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Abstract Wireless Sensor Networks (WSNs) are used widely in many mission critical applications

like battlefield surveillance, environmental monitoring, forest fire monitoring etc. A lot of research

is being done to reduce the energy consumption, enhance the network lifetime and fault tolerance

capability of WSNs. This paper proposes an ANFIS estimator based data aggregation scheme

called Neuro-Fuzzy Optimization Model (NFOM) for the design of fault-tolerant WSNs. The pro-

posed scheme employs an Adaptive Neuro-Fuzzy Inference System (ANFIS) estimator for intra-

cluster and inter-cluster fault detection in WSNs. The Cluster Head (CH) acts as the intra-cluster

fault detection and data aggregation manager. It identifies the faulty Non-Cluster Head (NCH)

nodes in a cluster by the application of the proposed ANFIS estimator. The CH then aggregates

data from only the normal NCHs in that cluster and forwards it to the high-energy gateway nodes.

The gateway nodes act as the inter-cluster fault detection and data aggregation manager. They pro-

actively identify the faulty CHs by the application of the proposed ANFIS estimator and perform

inter-cluster fault tolerant data aggregation. The simulation results confirm that the proposed

NFOM data aggregation scheme can significantly improve the network performance as compared

to other existing schemes with respect to different performance metrics.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Wireless Sensor Networks (WSNs) consist of a large num-

ber of small, low cost, limited energy and autonomous sensor
nodes which are randomly deployed in different areas of inter-
est. The sensor nodes are usually organized into different clus-

ters in order to conserve energy in data transmission and to
prolong the network lifetime. The Non-Cluster Head sensor
nodes (NCHs) sense the environment for some phenomenon

of interest, collect data and forward them to their Cluster
Heads (CHs). The CH node performs in-network data
aggregation and then forwards the aggregated data to the base
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station through single or multiple hops depending upon the
network topology. The WSN is used widely in many applica-
tions which include search and rescue operations, battlefield

surveillance, environmental monitoring, forest fire monitoring,
and home automation and weather monitoring.

Generally, the WSNs are designed to operate in harsh envi-

ronments with the minimum human intervention. A sensor
node has to rely on its limited battery power due to the limited
resources in WSNs. There are many factors that may cause the

failure of a WSN. A WSN may fail due to the malfunctioning
of some of its components that may be hardware or software
faults, faults in the network communication layer or the appli-
cation layer or may be due to battery depletion etc. The fault

tolerance refers to the ability of a system to perform at a
desired level even in the presence of faults. A number of
research papers have been published in the area of fault detec-

tion and recovery in WSNs (Javanmardi et al., 2012; Jiang,
2009; Chang et al., 2013; Xu et al., 2014). But most of these
mechanisms consume lots of extra energy for fault detection

and recovery and even some require additional hardware and
software resources for the same. The problem arises when a
cluster has a large number of faulty NCH nodes that transmit

their faulty data to the CH and finally to the base station. This
makes the entire network unreliable for future data transmis-
sion and in severe cases, the network may collapse.

This paper proposes an ANFIS estimator based data aggre-

gation scheme called Neuro-Fuzzy Optimization Model
(NFOM) for fault tolerant data aggregation in WSNs. The
proposed scheme employs an Adaptive Neuro-Fuzzy Inference

System (ANFIS) estimator for intra-cluster and inter-cluster
fault detection for different fault cases. The ANFIS estimator
takes some fuzzy inputs from the sensor node parameters and

generates a fuzzy output by the application of fuzzy rules. The
generated fuzzy output is then fed to a defuzzifier which
returns a crisp output about the sensor node status. The CH

acts as the intra-cluster fault detection and data aggregation
manager. It identifies the faulty NCH nodes in a cluster by
the application of the proposed ANFIS estimator. The CH
then aggregates data from only the normal NCHs in that clus-

ter and forwards it to the high-energy gateway nodes. The
gateway nodes act as the inter-cluster fault detection and data
aggregation manager. They identify the faulty CHs by the

application of the proposed ANFIS estimator. The faulty clus-
ter is then isolated and not allowed to participate in the data
aggregation process. This pro-active approach prevents the

network from partitioning into disjoint segments due to faulty
clusters. The faulty CH is then replaced by its nearest one-hop
neighbor with maximum residual energy.

The paper also compares the relative performance of the

proposed NFOM scheme with Distributed Fault Detection
(DFD) Jiang, 2009, Low Energy Distributed Fault Detection
(LEDFD) Xu et al., 2014, Majority Voting (MV)

Javanmardi et al., 2012 and Fuzzy Knowledge based Fault
Tolerance (FTFK) Chang et al., 2013 through simulation with
respect to different performance metrics and the simulation

results are discussed. The related work is presented in Section 2.
The grid cluster WSN model and the proposed fault model are
presented in Section 3 as the system model. An overview of the

ANFIS estimator and the proposed ANFIS estimator based
data aggregation scheme NFOM, NFOM mechanism and
the algorithm are presented in Section 4. The simulation results
are presented and discussed in Section 5. The Section 6 pre-
sents the concluding remarks and the future scope for further
research.
2. Related work

