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Abstract The study proposes an innovative Predictive Resource Management Framework

(PRMF) to overcome the drawbacks of the reactive Cloud resource management approach. Perfor-

mance of PRMF was compared with that of a reactive approach by deploying a timesheet applica-

tion on the Cloud. Key metrics of the simulated workload patterns were monitored and analyzed

offline using information gain module present in PRMF to determine the key evaluation metric.

Subsequently, the best-fit model for the key evaluation metric among Autoregressive Integrated

Moving Average (ARIMA) (1 6 p 6 4, 0 < d< 2, 1 6 q 6 4), exponential smoothening (Single,

Double & Triple) and Hidden Markov Model present in the PRMF library were determined.

Best-fit model was used for predicting key evaluation metric. During real time, the validation mod-

ule of PRMF would continuously compare the actual and predicted key evaluation metric. Best-fit

model would be re-evaluated if 95% confidence level of the predicted value breaches the actual met-

ric. For experiments performed in the current study, Request Arrival and ARIMA (2, 1, 3) were

found to be the key evaluation metric and the best-fit model respectively. Proposed predictive

approach performed better than the reactive approach while provisioning/deprovisioning instances

during the real time experiments.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Enterprises have started to embrace Cloud as an IT delivery

model by migrating majority of their application workloads
on to it. These applications can be categorized as read, write
and read–write intensive based on their resource consumption.

Alternatively they could also be grouped into on-off, high-
growth, periodic and aperiodic-burst depending on their work-
load (Mell and Mell, 2011; Mulia et al., 2013; Armbrust et al.,

2010). Even though Cloud provides reliable resources, it also
poses a significant challenge in allocating and managing
resources dynamically across applications. There are several
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optimized resource management methods that are already
available such as linear scheduling strategy, policy-based
resource allocation and location-aware dynamic resource allo-

cation (Anuradha and Sumathi, 2014; Bharti and Kaur, 2014;
Mary, 2013). Majority of the above mentioned studies ensure
Cloud resources are optimally used from a provider perspec-

tive. However, they fail to validate whether the provisioned
resources were optimally used by a particular application.
Both, the Cloud infrastructure service provider and the con-

sumer, get optimal benefits when the appropriate amount of
resources for an application is provisioned/deprovisioned on-
demand. It must be noted that in a Cloud charging model,
the end-user perspective is a pivotal evaluation metric to sus-

tain business.
Existing resource management methods such as those pro-

vided by AmazonWeb Services (AWS) Auto Scaling, Windows

Azure Autoscaling Application Block, Google AppEngine
orchestration framework and IBM Cloud virtual application
pattern are reactive. Reactive approach is an effective way to

improve system availability, optimize costs and reduce latency.
However, it exhibits an inherent lag between identifying
resource-demands and provisioning, which could lead to under

or over provisioning. Under-provisioning will cause Service
Level Agreements (SLA) violation while over provisioning will
result in resource wastage and higher cost (Arlitt and
Williamson, 1997; Gong et al., 2010; Herbst et al., 2013). More-

over reactive approach might not be able to fully address a wide
range of enterprise use-cases like rapid spikes, stoppage and
variable traffic patterns. Some of these challenges could be

addressed by preemptive scaling, but this is often undesirable
and may lead to instance trashing (scale up–scale down oscilla-
tions). An alternative option would be to run more servers than

required, which is not optimal from a cost perspective (Varia,
2010; Mao et al., 2010; Bunch et al., 2012; Kochut et al.,
2011). A more effective option would be using a predictive

approach, which is an emerging area of research.
It must be noted that reports on predictive resource provi-

sioning have made cardinal assumptions like (1) presence of
homogeneous Cloud infrastructure (2) access to the physical

hardware and (3) linear relationship between key metrics.
However, a typical enterprise consists of diverse applications
with different priorities, performance and resource require-

ments. Despite extensive studies on resource provisioning, lit-
erature has rarely reported studies about heterogeneity of the
workload and infrastructure (Hu et al., 2010). Incompatibility

that exists between the workload requirements and resource
present in the provisioned instances will lead to long schedul-
ing delays and overheads. Monitoring appropriate metrics to
identify the need to provision/deprovision resources is a key

factor. However, majority of the Cloud providers do not grant
access to the physical hardware on which the applications are
deployed. Hence, acquiring key metrics is a difficult proposi-

