-RTDB profile

Our DP-RTDB profile is evaluated with regard to the design pat-
tern specification and instantiation criteria. In Table 3, we com-
pared this profile with the already-studied UML profiles. This
table shows that none of the UML profiles, presented in Section 2.1,
satisfies all these criteria. In fact, some studied profiles proposed
extensions that allow covering either the patterns specification cri-
teria (e.g. the profile proposed by Arnaud et al. (2008)) or the pat-
terns instantiation criteria (e.g. the profile proposed by Dong et al.
(2007)).

Furthermore, previous works focused mainly on modeling the
pattern structure and the pattern behavior. However, they have
some limitations related to expressing variability and representing
pattern participant roles, essentially in the functional view. Obvi-
ously, the ADOM-UML approach is the only one that expresses cor-
rectly the variability criterion since it proposes extensions
distinguishing all fundamental and optional elements in the static,
functional and behavioral views. In addition, this approach repre-
sents the unique profile that satisfies the traceability criterion
because it defines extensions to retrieve all pattern elements (i.e.,
actors, use cases, classes, attributes, operations, lifelines, messages
and interaction fragments). However, this profile fails to satisfy the
composition criterion since it does not trace the name of the pat-
tern when the latter is instantiated.

Besides, the profiles studied in Section 2.1 have limits in ensur-
ing the variation point consistency. They do not enable the
designer to verify the correctness of each pattern diagram. The
ADOM-UML approach, the profile proposed in Park et al. (2013)



Table 3
Comparative analysis of the UML profiles.

Arnaud Dong et al. Loo et al. Reinhartz-Berger et al. Rekhis et al. Park et al. DP-RTDB

Variability +1 �2 + ++3 + � ++
Expressivity + � + ++ + + ++
Consistency � � � + + + ++
Completeness + + + ++ + + ++
Traceability � + + ++ + + ++
Composition � + + � + + ++

1 Partially verified.
2 Not verified.
3 Verified.

H. Marouane et al. / Journal of King Saud University – Computer and Information Sciences 30 (2018) 478–497 487
and the UML-RTDP profile are the only ones that define constraints
to validate the models. The first approach verifies that the domain
constraints are satisfied to validate the application model. But,
these constraints do not deal with the dependence of the variable
participants in a model. The ADOM-UML approach defines OCL
constraints to check the conformance of design patterns instances
to patterns. However, these constraints do not allow ensuring the
consistency of UML class diagrams of patterns. The UML-RTDP pro-
file defines constraints to ensure the consistency in the static view
of patterns. However, these constraints are not validated. In addi-
tion, the UML-RTDP profile does not define constraints to deal with
the dependencies between the variable elements of the use case
diagram, and those between the variable elements of the sequence
diagram of the considered pattern. These weaknesses can generate
some inconsistencies that may be propagated directly into imple-
mentation errors. Besides, inconsistencies can result in incorrect
pattern instance. Thus, it is necessary to give great importance to
define constraints that enable the verification of consistencies of
UML patterns diagrams.

Unlike the profiles proposed in literature, our DP-RTDB pro-
file satisfies conveniently all the pattern specification and
instantiation criteria. In fact, it provides expressive extensions
based on UML to specify all participants of the class diagram,
all participants of the use case diagram and all participants of
the sequence diagram. These extensions deal with design pat-
terns representation at the specification and the instantiation
levels.

At the specification level, the DP-RTDB profile has to show
clearly the variable participants through the�optional� and�al-
ternative� stereotypes. It has also to indicate the fundamental
participants through the �mandatory� stereotype. Expressing
explicitly the variable elements and the fundamental elements
helps the designer choosing the adapted variation in a pattern
instantiation. Moreover, this profile defines a set of well-formed
rules written in OCL language in order to verify the patterns consis-
tency and correctness. These rules allow constraining dependen-
cies between pattern variable elements in three views (class
diagram, use case diagram and sequence diagram). They allow val-
idating the consistency and the correctness of each diagram (see
Section 6).

At the instantiation level, our DP-RTDB profile allows easily
identifying design patterns when they are instantiated by using
extensions (e.g., �PatternClass� and �PatternLifeline�) for
explicit representation of patterns participants in software
designs. These extensions allow tracing back the patterns par-
ticipants (e.g., classes, attributes and methods in the class dia-
gram) from a complex design diagram. Besides, the DP-RTDB
profile supports the composition of patterns. Indeed, it proposes
extensions showing the pattern name and the role names of
each participant (classes, uses cases, lifelines, attributes, etc.)
which makes easier to recognize the pattern instance when it
is composed or integrated with other patterns in a particular
design diagram.
4. Case study methodology for UML profile evaluation

To evaluate the effects of using pattern annotated with UML
profile design method, we present the case study research method
proposed by Yin et al. (2014).

4.1. Determining and elaborating the research questions

In this case study, the main question to be answered in order to
support or reject the main proposition of the case study is as
follows:

� Is the UML profile an improved method ensuring structural con-
formance of UML pattern to the corresponding applications
models?

The following sub-questions are issued from the main preceed-
ing question:

� How UML profile can improve the design patterns?
� Does the UML profile design method result in fewer design
defects than the conventional UML design method without
profile?