This section outlines the different distributed fault detection
and recovery techniques used in WSNs and their relative

advantages and disadvantages.
A routing protocol known as the Threshold sensitive

Energy Efficient sensor Network protocol (TEEN) for reactive

networks is discussed in Manjeshwar and Agrawal (2009). This
protocol lacks mechanism to handle node failures and is not
suitable for real-time applications. An intelligent sleeping

mechanism (ISM) for WSNs is discussed in Hady et al.
(2013) where the base station decides on which clusters to be
set to sleep mode in a specific round depending on the signifi-

cance of the data sent by that cluster to the base station.
The Dual Homed Routing (DHR) mechanism discussed in

Jain et al. (2008) is efficient in case of Primary Cluster Head
(PCH) failures but consumes a lot of energy in transmitting

data twice to the PCH and the Backup Cluster Head (BCH)
nodes simultaneously. The Informer Homed Routing (IHR)
mechanism proposed in Qiu and et al. (2013) is an improve-

ment over DHR in which the Non-Cluster Heads (NCHs) send
data only to the Primary Cluster Heads (PCHs). A
reinforcement-based Q-Learning technique for routing in

WSNs is discussed in Sharma et al. (2012).
The Low Energy Adaptive Clustering Hierarchy (LEACH)

presented in Kaur and Saini (2013) gives a mechanism to avoid
out-of-power node failures in micro-sensor networks. This

mechanism only extends the lifetime of the network but fails
to reduce the data loss due to node failures. The Hybrid
Energy Efficient Distributed Clustering (HEED) clustering

algorithm proposed in Younis and Fahmy (2004) is an
improvement over LEACH where a hybrid function is used
to periodically select cluster heads based on the residual energy

of a node and its proximity to its neighbors or nodal degree.
Different energy efficient fault tolerance mechanisms are dis-
cussed in Jeevanandam et al. (2014), Heinzelman et al.

(2002), Attia et al. (2007). A scheme to provide continuous sen-
sor services against random node failures called R-Sentry is
discussed in Yu and Zhang (2007). This scheme has the disad-
vantage that it incurs extra communication overhead between

the sentry and the active nodes periodically. Further, the sen-
try nodes do not collect any data.

An analytical model for WSNs with sleeping nodes is dis-

cussed in Chiasserini and Garetto (2006). The sensor nodes
of this WSN may enter into sleep mode corresponding to
low power consumption or reduced operational capabilities

like low battery life. A novel approach for faulty node detec-
tion in WSNs using fuzzy logic and majority voting technique
is discussed in Javanmardi et al. (2012). An improved Distrib-
uted Fault Detection (DFD) scheme to check out the failed

nodes in the network is discussed in Jiang (2009). The DFD
scheme works by exchanging data and mutually testing among
neighbor nodes in the network. But when the number of neigh-

bor nodes is small and the node’s failure ratio is high, the fault
detection accuracy of a DFD scheme decreases rapidly. A
Fault Tolerance Fuzzy Knowledge based control algorithm

(FTFK) is discussed in Chang et al. (2013) which detects faulty
communication between sensor nodes and provides Fault
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Detection and Isolation (FDI) to eliminate the faulty commu-
nication behavior of nodes in WSNs. A Fuzzy Logic based
Joint Intra-cluster and Inter-cluster Multi-hop Data Dissemi-

nation Approach in Large Scale WSNs is presented in
Ranga et al. (2015) where a multi-criterion fuzzy logic based
intra-cluster and inter-cluster multi-hop data dissemination

protocol is proposed to balance among the nodes and choose
more stable nodes as CHs.

A Low Energy consumption Distributed Fault Detection

(LEDFD) algorithm for Wireless Sensor Networks is pro-
posed in Xu et al. (2014) which take advantage of the tempo-
rally correlated and spatially correlated characteristics of the
sensor nodes to obtain good fault detection performance and

save network power. A Markov chain-based model for miss-
ing and faulty data in MICA2 sensor motes is discussed in
Koushanfar and Potkonjak (2005). A fault management pro-

tocol for low-energy and efficient WSNs are discussed in Liu
et al. (2013). A fuzzy approach to data aggregation to reduce
power consumption in WSNs is discussed in Lazzerini et al.

(2006). The approach in Volosencu and Curiac (2013) pro-
vides a technical solution to improve the efficiency in multi-
sensor wireless network based estimation for distributed

parameter systems. It implements a complex structure based
on estimation algorithms with regression and auto-
regression using three kinds of estimators – linear, neural
and ANFIS.

Different inter-actor connectivity restoration techniques for
wireless sensor and actor networks are reviewed in Acharya
and Tripathy (2014). An Artificial Neural Network (ANN)

approach for design of reliable and fault tolerant WSNs is dis-
cussed in Acharya and Tripathy (2015) which proposes the use
of an exponential Bi-directional Associative Memory (e-BAM)

in order to train the network. A fuzzy knowledge based sensor
node appraisal technique for fault tolerant data aggregation in
WSNs is discussed in Acharya and Tripathy (2016) which uses

a combination of fuzzy rules to identify the faulty nodes in the
network.