tion. Non-stationary nature of the enterprise workload pat-
terns and requirement of a heterogeneous environment
implies that most of these studies would not be viable in the

real world context (Khajeh-Hosseini et al., 2010).
Above mentioned limitations could be overcome by adopt-

ing an appropriate framework to monitor, acquire and analyze

key metrics involved in the Cloud resource management. An
ideal framework should identify a workload, suitable metric
and an appropriate algorithm to provision/deprovision
resources on-demand. Given the diverse nature of enterprise
workloads, identifying key evaluation metric(s) and an appro-
priate algorithm to provision/deprovision resources would be

an efficient alternative to an ideal framework. Key contribution
of the current study was to develop such a resource manage-
ment framework (PRMF), which would employ statistical fea-

ture selection technique to identify key evaluation metric for a
given workload pattern and determine a best-fit algorithm from
a set of algorithms to provision/deprovision virtual machine

(VM) instances using a predictive approach. The current study
applied simulated workload patterns on an on-off application
and evaluated the performance of PRMF as compared to a
reactive approach. Results of the study have been presented

along with the ways of extending it to other workload patterns.

2. Related work

Reports on the Predictive Resource Management Frameworks
could be categorized as studies that use (a) reactive metrics, lin-
ear modeling and simulation (Iqbal et al., 2009, 2010; Xiong

et al., 2011; Bennani and Menasce, 2005; Bhulai et al., 2007;
Shi et al., 2011; Bankole and Ajila, 2013), (b) predictive met-
rics, linear modeling and simulation (Wang et al., 2014;

Tammaro et al., 2011), (c) predictive algorithms and work
on non-stationary workloads (Han et al., 2013; Deng et al.,
2013; Calheiros et al., 2011, 2014), and (d) intrusive methods

(Elprinc, 2013; Kim et al., 2011; Ali-Eldin et al., 2012;
Kouki et al., 2014, 2015).
Approach
 Metrics
Real-time load balancer logs analysis

(Iqbal et al., 2009, 2010)
Response time
Machine learning techniques (Xiong

et al., 2011)
Memory and CPU
Queue and combinatorial search

techniques (Bennani and Menasce,

2005)
Response time and

throughput
Queue based approach (Bhulai et al.,

2007)
Response time
linear and queuing model (Shi et al.,

2011)
Response time
Machine learning and Linear

Regression (Bankole and Ajila, 2013)
Response time,

Throughput and CPU

utilization
Queue theory and exponential

smoothing (Wang et al., 2014)
Arrival rate
Data-mining algorithms (Tammaro

et al., 2011)
Arrival rate & Teardown

time
ARIMA model Han et al., 2013
 Arrival rate/departure rate
ARIMA model Deng et al., 2013;

Calheiros et al., 2011, 2014
Request processed/

through put
Policy based provisioning (Elprinc,

2013)
CPU, Memory and

response time
Machine learning technique (Kim

et al., 2011)
Execution time/

Throughput
Queue based provisioning and

deprovisioning (Ali-Eldin et al., 2012)
Request processed/

Throughput
Policy based provisioning and

deprovisioning (Kouki et al., 2014,

2015)
Workload/Throughput
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Non-stationary workload is a salient feature of an enterprise

application. It must be noted that the linear modeling tech-
niques would not be able to accommodate larger variance in
the workload. PRMF consists of algorithms that could accu-

rately predict non-stationary workloads and therefore would
be able to overcome the limitations of the aforementioned
studies (Iqbal et al., 2009, 2010; Xiong et al., 2011; Bennani
and Menasce, 2005; Bhulai et al., 2007; Shi et al., 2011;

Bankole and Ajila, 2013; Wang et al., 2014; Tammaro et al.,
2011).

While a few studies have attempted to handle non-

stationary workloads (Han et al., 2013; Deng et al., 2013;
Calheiros et al., 2011, 2014), all of the above-mentioned
studies have fixed metrics to identify the resource need

and have no real-time feedback. In a marked difference,
the current study (PRMF) derived the proactive metric
based on the workload using statistical feature selection
technique. PRMF is designed to support dynamic nature

of the application workload using a real-time feedback
mechanism.