� How UML profile can facilitate the pattern instantiation?
� Does the design patterns with UML profile result in fewer
design defects than the design patterns without UML profile?

4.2. Conducting the case study

The researcher collects the requirement specification of each
application and some unification rules. An expert designer con-
ducts this case study and produces the UML diagrams annotated
with UML profile.

4.2.1. The analysis unit
The analysis unit in the case study is the requirements specifi-

cation documents of each application and some unification rules
defined in Marouane et al. (2012). These documents are provided
by contacting the organizations and the companies.

4.2.2. Questionnaire
The case study researcher asks each designer about his/her

background related to their experience in information system,
especially in design patterns. In Table 4, there are two different
types of questions given in this case study questionnaire: (1) yes-
or-no questions, and (2) short-descriptive-answer questions.

The results of questionnaire are collected from a group of ten
professors on software engineering. These participants had sub-
stantial software development experience ranging from 8 to
12 years. In fact, from the answers of question 1 (Q1), the designers
agreed that the applications models resulting from the pattern
instantiation with the respect to the UML profile are conform to



Table 4
Questionnaire for designers.

Questions Answer types

Q1. Does the applications models resulting from the
pattern instantiation with the respect to the UML
profile conform to the pattern?

Yes or No

Q2. How is the UML profile used to facilitate and to guide
the pattern instantiation?

short descriptive
answer

Q3. How constraints can help the designer to instantiate
the pattern?

short descriptive
answer

Q4. Is it easy to understand the design pattern annotated
with UML profile?

Yes or No

Q5. What would be the advantage of using design
patterns annotated with UML profile to model
applications? Please explain.

short descriptive
answer

Q6. Are the mandatory pattern elements present in the
applications models?

Yes or No

488 H. Marouane et al. / Journal of King Saud University – Computer and Information Sciences 30 (2018) 478–497
the pattern. They also agreed that it easy to understand the pattern
annotated with UML profile. This result is derived from the
answers of the question 4 (Q4) (the designers answered by Yes).

In addition, as shown in the answers from the question 6 (Q6),
the designers proved that the fundamental pattern elements are
present in the application model (the designers answered by
Yes). Indeed, each pattern instance is annotated with stereotypes
which indicate whether or not fundamental elements are present
in the application model. These stereotypes also allow distinguish-
ing easily between the elements instantiated from the pattern (ele-
ments defined with stereotype declared with the Pattern keyword,
e.g. �PatternClass� stereotype) and the specific elements (ele-
ments defined with stereotype declared with the Application key-
word, e.g. �ApplicationClass� stereotype).

The answers from question 3 (Q3) show that some designers
experienced a little difficulty in using the UML profile. The pattern
instantiation using the OCL is not easy. That is why a textual
description of each constraint is needed as shown in the answers
from question 3.

The answers from question 2 (Q2) and question 5 (Q5) show
that the UML profile facilitates the pattern instantiation and has
several advantages to model applications. Indeed, the designers
agreed that the profile helps identify easily the fundamental parts
(elements defined with the �mandatory� stereotype), the
optional parts (elements defined with the �optional� stereotype)
and the RT concepts.
4.2.3. Design solution
The case study researcher collects the requirements specifica-

tion documents of the different applications and derives a design
pattern annotated with the UML profile. The modeling of this pat-
tern is performed by applying some unification rules defined in
Marouane et al. (2012), with the respect to the OCL constraints.

Before a designer conducts the pattern instantiation, the case
study researcher explains the design pattern. In addition, the case
study researcher provides the requirements specification docu-
ments of the different applications. Each designer uses the docu-
ments and models the applications by instantiating the pattern
annotated with the UML profile.

The UML diagrams (use cases, class and sequence diagrams) and
the questionnaire answers are collected from each designer.

4.3. Data analysis and evaluation

The case study researcher analyzes the applications models pro-
vided by each designer. He/she checks whether or not each appli-
cation model contains the mandatory pattern elements that must
be instantiated and the optional elements that can be omitted in
the pattern instance. An application model is correct and conforms
to the design pattern if all the mandatory pattern elements are
present.

5. Case study example

The number of vehicles on the road has greatly increased in
recent years, which leads to the rise in number of accidents. For
example, according to the European Commission survey, 26 000
people lost their lives on European roads in 2015 (E.C.P., 2016).
To reduce the risk of accidents, the safety programs have helped
lower the number of deaths by increasing seat belt use. Vehicle
improvements, including Driver Assistance Systems (DAS), have
also contributed to reducing traffic fatalities. These systems are
embedded systems in the automotive domain. Several examples
of DAS (e.g. Adaptive Cruise Control system (Tass BV, 2012) and
Lane Departure Warning system (Tass BV, 2012)) have already
been introduced to the market. Indeed, DAS assist the driver by
delivering warning information and/or providing automatic
actions in order to reduce risks and improve road safety.

DAS are complex systems, then the design reuse may be a judi-
cious choice to model such systems since it allows to benefit from
the expertise of developers gained in the design of particular sys-
tem. Since these systems must be able to meet data and transac-
tions RT constraints, it is necessary to give a great importance to
DAS design.