3. System model

This section presents the WSN network model and the pro-
posed fault model.

3.1. The WSN network model

A typical 3 � 3 grid cluster WSN is shown in Fig. 1. In a 3 � 3
grid cluster, the CH is located at the center with 8 number of

NCH nodes in the periphery. This arrangement makes it easy
for the CH to monitor the status of the NCH nodes. This 3 � 3
arrangement of grid cluster also facilitates easy rotation of

CHs for load balancing. Also, the CH is just one-hop from
all the NCH nodes in a 3 � 3 grid cluster. This feature greatly
saves on energy and communication overhead. The WSN net-

work model consists of a heterogeneous Wireless Sensor Net-
work in which the nodes have varying energy.

In the WSN model, the WSN is assumed to have thousands
of sensor nodes with varying energy which are grouped into a

number of 3 � 3 grid clusters. The sensor nodes with compar-
atively low energy form the NCH node. In a cluster, the NCH
with the highest energy becomes the CH. The CHs are rotated
between different NCHs as per the TDMA schedule in order to
conserve energy. The base station is assumed to be stationary.
Fig. 1 shows a number of 3 � 3 grid clusters with the CH at the

center and NCHs in the periphery. A record table is main-
tained which records the history of all local decisions during
the data aggregation process. The cluster heads are selected

with a probability equal to the ratio of the expected number
of CHs to the total number of sensor nodes in the network.
3.2. The proposed fault model

In the proposed fault model, the fault tolerance capability of
WSN is assessed by observing the network’s reaction to differ-

ent types of faults. In the proposed work, the NCH and CH
faults are injected into the network at different rates in order
to simulate different fault cases. The proposed NFOM data
aggregation scheme is tested for five cases with different fault

types and with different node densities and the different per-
formance metrics are recorded. The simulation results for the
proposed scheme are then compared with that of DFD [35],

LEDFD [38], MV [34] and FTFK [36] techniques and the
results are presented. It is assumed that the fusion center or
the data aggregator is unaware about the sensor fault types

in advance. Depending on the type of data collected by a sen-
sor node, the sensor faults are categorized into the following
broad types.

(a) Fixed faults: The sensors with this kind of fault collect
data with the same readings. These data are not affected
by the environment. They are of two types - stuck-at-

zero faults and stuck-at-one faults. In the former, a faulty
sensor node always transmits a fixed local decision ‘0’ to
the fusion center irrespective of the real observation

while in the later, it always transmits a fixed local deci-
sion ‘1’ to the fusion center irrespective of the real
observation.

(b) Random faults: In this case, a faulty sensor node reports
randomly its local decision to the fusion center irrespec-
tive of the real observation. The sensor node readings
are random and uncertain.

(c) Transient faults: These faults may occur due to hardware
features or effects of environment in the process of data
collection. They can be easily corrected using the major-

ity voting technique discussed in Javanmardi et al.
(2012).

(d) Mixed faults: It is a combination of two or more fault

types.

4. Proposed NFOM data aggregation scheme

This section gives an overview of the ANFIS estimator and the
proposed NFOM data aggregation scheme. It also describes

the NFOM mechanism and algorithm.
4.1. Overview of the ANFIS estimator

The proposed NFOM data aggregation scheme uses an

ANFIS estimator (Volosencu and Curiac, 2013). The



Figure 1 A 3 � 3 grid cluster WSN.

Figure 2 Estimation and detection structure of the ANFIS estimator.

Table 1 Sample of fuzzy rules.

Fuzzy inputs Fuzzy output

RNE PDR FR NOR NS

VL P P P F

L P P P F

H G G G N

M A A A N

H VP VP VP F

M P VP VP F

VL VP VP VP F

L VP VP VP F

VL P VP VP F

VL VP P P F

M VP VP VP F
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estimation and detection structure of the ANFIS estimator

used in the proposed model is shown in Fig. 2.
The ANFIS is a non-linear estimator defined by a function

yðtÞ ¼ fðu1; u2; u3; u4Þ whereu1, u 2, u3 and u4 are the four

inputs. It uses the adaptive network-based fuzzy inference sys-
tem and a set of fuzzy rules to generate the fuzzy output. It
uses a combination of least-squares and back propagation gra-
dient descent methods for training membership function

parameters and modeling a given set of input or output data.
The first layer is the input layer where the four inputs are
applied. The second layer represents the input membership

function and is called as the fuzzification layer. The neurons
represent fuzzy sets and are used to determine the membership
degree of the input. The activation function is represented by

the membership function. The third layer represents the fuzzy
rule base. Here, each neuron corresponds to a single rule from
the set of fuzzy rules. The fourth layer represents the output

membership function which is given by the activation function.
The fifth layer represents the defuzzification layer with single
output. The defuzzification method used for this model is the
centroid method.
4.2. Description of the proposed NFOM data aggregation
scheme

This section gives an overview of the proposed NFOM data
aggregation scheme. The ANFIS estimator in the proposed
model monitors the status of each NCH node in a cluster



Input :  Network configuration, number of simulation rounds ‘R’, cluster threshold CT, grid size gd_size, total   
            number of clusters ‘n’. 
Output : A fault tolerant data aggregation NFOM scheme. 
              for // for each simulation round 

Step 1: Initialize the network parameters.  