Deprovisioning is also an important phenomena of the

Cloud resource management and has significant bearing on
Cloud charging model. All the studies mentioned above apart
from Ali-Eldin et al. (2012), Kouki et al. (2014, 2015) have

rarely reported on resource deprovisioning. While the current
study is non-intrusive unlike (Elprinc, 2013; Kim et al., 2011;
Ali-Eldin et al., 2012; Kouki et al., 2014, 2015), PRMF has

considered both provisioning/deprovisioning for an enterprise
application.
3. Proposed approach

Reactive rule-based techniques and majority of the
reported predictive approaches use fixed metrics (such as
CPU, memory and response time) irrespective of the

workload to provision/deprovision resources as described
in algorithm 1 (Varia, 2010; Mao et al., 2010; Bunch
et al., 2012; Kochut et al., 2011; Iqbal et al., 2009,

2010; Xiong et al., 2011; Bennani and Menasce, 2005;
Bhulai et al., 2007; Shi et al., 2011; Bankole and Ajila,
2013; Wang et al., 2014; Tammaro et al., 2011; Han

et al., 2013; Deng et al., 2013; Calheiros et al., 2011,
2014; Elprinc, 2013; Kim et al., 2011; Ali-Eldin et al.,
2012; Kouki et al., 2014, 2015). Deploying fixed metrics

for varying workload may not ensure optimal provision-
ing/deprovisioning of resources. Therefore, the above men-
tioned studies might not perform as well as expected. As
a marked difference, the current study, dynamically

derives the key evaluation metric using a statistical tech-
nique. Such a methodology along with the feedback loop
would enable the proposed framework to determine

appropriate metrics in case of large variance in the work-
load. This key evaluation metric would be subsequently
used to provision/deprovision resources as described in

algorithm 2. It must also be noted that models are cho-
sen based on the best-fit and might change according to
the metrics.
Algorithm 1: Provisioning and deprovisioning in a rule-based

approach

Step 1. Assign user request to VM instances

Step 2. Continuously monitor individual instances using metrics

like CPU and memory

Step 3. If the monitored metrics imply insufficient infrastructure

capacity to process the assigned request as per the governance

policy

Step 3a. Hold or terminate the user request

Step 3b. Provision additional VM instances

Step 3c. Resubmit the request to the new VM instance if the

request was on hold

Step 4. Else assigned VM would continue processing the user

requests

Step 5. If the resources are deemed surplus as defined by the

governance policy

Step 5a. Deprovision the excess instances

Step 7. Else retain all the active instances

Step 8: Repeat steps 1–8 for all the user requests

Algorithm 2: Provisioning and deprovisioning in the proposed

approach

Step 1. Dry run application/workload using policy-driven

approach and collect all available metrics along with the

corresponding instance-state (provisioned/de-provisioned)

Offline analysis

Step 2. Select business relevant evaluation metrics from the

collected metrics

Step 3. Identify the most impactful metric for provisioning/

deprovisioning instances using statistical feature-selection

technique

Step 4. Build the mapping between workload and the instance

state based on the identified significant metric

Real time implementation

Step 5. Predict the identified significant metric using an

appropriate model

Step 6. Monitor the real time significant metric and continuously

compare it with the predicted metric

Step 7. If the real time metric is not within ±95% confidence

level of the predicted metric

Step 7a. Choose an appropriate model using the real time value

Step 8. Else continue

Step 9. If the current infrastructure capacity is deemed insufficient

to process the predicted workload based on the mapping built in

step 4

Step 9a. Provision additional VM instances

Step 10. Assign user request to VM instances

Step 11. If the resources are deemed surplus to process the

predicted workload

Step 11a. Deprovision the excess VM instances

Step 12. Else retain all the active instances

Step 13. Repeat steps 5–12 for all the user requests

The experimental setup and the data flow of the proposed
approach are detailed in the subsequent section.
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4. Experimental setup and data flow

Timesheet is a typical example of a global enterprise On/Off
application, which could make use of the Cloud features such

as pay-per-use and elasticity most efficiently (Mulia et al.,
2013). Very large number of end users and short active period
make it an ideal candidate for the study. In the current study

Amazon AWS t2.micro instance, Time and Expense Manage-
ment System (TEMS), HP JMeter, AWS Elastic Load bal-
ancer, MYSQL DB etc., was used to build the experimental
setup as shown in Fig. 1.