DAS consist mainly of three modules for sensing, data process-
ing and making actions (Amditis et al., 2010). The sensing module
is responsible for data acquisition from the environment through a
set of sensors. This module includes a series of sensors (e.g., radar
and vehicle sensors) and a sensor data fusion unit allowing the
computation of the appropriate sensors data. The sensing module
is the first module which provides the necessary data for the driv-
ing situation analysis and the decision making. For this reason, we
mainly focus, in this paper, on modeling the functional, the static
and the behavior views of the sensing module through the defini-
tion of the Sensing pattern (Marouane et al., 2012). We used this
pattern to illustrate the DP-RTDB extensions. This pattern is cre-
ated by the application of the development process defined in
Marouane et al. (2012). This process is composed of four steps:

� The study of several driver assistance documents provided by
the automotive companies (e.g., BMW (Prestl et al., 2000), Volvo
(Amditis et al., 2010), etc.).

� The identification of DAS functionalities i.e., data acquisition,
data control and taking actions.

� The identification of the requirements of the data acquisition
functionality. This step consists in identifying the domain con-
cepts (e.g., objects, their attributes and their relationships)
related to the data acquisition functionality as well as the asso-
ciated constraints. For example, the sensor represents a concept
belonging to this functionality.

� The decomposition of applications: The already-identified con-
cepts help to decompose the applications. Indeed, this step con-
sists in finding the relation between these concepts in order to
determine the applications fragments (i.e., class diagrams,
sequence diagrams and use case diagrams).

� The diagrams unification: In order to unify the different applica-
tions fragments and to derive the design pattern, we applied
some unification rules defined in Marouane et al. (2012). Thus,
we fused the common concepts to all DAS in order to derive the
fundamental elements of the pattern. Then, we added the
appropriate concepts to the applications as variable elements.

Additional information about the development process and the
unification rules can be found in Marouane et al. (2012).



Fig. 4. UML use case diagram of Sensing pattern.

1 The duration represents the duration between the timestamp and the curren
time.

H. Marouane et al. / Journal of King Saud University – Computer and Information Sciences 30 (2018) 478–497 489
5.1. Pattern specification

The Sensing pattern is described by the following fields: (a)
name, indicating the name of the pattern, (b) context, showing a
design situation giving rise to a design problem, (c) problem, spec-
ifying a design problem at which addresses the pattern, (d) solu-
tion, which is a form applied to resolve the problem, and (e)
consequences, showing the benefits and the drawbacks of the
pattern.

Name: Sensing.
Context: This pattern is used to design the sensing module. The

designer has to define the various kinds of sensors related to the
developed driver assistance system and their properties.

Problem: How to specify the kinds of sensors? How driver
assistance system can manage efficiently the large quantities of
RT data and RT transactions?.

Solution: The solution comes in both ‘‘push” and ‘‘pull” mech-
anisms. In the push mechanism, each active sensor initiates the
transmission of its value to the fusion unit. An active sensor sets
the data values related to the observed element (i.e., the controlled
vehicle and its environment). In the pull mechanism, each passive
sensor transmits its value only if the fusion unit queries it, i.e. a
passive sensor gets the data values related to the observed
element.

� Functional view: Fig. 4 shows the functional view of the Sensing
pattern using the UML use case diagram. This diagram describes
the shared and the varying functions of the sensing module.
Exteroceptive sensor, Proprioceptive sensor and Fusion unit are
the actors of the sensing module. The use cases describe five
main functions: observe the vehicle, observe the vehicle envi-
ronment, process data, merge data and save data in a database.
We know from our discussions with domain experts in driver
assistance domain that (i) observe the vehicle, observe the vehi-
cle environment, process data and save data in a database func-
tionalities and (ii) exteroceptive sensors, proprioceptive sensors
and fusion unit actors are fundamental. However, merging data
functionality is optional, then they can be omitted in several
driver assistance systems since it is considered only if the sys-
tem uses sensors that provide redundant or complementary
data. Thus, the use cases Observe vehicle, Observe vehicle environ-
ment, Process data and Save data in database are stereotyped
�mandatory�, whereas the use case Merge data is stereotyped
�optional�, which expresses explicitly the variability in the
pattern use case diagram.