                           Initialize node 0 as BS and node gt   at level ‘t’ as the gateway node.  
Set count[ck] = 0 for cluster k = 1,2,…,n. 

Step 2: Apply the ANFIS estimator to estimate the node status of all the nodes in a cluster.  

cluster ck  ( k = 1,2,…,n)  
node n[i,j] in cluster ck        // ‘i’ and ‘j’ represent row and column positions in the grid.  

                                Apply the ANFIS estimator to estimate the node status NS(n[i,j]) using fuzzy rules 

Step 3: Set the Cluster Fault Matrix (CFM) entries and forward flag (fwd_flag) values for all the nodes in  
                         a cluster.    

                               for cluster ck  ( k = 1,2,…,n)   
node n[i,j] in cluster ck 

if  ( NS(n[i,j]) == ‘F’ )    
then CFM(n[i,j]) = 1;                       // faulty node

                                                and fwd_flag(n[i,j])  = ‘N’;       // faulty NCH data not forwarded to CH 

                                   else if  ( NS(n[i,j]) == ‘N’ )  
                                         then CFM(n[i,j]) = 0;                        // normal node 
                                               and fwd_flag(n[i,j])  = ‘Y’;        // normal NCH data forwarded to CH

              Step 4: Count the number of faulty nodes in a cluster

   for cluster ck  ( k = 1,2,…,n)  
node n[i,j] in cluster ck

                                         if ( CFM(n[i,j])  == 1 )  
                                               then count[ck] = count[ck] + 1; 

              Step 5: Compute the Cluster Fault Index (CFI) for each cluster and forward it to the gateway node 

                                  for cluster ck  ( k = 1,2,…,n)  
               CFI [ck]  =  ( count[ck] * 100 ) / gd_size;             

             Step 6: Identify faulty clusters in the network by the gateway node   

                               for cluster ck  ( k = 1,2,…,n) 
if  ( CFI [ck]  <  CT )                                    //  normal cluster

                                       then cfwd_flag[ck] = ‘Y’;                       // forward data from CH to gateway node 

else if ( CFI [ck]    CT )                             //  faulty cluster
then cfwd_flag[ck] = ‘N’;                     //  faulty cluster data not forwarded

Figure 3 Proposed NFOM pseudo-code.
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Table 2 Simulation configuration parameters.

Parameter Value

Network size 1200 m � 1200 m

Base station location (100, 100) m

Number of sensor nodes 450

Number of clusters 50

Number of gateway nodes 5

Simulation time 500 s

Radio range 150 m

Energy transmitted 0.66 W

Energy received 0.395 W

Data packet size 2 KB

Packet aggregation ratio 10%

Table 3 Average FND and HNA metrics.

Algorithm FND HNA

DFD 200 530

LEDFD 275 600

MV 300 610

FTFK 310 640

Proposed NFOM 330 670

Figure 4 Comparison of energy cost versus sensor fault

probability.
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and assigns a node status to each node by the application of
fuzzy rules. The node status value may be 0 (normal) or 1(-
faulty). The node status of a 3 � 3 grid cluster is stored in a

Cluster Fault Matrix (CFM). A CFM is generated for each
cluster and the Cluster Fault Index (CFI) is calculated. If the
CFI value is greater than or equal to the Cluster Threshold

value (CT), then the cluster is identified as a faulty one and
is isolated. The faulty cluster is not allowed to participate in
the data aggregation process.

The fuzzy rules are generated using a combination of four
fuzzy inputs for inter and intra-cluster criteria – residual node
energy (RNE), packet delivery ratio (PDR), fault ratio (FR)
and number of re-transmissions (NOR) which are denoted

by u1, u2, u3 and u4. The RNE is given as the energy remaining
after each simulation round. The PDR is given as the ratio of
the number of data packets successfully sent to the CH to the

total number of data packets. The FR is given as the ratio of
the number of simulation rounds in which the NCH is found
to be faulty to the total number of simulation rounds. The

NOR is given by the number of times the data are transmitted
again (re-transmitted). The RNE values vary from Very Low
(VL), Low (L) and Medium (M) to High (H) and have a trape-

zoidal membership function. For example, if the residual
energy of a NCH node is 0.05 J, it may be assigned Very
Low (VL) level. A trapezoidal MF is specified by four param-
eters. The PDR, FR and NOR values vary from Good (G),

Average (A) and Poor (P) to Very Poor (VP) and have a trape-
zoidal membership function assigned to them. These values are
updated by the CH at the end of each simulation round and

are stored in a record table. The fuzzy output is the Node Sta-
tus (NS) which can take values – Normal (N) or Faulty (F)
according to the fuzzy rules and has a triangular membership

function assigned. The fuzzy output NS is updated periodically
to the CH in intra-cluster and to the gateway node in inter-
cluster data aggregation process.