TEMS application was set up using Apache Webserver with
MOD-PHP and MYSQL database, while java was used to
setup HP JMeter. Web request from HP JMeter were sent to

the application elastic load balancer, which then forwards
them to the application server farm. User requests were redi-
rected to the database server based on their actions performed

on the TEMS System. Both TEMS and HP JMeter were setup
on the AWS t2.micro instances. Detailed metrics of all the
instances were acquired, using Amazon Cloud monitoring ser-

vices (Amazon CloudWatch). Metrics were analyzed offline
using PRMF, which consists of a library of time-series/
stochastic models and a validation module. While the former
module was used to analyze data offline, the latter would facil-

itate the system to adapt itself to drastic changes in the actual
workload pattern by providing a feedback.

4.1. Simulation of end-user workload

Historical data, which comprises of information such as source
IP, time stamp, request ID, data size of the request over a
Figure 1 Experimental setup of the TEMS applica
period of three years were extracted from the log files of our
enterprise timesheet application. Request Arrival was deter-
mined by computing the number of request that the time sheet

application received per minute. The current study applied
Quantile–Quantile (QQ) plot on the Request Arrival to deter-
mine its distribution. QQ Plot is a commonly used statistical

graph to validate the distributional assumption of a data set.
Distribution of the data set is identified by visual inspection
of the plot and hence QQ plot is not an objective measure.

Therefore, after identifying the statistical distribution using
QQ plot, Shapiro–Wilk, a commonly used statistical test,
was used to objectively validate the same (Dixon and
Massey, 1957).

HP JMeter was used to simulate Web requests, which
would follow the historically observed enterprise patterns
based on the identified statistical distribution. Current study

assumes 200,000 employees filling their time sheet once during
a fortnight. The experiments were run to simulate the time
sheet filling activity for a duration of four hours. Three sepa-

rate JMeter scripts were used to generate (1) Consistent load,
(2) Short duration rapid spikes and (3) Long duration rapid
spikes. Rapid spikes are an enterprise phenomenon, which

necessitates appropriate provisioning and deprovisioning of
resources. A typical workload pattern would consist of a
steady state-load intertwined with short and long spikes. The
current study achieved this using shell scripts and a java pro-

gram as detailed below.
One experimental run consists of applying the workload

pattern described above on the TEMS application. For such

a run, the consistent load would have 9/12 concurrent users
per second (representing �150 k unique user requests). Mutu-
tion and the resource management framework.
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ally exclusive smaller spikes (about 16/17 concurrent user, for
a 20 min window using a 20 k user requests) and larger spikes
(32/33 concurrent users, for a 20 min window using 40 k user

requests) were overlaid randomly on the steady workload to
introduce smaller and larger variances respectively as shown
in Fig. 2. After completion of every experimental run the sim-

ulation environment was reset. Thirty experimental runs were
performed during the current study.

4.2. Rules for provisioning/deprovisioning instances

Based on the reactive resource management policies observed
in enterprises, Amazon Auto Scale (AAS) group policy was

setup to provision/deprovision the instances (Varia, 2010).
Accordingly, minimum and maximum number of t2 micro
instances was set to 1 and 5 respectively. A cool-off period
of about 300 s was set between instance provisioning and

deprovisioning. Instances were provisioned when the average
CPU usage of the group reached more than 75% for 5 consec-
utive readings or when the sum of 5 consecutive readings of

HTTP_5XX errors reached more than 50. Server instances
were deprovisioned if the average CPU usage of the group
reached below 25% for 5 consecutive readings.

4.3. Data acquisition

Instances were provisioned based on the average CPU usage.
During each run, CloudWatch monitoring tool was used to

acquire all the available evaluation metrics at the rate of
one per minute along with the instance state. Latency, Surge
Queue Length, Spill over Count, Request Count, HTTP

Code_ELB_5XX, HTTP Code_Backend_2XX, HTTP
Code_Backend_3XX, HTTP Code_Backend_4XX, HTTP
Code_Backend_5XX, CPU Utilization, Memory Utilization,

Disk Read Bytes, Disk Write Bytes, Network-In Bytes and
Network-Out Bytes were the acquired metrics.

Parameters such as Disk Read/Write Operations and Net-

work Packets In/Out Operations were captured but not con-
sidered for the current study as they were similar to Disk
Read/Write Bytes and Network In/Out Bytes respectively.
Request Count and HTTPCode_Backend_2XX represent the

same attribute and hence the latter was only considered.
Latency and Request Arrival are inversely proportional to
Figure 2 Sample workload pat
each other and hence the latter was used. Request Arrival is
a derived metric and has been computed using the formula
below.