� Structural view: Fig. 5 illustrates the structural view of the
Sensing pattern i.e. the participants represented by the UML
class diagram.
Sensor. The sensors can be classified into exteroceptive and
proprioceptive sensors. These categories of sensors constitute
the variants of Sensor generic class. They are expressed through
the generalization relationship and the stereotypes. The Sensor
class is defined with the �variationPoint� stereotype, while
the sub-classes ExteroceptiveSensor and ProprioceptiveSensor
are stereotyped �variant�. These sensors constitute common
elements in all driver assistance systems. Thus, they are funda-
mental elements in the class diagram and they are defined with
the stereotype �mandatory�.
The Sensor class has the following attributes: (i) type, which rep-
resents the type of a sensor (i.e., passive or active), (ii) accuracy,
indicating that the sensor can acquire the measurement with a
certain error rate and (iii) periodicity, which defines the period
within the sensor should update the measurement. This class
has also the transmit() method to indicate that the sensor trans-
mits periodically the measurement to the fusion unit. So, this
method is stereotyped �periodic�. The attributes accuracy
and periodicity are defined with the stereotype �nfp� (they
represent non-functional properties).
ExteroceptiveSensor. This sub-class defines exteroceptive sen-
sors (e.g., a laser, a GPS and a radar). This class has (i) the range
attribute, showing the maximal distance needed to detect an
object, and (ii) the observeElement() operation, which indicates
that the sensor observes periodically the external vehicle envi-
ronment (e.g., road and obstacles). Thus, this operation is
defined with the stereotype �periodic�.
ProprioceptiveSensor. This sub-class defines the propriocep-
tive sensors which observe the vehicle state, such as speed sen-
sor and yaw rate sensor. This class has the observeVehicle()
operation which indicates that the sensor acquires periodically
the measures related to the vehicle. Thus, this operation is
defined with the stereotype �periodic�.
TrackedElement. This class represents the tracked elements
(e.g., road, fixed obstacle, driver and so on) observed by the
exteroceptive sensors. The tracked elements are common
between all driver assistance systems. Therefore, the
TrackedElement class is defined with the stereotype �manda-
tory�.
ControlledVehicle. This class defines the controlled vehicle
observed by the proprioceptive sensors. It is stereotyped
�mandatory� since the vehicle is a common element between
all driver assistance systems.
Measurement. This class represents the database which stores
RT data (sensor data and derived data) and manages RT transac-
tions. It is stereotyped �rtDatabase�. It specifies the common
characteristics of sensor data and derived data stored in the
database and it has the following attributes: (i) value, represent-
ing the value of the data (ii) timestamp, showing the time at
which the attribute value is updated, (iii) duration1, which is
the time interval at which data is considered valid, (iv) type, rep-
resenting the type of data (e.g. speed and position), and (v) unit of
the measure. The duration attribute is defined with the �nfp�
stereotype since it represents a non-functional property. Besides,
the Measurement class has the saveData() operation, defined with
the stereotype �sporadic� since the data are stored in the data-
base only if the difference between the stored data value and its
last updated value (i.e., the value collected from the sensor) is
greater than the maximum data error (Amirijoo et al., 2006).
The RT measurements are classified into sensor data and derived
data. These two kinds of data constitute the variants of Measure-
ment generic class. Therefore, the Measurement class is defined
with the �variationPoint� stereotype, while the SensorData
t



Fig. 5. UML class diagram of Sensing pattern.

490 H. Marouane et al. / Journal of King Saud University – Computer and Information Sciences 30 (2018) 478–497
and the DerivedData sub-classes are stereotyped �variant�.
SensorData, DerivedData. The sensor data and derived data rep-
resent fundamental elements in driver assistance systems. There-
fore, they are stereotyped �mandatory�. In addition, SensorData
sub-class is stereotyped �sensor� to show that the data col-
lected from the sensor. DerivedData sub-class is stereotyped
�derived� to express that the data is calculated using sensor
data.
The SensorData sub-class has the attribute imprecision defined
with the �nfp� stereotype. This attribute represents the maxi-
mum amount of imprecision associated with a data value
(Amirijoo et al., 2006). In addition, this sub-class has the opera-
tion updateValue() stereotyped �periodic� since the data value
is updated periodically by the sensor. However, the DerivedData
sub-class has the operation updateValue() which is stereotyped
�sporadic� because the data value is updated sporadically
(when the value of one sensor data used in its calculation is
updated).
FusionUnit. This unit allows processing periodically the collected
data from a single sensor (e.g., reducing noise in sensor reading,
processing data with sensor parameters and extracting informa-
tion from images). Thereby, the processData() method is stereo-
typed �periodic�. This unit allows also fusing data issued
frommultiple sensors in order to produce a consistent estimation
of the controlled driving situation. In fact, the mergeData() oper-
ation is stereotyped �sporadic� as this operation is executed
only if the value of one of the used sensor data is updated in
the database. In addition, this operation is stereotyped �op-
tional� since there are applications that do not use sensors pro-
viding redundant or complementary data.



Fig. 6. UML sequence diagram of Sensing pattern.

H. Marouane et al. / Journal of King Saud University – Computer and Information Sciences 30 (2018) 478–497 491
� Behavioral view:
Fig. 6 represents the UML sequence diagram of the Sensing pat-
tern. In this diagram, we modeled the interactions between the
components of the sensing module of driver assistance systems
and the updating of the RT data. First, the FusionUnit receives
data from passive sensors through the GetValue() operation or
from active sensors by the SetValue() signal. The GetValue()
operation and the SetValue() signal are defined with the �alter-
native� stereotype since the designer should select at least one
type of sensor (passive and/or active) when instantiating the
pattern. In addition, they are defined with the stereotype �pe-
riodic� since the sensors continuously acquire data from the
environment. Second, the FusionUnit processes periodically data
(e.g., converts signal and extracts information from images) to
obtain a precise environment state. So, the ProcessData() opera-
tion is defined with the stereotype �periodic�. Then, the data
are stored in the database (if the difference between the stored
values and the updated values exceeds the maximum data error
of each data (Amirijoo et al., 2006)). Therefore, the SaveData()
operation is stereotyped�sporadic�. Afterwards, if the sensors
provide redundant or complementary data, then the FusionUnit
merges the data in order to produce a consistent estimation of
the controlled vehicle and an accurate description of the exter-
nal vehicle environment. Therefore, the operation MergeData()
is stereotyped �optional�. Finally, the FusionUnit updates the
value of the fused data only if the value of one of the used sen-
sor data is updated. Thus, the UpdateFusedValue() operation is
stereotyped �sporadic�.
Consequence: The Sensing pattern has the following benefits:

� Sensor classes have a common interface. Thus, the complexity
of the system is potentially reduced.