The job of the NCHs is to sense the environment, collect
data and forward it to their respective CHs. The CH acts as
the intra-cluster fault detection and data aggregation manager.
It performs three vital functions – monitor the status of each

NCH in the grid cluster; pro-actively identify the faulty NCHs
by the application of the proposed ANFIS estimator and per-
form intra-cluster fault tolerant data aggregation. The aggre-

gated data are then forwarded by the CH to high energy
nodes called the gateway nodes. The gateway nodes act as
the inter-cluster fault detection and data aggregation manager.

They perform three vital functions – monitor the status of each
CH; pro-actively identify the faulty CHs by the application of
the proposed ANFIS estimator and perform inter-cluster fault
tolerant data aggregation. The gateway nodes have higher

energy than the CH nodes. So, they are entrusted with the
additional responsibility of replacing the faulty CH in a cluster
by its nearest one-hop NCH node with the highest residual

energy. This change in CH is communicated to all the NCHs
in the cluster and the base station and the routing table is
updated accordingly. Finally, the aggregated data are for-

warded from the gateway node to the base station.
Figure 5 Comparison of network lifetime versus sensor fault

probability.
4.3. The proposed NFOM mechanism and algorithm

This section discusses the proposed NFOM mechanism and
presents the NFOM algorithm.



Figure 6 Comparison of loss probability versus sensor fault

probability.

Figure 7 Comparison of FDA and FAR values

Figure 8 Comparison of FDA and FAR values f
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4.3.1. NFOM mechanism

The proposed NFOM mechanism is outlined below.

(a) At the beginning of each simulation round, the CH

employs the ANFIS estimator to estimate the status of
each NCH node.

(b) The NCHs are assigned node status as normal (NS = 0)

or faulty (NS = 1) according to the fuzzy rules for the
different intra-cluster criteria.

(c) Only the normal NCH nodes are allowed to forward

their data to their respective CH. The faulty NCHs are
isolated.

(d) The 3 � 3 Cluster Fault Matrix (CFM) is generated for
each cluster and the Cluster Fault Index (CFI) is calcu-

lated asCFI = (No. of faulty nodes in a cluster/Total
number of nodes in the cluster) * 100.
for fixed faults with average node density = 7.

or fixed faults with average node density = 10.



Figure 9 Comparison of FDA and FAR values for fixed faults with average node density = 20.

Figure 10 Comparison of FDA and FAR values for offset faults with average node density = 7.
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The CFI value is forwarded from the CH to the gateway
node to help in assessing the cluster as normal or faulty.

(e) If the CFI index is less than the Cluster Threshold
value (CT) for any cluster, then, the cluster is consid-

ered as normal and it participates in the data aggrega-
tion process for that specific round by the gateway
node.

(f) If the CFI index is greater than or equal to the CT

value for any cluster, then, the cluster is considered
as faulty and it does not participate in the data aggre-
gation process for that specific round by the gateway

node.
(g) The gateway node then forwards the aggregated data to

the base station through single or multiple hops.
A sample CFM for a 3 � 3 grid cluster is given by

0 1 1
0 0 0
1 0 0

2
4

3
5 where each entry corresponds to the node status

of a NCH node in the grid cluster. Here, a ‘0’ signifies a normal
NCH node while a ‘1’ signifies a faulty NCH node. A sample

of fuzzy rules is presented in Table 1. It gives the fuzzy output
Node Status (NS) corresponding to the four fuzzy inputs
(RNE, PDR, FR and NOR) generated by the application of

different fuzzy rules. For example, the fuzzy rule
fðVL;P;P;PÞ ¼ F indicates that if RNE value is very low,
PDR, FR and NOR are all poor, then, the node status is

faulty. In a similar way, the different combinations of fuzzy
inputs are assessed by the ANFIS estimator to give a fuzzy
output. In the last step, the ANFIS estimator converts the



Figure 11 Comparison of FDA and FAR values for offset faults with average node density = 10.

Figure 12 Comparison of FDA and FAR values for offset faults with average node density = 20.
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fuzzy output to a crisp value by a defuzzification process. In
the proposed NFOM data aggregation scheme, the defuzzifica-

tion is done using the centroid method.
Thus, this mechanism not only conserves energy but also

prevents faulty data from reaching the base station. In order

to ensure coverage and connectivity through the WSN, the
faulty clusters need to be replaced periodically by good ones.

4.3.2. Proposed NFOM algorithm

Fig. 3 presents the pseudo-code for the proposed NFOM algo-
rithm. The proposed NFOM pseudo-code takes as input a net-
work configuration with number of simulation rounds ‘R’,

cluster threshold value CT, grid size gd_size and total number
of clusters ‘n’ and returns a fault tolerant data aggregation
NFOM scheme by repeating the following sequence of steps
for each simulation round. The proposed algorithm is run at
the respective Cluster Head (CH). The Step 1of the algorithm

initializes node 0 as the base station BS and node gt at level ‘t’
as the gateway node. It also sets the counter value for the num-
ber of normal nodes in a cluster (count[ck]) to 0 for all clusters

from 1-n. The Step 2 applies the proposed ANFIS estimator to
estimate the node status NS using fuzzy rules for each node in
the network and for each cluster. The Step 3 checks the node

status NS value and accordingly assigns the Cluster Fault
Matrix (CFM) entries and forward flag (fwd_flag) values for
each cluster in the network. The CFM values are stored in
the respective CH. The CFM values are used to compute the

Cluster Fault Index (CFI) value for a cluster as described in
the pseudo-code. If the node status for a node in a cluster is
estimated to be faulty (‘F’) by the ANFIS estimator, then



Figure 13 Comparison of FDA and FAR values for random faults with average node density = 7.