Request Arrival ¼ ðSurgeQueueLengthþ SpilloverCount

þHTTPCode ELB 5XX

þHTTPCode Backend 2XX

þHTTPCode Backend 3XX

þHTTPCode Backend 4XX

þHTTPCode Backend 5XXÞ
5. Predictive Resource Management Framework (PRMF)

PRMF in its current form consists of a statistical feature selec-

tion technique, a library of time-series/stochastic algorithm
and a validation module. For a given workload, the key eval-
uation metric and the appropriate algorithm would be evalu-

ated through an offline analysis. The best-fit algorithm for
the particular workload would be applied on the key evalua-
tion metric. Subsequently, PRMF also applies feedback by

constantly monitoring the current workloads and updates the
predictive algorithm if required.

5.1. Statistical feature selection technique

Most commonly used feature selection techniques are Mutual
Information (MI), Information Gain (IG) and Chi-Square
Test (Hua et al., 2010; Forman, 2004). MI of two random vari-

ables is defined as a measure of the mutual dependence
between them and quantifies the ‘‘amount of information”
obtained about one random variable, through the other ran-

dom variable. Information gain is used to define a preferred
sequence of attributes to investigate and most rapidly narrow
down the state of random variable. Chi-square test is a statis-

tical method for assessing the goodness-of-fit between a set of
observed values and those expected theoretically. The current
study applied information gain on Request Arrival, CPU
Utilization, Memory Utilization, Disk Read Bytes, Disk Write

Bytes, Network-In Bytes and Network-Out Bytes to determine
which one of the metric has maximal impact on the instance
state (provisioning/deprovisioning of instance).
tern for an experimental run.
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5.2. IG definition

Let T denote a set of training examples, each of the form (X,
Y) = (X1, X2, X3, . . ., Xk, Y) where Xa 2 Vals (a) is the value
of the ath attribute of example X and Y is the corresponding

class label. The information gain for an attribute ‘‘a” is defined
in terms of entropy H () as follows:

IGðT; aÞ¼HðTÞ�
X

v2valsðaÞ

jfX2TjXa¼Vgj
jTj :HðfX2TjXa¼VgÞ
5.3. Instance-state mapping

Subsequently, the key evaluation metric and the corresponding

instance-state along with their respective time stamps for the
thirty experimental runs were stored. Median values for the
key evaluation metric and instance-state were computed for
every time-instance and decimal numbers if present were

rounded to their nearest integer values. Polynomial regression
technique was used to model the relationship that existed
between the key evaluation metric and instance-state (Dixon

and Massey, 1957). Regression equation thus obtained was
leveraged in the real-time implementation to initiate additional
VM request or to deprovision excess ones.

5.4. Algorithms in PRMF library

ARIMA and exponential smoothening models are the most

widely used techniques for solving time-series predictions and
both of them provide complimentary approaches to the same
(Dixon and Massey, 1957; Huber and Ronchetti, 2011;
Hurvich and Tsai, 1988). While exponential smoothing models

are based on trend and seasonality in the data, ARIMA mod-
els describe the autocorrelations present in the data. It must be
noted that the enterprise workload has change points of prob-

ability. Under such circumstances, a time series model might
not be able to accommodate larger variance. Therefore Hidden
Markov Model (HMM) was also included in the PRMF

library.
Hidden Markov Models (HMM) are a class of discrete-

time stochastic process consisting of recorded observations

yt and hidden states xt{1, 2. . .J} generated by a Markov
chain. For observations y= {y1, y2. . .yt} and hidden states
x = {x1, x2. . .xt}, the model’s joint distribution could be
defined as

pðx; yÞ ¼ p0ðx1Þpðy1jx1Þ
Yt

t¼2

pðxtjxt�1;AÞpðy1tjxt;£Þ

where A ¼ ½Aij�ki;j¼1 is the transition matrix with Aij ¼
Prðxt ¼ jjxt�1 ¼ iÞ; h ¼ fhkgkk¼1 as the emission parameters

and p0 as the initial probability distribution (Jackson, 2011).
All experimental output patterns (key evaluation metric) were
stored in a matrix and 95th percentile was computed for the

same, which was used as input to determine the best predictive
model as shown in Fig. 3.