� Sensor division using the generalization relationship makes the
system more understandable and manageable.

� The model can be extended by adding new types of sensors.

The Sensing pattern has the following drawback:

� Using a single component for processing sensor data implies a
single point of failure.

5.2. Sensing Pattern instantiation

As said previously, a RT design pattern contains a set of varia-
tion points. Thus, to obtain a particular RT system model via pat-
tern instantiation, some choices associated with these variation
points are needed. The refinement of pattern model and the choice
of the suitable optional elements represent the first step of pattern
instantiation. The second step is based on model transformation by
renaming pattern elements and adding some specificities of a
given system. It automatically generates the systemmodel deploy-
ing the used pattern.

In this section, we propose to illustrate the Sensing pattern
instantiation through the design of Adaptive Cruise Control (ACC)
system (Tass BV, 2012) and Lane DepartureWarning (LDW) system



492 H. Marouane et al. / Journal of King Saud University – Computer and Information Sciences 30 (2018) 478–497
(Tass BV, 2012), which represent two examples of driver assistance
systems. We focus mainly on modeling the sensing module of
these systems. We also explain how this design issue can be facil-
itated by the instantiation of the Sensing pattern.

5.2.1. Example 1: Adaptive Cruise Control System
ACC system is an automotive application integrated and tested

in modern luxury cars such as Audi A8 (Tass BV, 2012). It aims at
reducing the risk of accidents by controlling the longitudinal veloc-
ity of a car and keeping safe distance to the preceeding vehicle.

ACC system uses vehicle sensors and two radars (long range
radar and short range radar). The radars are used to detect the
presence of a lead vehicle and to measure its speed and the dis-
tance between ACC-vehicle and the forward vehicle. The sensors
are used to measure sensor data (e.g., vehicle speed, acceleration
and throttle/brake positions). The sensor data are periodically
updated to maintain consistency with the current state of the
Fig. 7. UML class diagr
environment. The merge unit processes periodically the data pro-
vided by sensors to estimate the consistent state of a vehicle and
its environment. Moreover, this unit fuses the redundant data pro-
vided by the two radars to estimate the accuracy state of the
detected vehicle. These data are then stored in a RT database to
guarantee the temporal and the logical constraints. The controller
reads the stored data and calculates the desired acceleration or
deceleration to maintain the safety distance. Thus, these data con-
stitute the derived data.

Fig. 7 illustrates the Sensing pattern static view instantiation. It
shows that the fundamental elements defined with the �manda-
tory� stereotype are instantiated. Thus, the FusionUnit, Sensor,
ExteroceptiveSensor, ProprioceptiveSensor, ControlledVehicle,
TrackedElement, Measurement, SensorData and DerivedData
classes are instantiated respectively by MergeUnit, Sensor, Radar,
VehicleSensor, Car, Vehicle, Measurement, SensorData and Derived-
Data classes.
am of ACC system.



H. Marouane et al. / Journal of King Saud University – Computer and Information Sciences 30 (2018) 478–497 493
Moreover, Fig. 7 shows that the optional elements are instanti-
ated since the ACC system uses sensors that provide redundant
data. Therefore, the operations mergeData() and getValue() are
instantiated respectively by the operations fuseData() and getVa-
lue(). Each class instantiated from the pattern is stereotyped auto-
matically �PatternClass�. For example, Radar class plays the role
of an exteroceptive sensor in the Sensing pattern. Thus, the pat-
ternName is Sensing, while the role is ExteroceptiveSensor (i.e., the
stereotype has the following format: �PatternClass{Sensing,
ExteroceptiveSensor}�).

Finally, the specific elements, related to ACC system, are
added: the type and maxObject attributes relative to the Radar
class. Thus, they are defined with the �ApplicationAttribute�
stereotype. As for the other attributes, they are instantiated
from the pattern and they are stereotyped automatically
�PatternAttribute�. For example, the attribute accuracy, which
is associated to the Sensor class, is instantiated by the attribute
precision. This attribute is defined with the �PatternAttribute
{Sensing, Sensor.accuracy}� stereotype. In the same way, all
operations are instantiated from the pattern. So, they are stereo-
typed �PatternOperation�.

Fig. 8 represents the pattern behavioral view instantiation. It
shows that all lifelines and messages are instantiated from the pat-
tern and are respectively stereotyped �PatternLifeline� and
�PatternMessage�.