Figure 14 Comparison of FDA and FAR values for random faults with average node density = 10.
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the corresponding CFM entry is set to ‘1’ and the forward flag
fwd_flag is set to ‘N’ in order to prevent the faulty NCH node

to participate in the data aggregation process. The identified
faulty NCH node is not allowed to forward its data to its
respective CH. On the other hand, if the node status is esti-

mated to be normal (‘N’) by the ANFIS estimator, then the
corresponding CFM entry is set to ‘0’ and the fwd_flag is set
to ‘Y’ in order to allow the normal NCH node to forward

its data to the CH. This step thus prevents the faulty data from
being transmitted to the CH.

The Step 4 counts the number of faulty nodes in a cluster by
checking the CFM entry for each node. This count is incre-

mented by 1 for faulty nodes (with CFM entry ‘1’) for each
cluster in the network. The Step 5 computes the Cluster Fault
Index (CFI) value for each cluster using the formula given in

the pseudo-code. The CFI value is then forwarded by the
respective CH to its respective gateway node to assist in assess-
ing the cluster as normal or faulty. The Step 6 finally identifies

the faulty clusters in the network by comparing their CFI value
with the pre-defined cluster threshold CT value that is set at
the beginning of the simulation. If for a cluster, its CFI value

is less than the pre-defined CT value, then the cluster is tagged
as a normal cluster and the cluster forward flag (cfwd_flag) is
set to ‘Y’ in order to forward the cluster data through the CH

to the gateway node for onward transmission. But if the CFI
value is greater than or equal to the CT value for any cluster,
then the cluster is identified as a faulty cluster and the
cfwd_flag is set to ‘N’ in order to prevent the faulty cluster

data from onward transmission. Thus, the proposed NFOM
data aggregation scheme pro-actively isolates faulty data from
the data aggregation process both at the intra-cluster and the

inter-cluster levels.



Figure 15 Comparison of FDA and FAR values for random faults with average node density = 20.

Figure 16 Comparison of FAR values for transient faults with average node densities 7 and 10.
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5. Simulation results and discussion

This section presents the simulation model, ANFIS modeling

of the WSN network, performance metrics and compares the
performance of the proposed NFOM with those of DFD
(Jiang, 2009), LEDFD (Xu et al., 2014), MV (Javanmardi

et al., 2012) and FTFK (Chang et al., 2013) algorithms
through simulation for five different cases. The simulation is
done using MATLAB 7.8.0.

5.1. Simulation Model

In order to compare the performance of the different fault
detection algorithms for varying node densities, the following

five cases are considered.
Case 1: Only fixed faults at varying average node densities
Case 2: Only offset faults at varying average node densities
Case 3: Only random faults at varying average node
densities

Case 4: Only transient faults at varying average node
densities
Case 5: Mixed faults at varying average node densities

The configuration details for the simulation setup are given
in Table 2. It specifies values for different simulation parame-

ters like network size, number of sensor nodes, data packet
size, initial energy and other information. The WSN network
was tested with 450 sensor nodes which were organized into

50 clusters. The status of 50 clusters was monitored by 5 gate-
way nodes so that each gateway node was assigned 10 clusters.
These simulation details are presented in Table 2.
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The Packet Aggregation Ratio (PAR) is defined as the ratio
of the number of nodes in which a packet gets aggregated to
the total number of nodes through which the packet is trans-

mitted to the base station. The PAR value is limited to 10%
in the simulation. The base station is assumed to be stationary
in the simulation and its location is fixed at (100,100) m.

5.2. ANFIS modeling of the WSN network

The ANFIS model was developed using MATLAB Fuzzy

Logic Toolbox and it is a Sugeno-type ANFIS model. For
the network operation, 70% of the data set was randomly
assigned as the training set. The remaining 30% was employed

for testing the performance of the ANFIS estimator. The out-
put parameter of the WSN network depends on four input
parameters, namely the Residual Node Energy (RNE), Packet
Delivery Ratio (PDR), Fault Ratio (FR) and Number of
Figure 17 Comparison of FAR values for transient faults with

average node density = 20.

Figure 18 Comparison of FDA and FAR values f
Re-transmissions (NOR). The only output parameter is the
Node Status (NS).

The proposed NFOM algorithm was trained using a proper

set of training data so that the outputs can be estimated based
on the input–output data. The data were trained to identify the
parameters of Sugeno-type fuzzy inference system based on the

hybrid algorithm which combines the least square method and
the back propagation gradient descent method. The criterions
used for measuring the network performance were the network

lifetime, energy cost, loss probability, Fault Detection Accu-
racy (FDA) and False Alarm Rate (FAR) as outlined in detail
in Section 5.3.