Key evaluation metric was analyzed offline using ARIMA

(1 6 p 6 4, 0 < d < 2, 1 6 q 6 4), Exponential smoothening
techniques (Single, Double & Triple) and HMM (with three
states namely (a) low (b) steady and (c) high).
5.5. Evaluation of best-fit models

Akaike Information Criterion (AIC) is a measure of the rela-
tive quality of statistical models for a given set of data. AIC
of the model could be computed using the following equation;

AIC ¼ 2k� 2 lnðLÞ
L is the maximum value of the likelihood function for the

model and k is the number of estimated parameters in the
model. Model that exhibits the smallest AIC value is the
best-fit among the competing models. In the current study,

best-fit among ARIMA models was determined using AIC
metric (Akaike, 1987).

Best among the different groups of predictive models (best

ARIMA, exponential techniques and HMM present in the
PRMF library) could be determined by using either quantita-
tive measures like (a) error metrics in the estimation/validation

period, (d) residual diagnostics and (c) goodness-of-fit test or
qualitative evaluation (Maddala and Lahir, 1992). It must be
noted that among all the error metrics, Root Mean Squared

Error (RMSE) and Mean Absolute Error (MAE)/Mean Abso-
lute Percentage Error (MAPE) are used to compare models for
which errors are measured in the same units. However RMSE
is more sensitive to larger variance (error) and hence MAE or

MAPE is a more relevant criterion. Owing to the aforemen-
tioned reasons, MAE was used to identify the best-fit model
among ARIMA/exponential smoothening techniques/HMM

(i.e., the one which would fit majority of experimental output
patterns).

5.6. Real-Time Implementation using validation module

During the real-time implementation, validation module (a
java program) would continuously compare the actual metrics

with the model output as shown in Fig. 4.
Based on the predicted value, the feedback method of the

validation module will invoke AWS command-line APIs to
provision/deprovision instances. PRMF will re-evaluate the

best-fit algorithm using real-time metrics if the same breaches
the confidence interval of the model output (±95%) for five
continuous sample reading. Aforementioned approach was

executed for 30 real-time runs to verify the efficiency of the
PRMF. Time lag between resource demand and supply
observed during reactive and proposed predictive approach

were compared quantitatively.

6. Results and observations

Results of applying the QQ plot on historical record are shown
in Fig. 5. Visual inspection of the same indicates that the his-
torical data follow normal distribution.

Shapiro–Wilk statistic was found to be W = 0.9034
(±0.052) and p= 0.06584 (±0.0367). This also substantiates
that the historical data follow the normal distribution. Request
Arrival was found to be the metric with maximum information

gain in all the thirty experimental runs and hence was used as
the evaluation metric as shown in Table 1.

Polynomial Regression equation as shown in Fig. 6 was

used for designing the map. By substituting different values
of the predicted Request Arrival the current study could deter-
mine the instance state.



Figure 3 Initial (offline) experimental view of Predictive Resource Management Framework.

Figure 4 Real-time implementation of the Predictive Resource Management Framework.

Figure 5 Q–Q Plot for the historical records.
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ARIMA (2, 1, 3) model was found to be the best-fit among
selected ARIMA models, whose corresponding AIC values are
shown in Table 2.
MAE values of the five different models (ARIMA (2, 1, 3),
LES, DES, TES and HMM) are shown in Table 3. ARIMA
was found to be the best-fit and hence used as the algorithm

of choice during real time experiments.
PRMF was able to predict the arrival rate within the set

confidence level (±95%) for all the real-time runs. The best-
fit ARIMA model and the real-time user request for a sample

run is shown in Fig. 7a.
Instance count observed during the proposed approach was

found to be sensitive to swings in the workload patterns when

compared to the same during the reactive approach as shown
in Fig. 7b. This leads to appropriate amount of instances pro-
visioned/deprovisioned at a given time.

It was also observed that the reactive resource-provisioning
approach led to a larger number of user request rejections
(error count) as compared to that of the proposed approach

as shown in Fig. 8. A reduction in request rejection leads to
reduced wait time, more request processed and efficient utiliza-
tion of the available resources.



Table 1 IG weights of the metrics considered across the different experimental runs.