The instantiation of the RT Sensing pattern functional view is
represented in Fig. 9 in which all actors and use cases are instanti-
ated from the use case diagram of the pattern. Therefore, they are
respectively labeled with the stereotypes �PatternActor� and
�PatternUseCase�.
5.2.2. Example 2: lane departure warning system
LDW system is a vehicle lateral guidance system which warns

the driver when the vehicle is unintentionally drifting out of its
lane (Tass BV, 2012). This system maintains the vehicle position
by detecting lane markings using a camera sensor.
Fig. 8. UML sequence dia
The data acquisition of LDW system consists of vehicle sensors
and a camera. The sensors are used to determine the vehicle state
(e.g. vehicle speed and steering angle), while the camera, it is used
to register a monochrome view of the road in front of the vehicle.
The processing algorithms extract the desired information, such as
lane width and vehicle lateral deviation. These data are stored in a
RT database taking into account the RT data and transactions
constraints.

The controller calculates the distance between the lines and the
vehicle using the information collected by the camera and sensors
in order to determine the appropriate action. If the distance
between the lines and the vehicle is less than 0.3 m and the light
indicator is not activated, then the system alerts the driver by a
visual warning. The LDW system controls the sensors state based
on a data flag component.

The instantiation of the functional view of the RT Sensing pat-
tern is represented in Fig. 10. This figure shows that the Merge data
use case is omitted since the used sensors do not provide redun-
dant data or complementary data.

Fig. 11 represents the instantiation of the behavior view of the
LDW data acquisition module. It illustrates that the optional mes-
sages relative to the data fusion are omitted since the mergeData()
and getValue() methods are not instantiated in the corresponding
system class diagram (Fig. 12).

Fig. 12 reveals that the DataFlag class with the controlSensorS-
tate() method is added as a specific class in the class diagram of
LDW system. Therefore, the DataFlag class is specified with the
�ApplicationClass� stereotype. In addition, the controlSensorS-
tate() method is defined with the �ApplicationOperation�
stereotype.
6. DP-RTDB profile implementation

Several techniques were developed for model validation. In this
paper, we focus on approaches that evaluate UML diagrams with
OCL invariants, that are supported by tools. Currently, there are
gram of ACC system.



Fig. 11. UML sequence diagram of LDW system.

Fig. 10. UML use case diagram of LDW system.

Fig. 9. UML use case diagram of ACC system.

494 H. Marouane et al. / Journal of King Saud University – Computer and Information Sciences 30 (2018) 478–497



Fig. 12. UML class diagram of LDW system.

H. Marouane et al. / Journal of King Saud University – Computer and Information Sciences 30 (2018) 478–497 495
few tools used to analyze UMLmodels and OCL constraints, such as
USE (UML Specification Environment) (Ziemann and Gogolla,
2003), Papyrus2 and MagicDraw3. The USE tool does not support
the UML profiles specification, while Papyrus tool allows the profiles
management. These two tools are dedicated to check UML class
models with OCL constraints. MagicDraw tool provides extensive
support for UML profiles and allows checking UML models (e.g. class,
sequence and use case models) with OCL invariants. For these rea-
sons, we propose to implement our DP-RTDB profile using Magic-
Draw UML tool. Indeed, MagicDraw includes all the facilities for
defining and applying UML profiles efficiently (e.g., import UML
meta-classes and modeling stereotypes). This tool specifies con-
2 http://www.papyrusuml.org.
3 http://www.magicdraw.com.
straints on model elements, constraints on stereotypes and con-
straints on elements of UML meta-model. In addition, it analyzes
the chosen model and evaluates the corresponding OCL expressions
on each model element. For example, if a constraint is defined in the
context of the meta-class Class, it will be evaluated for each class in
the model.

When designing our profile, we customized the UML2 diagrams
(i.e. class, use case and sequence diagrams) by adding the relevant
stereotypes defined in the DP-RTDB profile. The creation of the pro-
posed stereotypes is illustrated in Fig. 13.

When the DP-RTDB profile is successfully defined, it is embed-
ded within MagicDraw UML profiles list (Fig. 14) in order to sim-
plify the manipulation of the stereotypes and their related
properties.

Afterwards, we specified the proposed OCL constraints for UML
elements at the profile meta-model level in order to verify

http://www.papyrusuml.org
http://www.magicdraw.com


Fig. 13. Creation of the DP-RTDB profile meta-model within MagicDraw UML tool.

Fig. 14. DP-RTDB profile within MagicDraw UML profiles list.

Fig. 15. Example of an OCL constraint.

Fig. 16. Screenshot indicating validation error of an OCL constraint.

Fig. 17. Screenshot indicating the correctness of the pattern use case diagram.

496 H. Marouane et al. / Journal of King Saud University – Computer and Information Sciences 30 (2018) 478–497
variation points coherence. Fig. 15 shows an example of an OCL
constraint that allows verifying if an association related to an
optional class is optional.

Then, we defined several validation rules using OCL constraints
defined for covering all the main aspects of model correctness and
consistency. These validation rules will be defined in the context of
stereotypes. After that, we applied �ValidationSuite� stereotype
to the profile itself to enable using all its validation rules to check
the pattern diagrams. Fig. 16 presents a screenshot from Magic-
Draw UML tool displaying a result of the validation of the UML
class diagram of Sensing pattern. This validation result is not con-
forming to the validation rule shown in Fig. 15. In fact, this figure
demonstrates that if we have a mandatory class associated to an
optional class with an association stereotyped �mandatory�,
then an error is displayed. However, Fig. 17 reveals that the pattern
use case diagram is consistent and correct since it is conform to the
defined OCL constraints. Similarly, we validated the consistency
and the correctness of the UML class diagram and the UML
sequence diagram of the pattern.