5.3. Performance metrics

The performance of the proposed NFOM data aggregation
scheme is compared with that of the DFD (Jiang, 2009),

LEDFD (Xu et al., 2014), MV (Javanmardi et al., 2012) and
FTFK (Chang et al., 2013) through simulation with respect
to the following metrics.

(a) First Node Dies (FND) and Half of the Nodes Alive
(HNA): FND and HNA metrics are used to estimate

the network lifetime. The FND gives the simulation
round at which the first node dies. It is used to estimate
the network lifetime for a sparsely deployed WSN. The
HNA gives the simulation round at which half of the

nodes of the network die out.
(b) Network Lifetime (in minutes): It is the time until the

network is completely partitioned due to the failure of

the cluster heads in the network.
(c) Energy Cost (in Joules): It is the amount of energy con-

sumed for different algorithms.

(d) Loss Probability: It is given by the ratio of the number of
data packets dropped (d) to the sum of the number of
data packets received at the base station (r) and the

number of data packets dropped until the end of simu-
lation. That is, Loss Probability = d/(r+ d).
or mixed faults with average node density = 7.
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(e) Fault Detection Accuracy (FDA): It is given by the ratio

of the number of correctly identified faulty nodes to the
total number of actual faulty nodes. Let ‘A’ denote the
set of actual faulty nodes and ‘F’ denote the set of faulty

nodes detected by a fault detection algorithm. Then,
FDA is given by

FDA ¼ jF \ Aj � jAj

(f) False Alarm Rate (FAR): It is given by the ratio of the

number of normal nodes which are mistaken to be faulty

nodes to the total number of normal nodes. Let ‘F’
denote the set of faulty nodes detected by a fault detec-
tion algorithm, ‘A’ denote the set of actual faulty nodes

and ‘N’ denote the total number of nodes in the net-
work. Then, FAR is given by
Figure 19 Comparison of FDA and FAR values f

Figure 20 Comparison of FDA and FAR values f
FAR ¼ jF� Aj � ðN� jAjÞ
5.4. Results and discussion

The simulation results for different performance metrics are
presented in this section for the purpose of comparison. The
performance of the four algorithms – DFD, LEDFD, MV,

FTFK and the proposed NFOM are compared and the simu-
lation results are discussed.

5.4.1. Comparison of FND and HNA

The Table 3 gives the simulation rounds for the average FND
and HNA for each simulated algorithm – DFD, LEDFD, MV,
FTFK and NFOM (proposed). The simulation is done on a
or mixed faults with average node density = 10.

or mixed faults with average node density = 20.
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combination of one stuck-at-zero, one offset and one random
fault.

It is observed from Table 3 that both the FND and the

HNA values are highest for the proposed NFOM algorithm
and the lowest for the DFD algorithm. The performance of
the MV and the FTFK algorithms are close to that of the

NFOM and the LEDFD gives better performance than
DFD. The Table 3 confirms that the proposed NFOM scheme
greatly enhances the network lifetime for the WSN.

5.4.2. Energy cost versus sensor fault probability

Fig. 4 depicts the energy cost in Joules for varying sensor fault
probabilities for each of the simulated algorithms. The simula-

tion is done on a combination of one stuck-at-zero, one offset
and one random fault. It clearly shows that the energy cost is
the maximum for DFD algorithm and the minimum for the

proposed NFOM algorithm. The variations in energy cost
are largely uniform for MV algorithm. The energy cost of
FTFK algorithm matches with that of the proposed NFOM
algorithm till 0.25 sensor fault probability and with gradual

increase in the sensor fault probability, it becomes slightly
higher than that of the proposed NFOM. The energy savings
in case of the proposed NFOM algorithm owes to its use of

the intelligent ANFIS estimator and longer network lifetime.

5.4.3. Network lifetime versus sensor fault probability

Fig. 5 shows the network lifetime (in minutes) for varying sen-

sor fault probabilities for each of the simulated algorithms.
The simulation is done on a combination of one stuck-at-
zero, one offset and one random fault. It clearly shows that

the network lifetime is the maximum for the proposed NFOM
algorithm and the minimum for the DFD algorithm. The vari-
ations in network lifetime with varying sensor fault probabili-

ties are almost similar for the rest of the three algorithms –
LEDFD, MV and FTFK with LEDFD outperforming the
other two after 0.4 sensor fault probability. The maximum net-
work lifetime for the proposed NFOM algorithm owes to its

easy identification of faulty nodes by the application of the
ANFIS estimator, isolating the faulty nodes and forwarding
data from only the normal nodes.

5.4.4. Loss probability versus sensor fault probability

Fig. 6 shows the loss probability for varying sensor fault prob-
abilities for each of the simulated algorithms. The simulation is

done on a combination of one stuck-at-zero, one offset and one
random fault. It clearly shows that the loss probability is the
lowest for the proposed NFOM algorithm and the highest

for the DFD algorithm. The variations in loss probability with
varying sensor fault probabilities are similar for the LEDFD
and MV algorithms and the performance of FTFK algorithm

lies in between the two extremes. The lowest loss probability
for the proposed NFOM algorithm is due to its early identifi-
cation of the faulty nodes by the application of the intelligent

ANFIS estimator, isolating the faulty nodes and forwarding
data from only the normal nodes.