Run # Request CPU Memory Disk Read Disk Write Network In Network Out

Arrival Utilization Utilization Bytes Bytes Bytes Bytes

1 0.02316 0.01192 0.01872 0.01346 0.01318 0.01160 0.01372

2 0.02806 0.01809 0.01904 0.01558 0.01364 0.01902 0.01361

3 0.02418 0.01507 0.01045 0.00000 0.01296 0.01151 0.00000

4 0.02256 0.01370 0.01523 0.01883 0.01340 0.01436 0.01759

5 0.02764 0.01839 0.01077 0.01696 0.01037 0.01265 0.01045

6 0.02666 0.01510 0.01245 0.01050 0.01181 0.01344 0.01717

7 0.02968 0.01948 0.01770 0.01922 0.01255 0.00000 0.01036

8 0.02894 0.01809 0.01374 0.01016 0.01434 0.01566 0.01427

9 0.02104 0.01830 0.01078 0.00000 0.00000 0.01081 0.01302

10 0.02130 0.01486 0.01467 0.01079 0.01289 0.01188 0.01679

11 0.02059 0.01568 0.01050 0.01404 0.01380 0.01659 0.01106

12 0.02086 0.01479 0.01623 0.01673 0.01854 0.01936 0.01721

13 0.01956 0.01472 0.01714 0.01266 0.00000 0.01887 0.00000

14 0.02388 0.01468 0.01601 0.01278 0.01027 0.00000 0.01885

15 0.02404 0.01606 0.01864 0.01698 0.01529 0.01145 0.01799

16 0.02683 0.01857 0.01027 0.01041 0.01383 0.01523 0.01275

17 0.02630 0.01436 0.01139 0.00000 0.01768 0.01610 0.00000

18 0.01907 0.01097 0.01902 0.01321 0.01026 0.00000 0.01327

19 0.02762 0.01213 0.01638 0.01635 0.01148 0.01606 0.01210

20 0.02103 0.01112 0.01265 0.00000 0.01434 0.00000 0.01179

21 0.02965 0.01253 0.01409 0.01589 0.00000 0.01352 0.01277

22 0.02490 0.01797 0.01473 0.01113 0.01563 0.01219 0.01098

23 0.02462 0.01061 0.01307 0.00000 0.01172 0.01543 0.01532

24 0.02007 0.01634 0.01433 0.01223 0.01376 0.00000 0.01860

25 0.02489 0.01812 0.01739 0.00000 0.01574 0.01564 0.01931

26 0.01922 0.01703 0.01789 0.01936 0.00000 0.01120 0.01515

27 0.02584 0.01802 0.01234 0.01299 0.01110 0.01706 0.01455

28 0.02899 0.01905 0.01416 0.01567 0.00000 0.01010 0.00000

29 0.01931 0.01909 0.01522 0.00000 0.00000 0.01574 0.01599

30 0.02051 0.01361 0.01096 0.01050 0.01662 0.01495 0.01017

Figure 6 Determination of Instance state mapping by applying Polynomial Regression between median Request Arrival values and

instance state obtained during experimental runs.
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Table 2 Different ARIMA Models and their

AIC values.

ARIMA model order AIC

111 4514.716

211 4516.468

312 4516.962

112 4516.570

311 4517.191

113 4517.408

212 4517.817

412 4518.336

413 4514.287

411 4519.158

213 4510.903

114 4519.372

414 4521.947

214 4518.103

313 4512.287

314 4519.995

Table 3 Different models considered and

their MAE values.

Models considered MAE

ARIMA (2, 1, 3) 1201.934

LES 1639.805

DES 1682.127

TES 1242.409

HMM 1568.420
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7. Discussion and future work

Timesheet is neither a compute-intensive nor a memory-

intensive application and hence AWS t2.micro instances were
chosen for the study. It must be noted that server instances
of AWS could be spread across geography. AWS best practices
recommend to have the application setup spread across multi-

ple geographies for higher fault tolerance. In a marked differ-
ence, experimental setup for the current study was chosen from
the same geographical location to avoid significant time lag
Figure 7a Sample real time request
between instance request and provisioning/deprovisioning.
Owing to the aforementioned reasons, the efficiency of the pro-
posed approach would be significantly more if the server

instances were spread across geography. AWS has also pub-
lished best practices to reduce the instance startup time. These
suggested practices will have similar impact irrespective of the

resource provisioning approach (reactive or proposed). There-
fore, these were not considered in the current experimental
study. It must be noted that average of any metric is suscepti-

ble to the outliers. Hence, to accommodate larger variances
spread across the experimental runs, 95th percentile was used
as the key evaluation metric on the study.