H. Marouane et al. / Journal of King Saud University – Computer and Information Sciences 30 (2018) 478–497 497
7. Conclusion and future work

Designing RT database applications is a delicate task since data
and transactions timing constraints must be taken into account
during the design process. Therefore, it is necessary to benefit from
the existing reusable design techniques, such as patterns. In order
to design more comprehensible and more flexible RT design pat-
terns, we proposed, in this paper, a UML profile for RT design pat-
terns representation. This profile includes various extensions of
UML diagrams (i.e. class diagram, use case diagram and sequence
diagram). These extensions allow distinguishing between the fun-
damental elements and the variable elements. They also allow
identifying easily pattern elements in the systemmodel. Moreover,
this profile provides extensions that specify explicitly the RT fea-
tures of RT database applications. Besides, we introduced some
OCL constraints that may be used as validation rules to check the
pattern diagrams correctness. Then, we illutrated the defined pro-
file through the specification of a RT design pattern and its instan-
tiation. To develop our profile, we used MagicDraw UML tool.
Finally, we checked the correctness and the consistency of each
pattern diagram by using a set of OCL constraints.

In our future works, we plan to define OCL constrains for check-
ing the inter-diagrams consistency (i.e., these constraints allow
maintaining consistency between the different views describing
the pattern). These constraints will be implemented and validated,
then added to the DP-RTDB profile. We also plan to build a catalog
of RT-DB patterns and develop a methodology to build RT-DB
applications using patterns.

References

Amditis, A., Bimpas, M., Thomaidis, G., Tsogas, M., Netto, M., Mammar, S., Beutner,
A., Möhler, N., Wirthgen, T., Zipser, S., Etemad, A., Lio, M.D., Cicilloni, R., 2010. A
situation-adaptive lane-keeping support system: overview of the SAFELANE
approach. IEEE Intelligent Transp. Syst. Soc. 11 (3), 617–629.

Amirijoo, M., Hansson, J., Son, S.H., 2006. Specification and management of QoS in
real-time databases supporting imprecise computations. IEEE Trans. Comput.
55 (3), 304–319.

Apvrille, L., Courtiat, J.-P., Lohr, C., Saqui-Sannes, P.D., 2004. TURTLE: A real-time
UML profile supported by a formal validation toolkit. IEEE Trans. Software Eng.
30, 473–487.

Arnaud, N., 2008. Fiabiliser la rutilisation des patrons par une approche oriente
compltude, variabilit et gnricit des spcifications, Ph.D. thesis, Universit Joseph
Fourier-Grenoble I.

Bouassida, N., Ben-Abdallah, H., 2006. Extending UML to guide design pattern reuse.
In: Sixth Arab International Conference On Computer Science Applications,
Dubai.

Dong, J., Sheng, Y., Zhang, K., 2007. In: Visualizing Design Patterns in Their
Applications and Compositions. IEEE Transactions on Software Engineering.
IEEE Press, Piscataway, NJ, USA, pp. 433–453.
Douglass, B.P., 2004. Real Time UML. Addison Wesley Longman Publishing,
Redwood City, CA, USA.

E.C.P. release, Road safety: new statistics call for fresh efforts to save lives on EU
roads (2016). http://europa.eu/rapid/press-releaseIP-16-863en.htm.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co.
Inc, Boston, MA, USA.

Idoudi, N., Louati, N., Duvallet, C., Bouaziz, R., Sadeg, B., Gargouri, faiez, 2008. A
Framework to model real-time databases. Int. J. Comput. Inf. Sci. 6 (1), 19–28.

Loo, K.N., Lee, S.P., Chiew, T.K., 2012. UML extension for defining the interaction
variants of design patterns. J. IEEE Software 29 (5), 64–72.

Louati, N., Bouaziz, R., Duvallet, C., Sadeg, B., 2012. A UML/MARTE profile for real-
time databases. IEEE/ACIS 11th International Conference on Computer and
Information Science. IEEE, Shanghai, pp. 664–668.

Marouane, H., Makni, A., Bouaziz, R., Duvallet, C., Sadeg, B., 2012. A real-time design
pattern for advanced driver assistance systems. Proceedings of 17th European
conference on Pattern Languages of Programs (EuroPLoP 2012). Springer,
Kloster Irsee, Germany. C6:1–C6:11.

OMG, 2003. Uml 2.0 OCL specification, available from: https://www.lri.fr/wolff/
teach-material/2008-09/IFIPS-VnV/UML2.0OCL-specification.pdf.

OMG, A UML Profile for MARTE (2011). http://www.omg.org/spec/MARTE/1.1/.
OMG, Uml Profile for Schedulability, Performance, and Time Specification, Version

1.1 (2005). http://www.omg.org/cgi-bin/doc?formal/2005-01-02.
Park, J., Lee, S.-W., Rine, D.C., 2013. Uml design pattern metamodel-level constraints

for the maintenance of software evolution. Software: Practice Exp. 43 (7), 835–
866.