5.4.5. Comparison of FDA and FAR (for Case 1)

Figs. 7–9 compare the FDA and FAR values for Case 1, that
is, fixed faults with varying average node densities for each of
the simulated algorithms. It clearly shows that in all the three
figures for Case 1, the FDA value is the highest and the FAR
value is the lowest for the proposed NFOM algorithm. It has
also been observed that the performance of the DFD algo-

rithm worsens with increasing average node densities. The per-
formance of the other three algorithms lies in between the two
extremes. The optimal performance of the proposed NFOM

algorithm is due to its early detection of faulty nodes by the
application of the intelligent ANFIS estimator and isolating
the faulty nodes from the data aggregation process.

5.4.6. Comparison of FDA and FAR (for Case 2)

Figs. 10–12 compare the FDA and FAR values for Case 2, that
is, offset faults with varying average node densities for each of

the simulated algorithms. It clearly shows that in all the three
figures for Case 2, the FDA value is the highest and the FAR
value is the lowest for the proposed NFOM algorithm. It has

also been observed that the performance of the DFD algorithm
worsens with increasing average node densities. The perfor-
mances of the other three algorithms lie in between the two
extremes. The optimal performance of the proposed NFOM

algorithm is due to its early detection of faulty nodes by the
application of the intelligent ANFIS estimator and isolating
the faulty nodes from the data aggregation process.

5.4.7. Comparison of FDA and FAR (for Case 3)

Figs. 13–15 compare the FDA and FAR values for Case 3,
that is, random faults with varying average node densities for

each of the simulated algorithms. It clearly shows that in all
the three figures for Case 3, the FDA value is the highest
and the FAR value is the lowest for the proposed NFOM algo-

rithm. It has also been observed that the performance of the
DFD and LEDFD algorithms worsen with increasing average
node densities. The performance of the other two algorithms –

MV and FTFK lie in between the two extremes. The optimal
performance of the proposed NFOM algorithm is due to its
early detection of faulty nodes by the application of the intel-
ligent ANFIS estimator and isolating the faulty nodes from the

data aggregation process.

5.4.8. Comparison of FAR (for Case 4)

Figs. 16 and 17 compare the FAR values for Case 4, that is,
transient faults with varying average node densities for each
of the simulated algorithms. The FDA values have not been
given as transient faults are easily corrected by the application

of MV technique (Javanmardi et al., 2012) by comparing with
the readings of the neighboring sensor nodes. It clearly shows
that in both Figs. 16 and 17, the FAR value is the highest for

MV algorithm closely followed by the DFD algorithm and the
lowest for the proposed NFOM algorithm. It has also been
observed that the performance of the other two algorithms –

LEDFD and FTFK are close to the proposed NFOM. The
optimal performance of the proposed NFOM algorithm is
due to its early detection of faulty nodes by the application

of the intelligent ANFIS estimator, isolating the faulty nodes
and selective forwarding of data from only the normal nodes
to the base station.

5.4.9. Comparison of FDA and FAR (for Case 5)

Figs. 18–20 compare the FDA and FAR values for Case 5,
that is, mixed faults for varying average node densities for each
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of the simulated algorithms. The Case 5 is a combination of
one stuck-at-zero fault and a random fault. It clearly shows that
in all the three figures for Case 5, the FDA value is the highest

and the FAR value is the lowest for the proposed NFOM algo-
rithm. It has also been observed that the performance of the
DFD and the LEDFD algorithms worsen with increasing

average node densities. The performance of the other two algo-
rithms – MV and FTFK lie in between the two extremes. The
optimal performance of the proposed NFOM algorithm is due

to its early detection of faulty nodes by the application of the
intelligent ANFIS estimator, isolating the faulty nodes and
selective forwarding of data from only the normal nodes to
the base station.

6. Conclusion and future work

This paper proposed an ANFIS estimator based data aggrega-
tion scheme called Neuro-Fuzzy Optimization Model
(NFOM). The proposed scheme used an ANFIS estimator in
order to identify faulty sensor nodes in a cluster and faulty

clusters in the network and isolated them from the data aggre-
gation process. The paper further investigated a combination
of different fault cases and also compared the relative perfor-

mance of the proposed NFOM algorithm with that of the Dis-
tributed Fault Detection (DFD) Jiang, 2009, Low Energy
Distributed Fault Detection (LEDFD) Xu et al., 2014, Major-

ity Voting (MV) Javanmardi et al., 2012 and Fuzzy Knowledge
based Fault Tolerance (FTFK) Chang et al., 2013 algorithms
through simulation with respect to different performance met-
rics. The proposed NFOM data aggregation scheme is

observed to be the best in terms of energy cost, network life-
time, loss probability, fault detection accuracy and false alarm
rate as compared to the other existing algorithms. The compu-

tation of the proposed NFOM algorithm for different possible
positions of the base station is an interesting topic which can
be taken as a future research work. Also, this work may be fur-

ther extended in future for designing secure data aggregation
schemes using cryptographic techniques for the design of
fault-tolerant WSNs.
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