Few studies on resource management have used a similar

methodology to that of the current study. However, objective
of those studies were to predict the resource demand based on
the reactive metrics (average CPU, average Memory), which

exhibit inherent time lag (Iqbal et al., 2009, 2010; Xiong
et al., 2011; Bennani and Menasce, 2005; Bhulai et al., 2007;
Shi et al., 2011; Bankole and Ajila, 2013). It must be noted that

the arrival rates have significant impact on the server response
time and hence could be a potentially better metric than aver-
age load (Wang et al., 2014; Tammaro et al., 2011; Han et al.,

2013). Results of the current study also concur with the same.
Container technology primarily concentrates on the appli-

cation portability and has limited influence on the VM’s star-
tup time. VM could be provisioned at a very short time period

using multiple container technologies such as Dockers
(Merkel, 2014). Applications on the VM would need an
approach to reduce the significant time lag that exists between

instantiated and active VM. Predictive systems, just like that
described in the current study, aim to reduce the time lag men-
tioned above and could be visualized as an accelerator compli-

menting the existing container technologies.
An enterprise scenario would present various workload

patterns. It must be noted that the evaluation metric, which

determines the Cloud resource management is dependent on
the application workload. Framework proposed in the current
study has used a statistical feature selection technique to iden-
tify key evaluation metric of any given workload pattern. For

different workload types the key evaluation metric identified
could be different and such a technique could reduce the neces-
sity for the dynamic identification of a workload pattern.

Although there are machine-learning techniques available to
identify the workload patterns, scope of the current study
was limited to propose a framework which, could identify a
with the fitted workload pattern.



Figure 7b Observed sample instance counts of reactive and proposed approaches.

Figure 8 Error count computed for the reactive and proposed approaches of a sample experimental run.
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significant metric and an algorithm to provision/deprovision

resources in an automated way.
Majority of the studies have assumed steady state load and

hence handling of controlled non stationary events was the

objective of the proposed approach. Experimental results indi-
cate that the proposed methodology could be considered as an
efficient alternative to the reactive method of Cloud resource

management while deploying applications exhibiting non-
stationary workload patterns. In the current study, simulations
of the workload were generated based on a comprehensive

study of the historic patterns. This represents a controlled
environment leading to the presence of non-linearity/
uncertainty in the simulated workload. In such a case, a
time-series model could work better than that of stochastic

prediction technique (Chatfield, 2016; Box et al., 2015). The
results of our study concur with the same. However, when
the proposed PRMF is expanded to other workloads with very

large uncontrolled variance, the time-series models present in
the same, might not work as expected. Under such circum-
stances stochastic models might work better and hence

HMM model has been included in the PRMF library. Many
such stochastic models would be part of the PRMF library
in future.

The objective of the current study was not to delve upon

charging model, but to deprovision idle resources on-
demand. Irrespective of the resource utilization, existing
chargeback model ensures that the consumer has to pay for

the resources per hour (Woitaszek and Tufo, 2010). Therefore
deprovisioning using current approach might not prove more

beneficial to the end user when compared to the reactive
approach. Therefore, methodologies to suggest an efficient
charging model would be part of the evolution of this study.

8. Conclusion

Resource management methods provided by the leading Cloud

service-providers are based on predetermined rules and are
reactive. Reactive approach has an inherent time-lag between
resource demand and provisioning, which leads to under or

over-provisioning. The study has attempted to overcome this
limitation by adopting a predictive method for managing
resources on Cloud. A read-intensive on-off time sheet applica-

tion was deployed on AWS t2 micro instance. Workload pat-
terns for the time sheet application were simulated based on
the historical data. Real-time resource management was stud-
ied using both the reactive and proposed approach during all

the thirty experimental runs. Arrival rate was found to be
the key evaluation metric for the workload considered.
ARIMA models, LES, DES, TES and HMM were all applied

on the key evaluation metric. ARIMA (2, 1, 3) was found to be
better-fit among all the chosen models and hence was used in
real time implementation. It was observed that the proposed

approach had reduced user- request rejections (error count),
shorter user-wait time, higher request processed and efficient
utilization of available Cloud resources compared to reactive

approach.
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