Prestl, W., Sauer, T., Steinle, J., Tschernoster, O., 2000. The BMW active cruise control
ACC. SAE Trans. 109 (7), 119–125.

Ramamritham, K., 1993. Real-time database. Int. J. Distributed Parallel Databases 1
(2), 199–226.

Ramamritham, K., Pu, C., 1995. A formal characterization of epsilon serialisability.
IEEE Trans. J. Knowl. Data Eng. 7 (6), 997–1007.

Reinhartz-Berger, I., Sturm, A., 2009. Utilizing domain models for application design
and validation. Inf. Softw. Technol. 51 (8), 1275–1289.

Rekhis, S., Bouassida, N., Duvallet, C., Bouaziz, R., Sadeg, B., 2010. A UML-profile for
domain specific patterns: application to real-time. DE@CAISE’10: the Domain
Engineering workshop of the 22nd International Conference on Advanced
Information Systems Engineering (CAiSE’10), Hammamet, Tunisia, pp. 32–46.

Rekhis, S., Bouassida, N., Bouaziz, R., Duvallet, C., Sadeg, B., 2013. Domain
Engineering: Product Lines, Languages, and Conceptual Models. Springer,
Berlin Heidelberg. Ch. Modeling Real-Time Design Patterns with the UML-
RTDP Profile, pp. 59–82..

Rumbaugh, J., Jacobson, I., Booch, G., 1999. The Unified Modeling Language
Reference Manual, Pearson Higher Education.

Stankovic, J.A., Son, S.H., Hansson, J., 1999. Misconceptions about real-time
databases. IEEE Comput. 32 (6), 29–36.

Sunyé, G., Guennec, A.L., Jézéquel, J.-M., 2000. Design patterns application in uml.
14th European Conference Sophia Antipolis and Cannes. Springer, Berlin
Heidelberg, pp. 44–62. http://dx.doi.org/10.1007/3-540-45102-13.

T. Tass BV, Prescan help (2012). https://tass-safe.com/en/downloads.
Yin, R.K., 2014. Case Study Research: Design and Methods. In: 5th Edition, SAGE

Publications, p. 312.
Ziadi, T., Helouet, L., Jezequel, J.-M., 2003. Towards a uml profile for software

product lines. Proceedings of the 5th International Workshop on Product Family
Engineering. Springer, Berlin Heidelberg, New York, pp. 129–139. http://dx.doi.
org/10.1007/978-3-540-24667-110.

Ziemann, P., Gogolla, M., 2003. Validating OCL specifications with the use tool an
example based on the BART case study. Electron. Notes Theor. Comput. Sci. 80,
157–169. http://dx.doi.org/10.1016/S1571-0661(04)80816-8.

http://refhub.elsevier.com/S1319-1578(16)30115-X/h0005
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0005
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0005
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0005
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0010
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0010
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0010
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0015
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0015
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0015
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0030
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0030
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0030
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0035
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0035
http://europa.eu/rapid/press-releaseIP-16-863en.htm
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0045
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0045
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0045
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0050
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0050
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0055
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0055
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0060
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0060
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0060
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0065
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0065
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0065
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0065
https://www.lri.fr/wolff/teach-material/2008-09/IFIPS-VnV/UML2.0OCL-specification.pdf
https://www.lri.fr/wolff/teach-material/2008-09/IFIPS-VnV/UML2.0OCL-specification.pdf
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/cgi-bin/doc?formal/2005-01-02
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0085
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0085
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0085
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0090
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0090
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0095
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0095
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0100
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0100
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0105
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0105
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0110
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0110
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0110
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0110
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0115
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0115
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0115
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0115
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0125
http://refhub.elsevier.com/S1319-1578(16)30115-X/h0125
http://dx.doi.org/10.1007/3-540-45102-13
https://tass-safe.com/en/downloads
http://dx.doi.org/10.1007/978-3-540-24667-110
http://dx.doi.org/10.1007/978-3-540-24667-110
http://dx.doi.org/10.1016/S1571-0661(04)80816-8

	An UML profile for representing real-time design patterns
	1 Introduction
	2 Related work
	2.1 UML Profiles for patterns representation
	2.1.1 UML Profiles for patterns specification
	2.1.2 UML Profiles for patterns instantiation
	2.1.3 UML Profiles for specification and instantiation of patterns

	2.2 RT UML profiles

	3 DP-RTDB profile
	3.1 UML extensions for modeling RT database features
	3.2 UML extensions for patterns specification
	3.3 UML extensions for patterns instantiation
	3.4 Definition of OCL constraints
	3.5 Evaluation of the DP-RTDB profile

	4 Case study methodology for UML profile evaluation
	4.1 Determining and elaborating the research questions
	4.2 Conducting the case study
	4.2.1 The analysis unit
	4.2.2 Questionnaire
	4.2.3 Design solution

	4.3 Data analysis and evaluation

	5 Case study example
	5.1 Pattern specification
	5.2 Sensing Pattern instantiation
	5.2.1 Example 1: Adaptive Cruise Control System
	5.2.2 Example 2: lane departure warning system


	6 DP-RTDB profile implementation
	7 Conclusion and future work
	References


