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Abstract In Computed Tomography (CT), image degradation such as noise and detail blurring is

one of the universal problems due to hardware restrictions. The problem of noise in CT images can

be solved by image denoising. The main aim of image denoising is to reduce the noise as well as

preserve the important features such as edges, corners, textures and sharp structures. Due to the

large capability of noise suppression in noisy signals according to neighborhood pixels or coeffi-

cients, this paper presents a new technique to denoise CT images with edge preservation in tetrolet

domain (Haar-type wavelet transform) where a locally adaptive shrinkage rule is performed on high

frequency tetrolet coefficients in such a way that noise can be reduced more effectively. The exper-

imental results of the proposed scheme are excellent in terms of noise suppression and structure

preservation. The proposed scheme is compared with some standard existing methods where it is

observed that performance of the proposed scheme is superior to the existing methods in terms

of visual quality, MSE, PSNR and Image Quality Index (IQI).
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

CT examination is widely used in medical science for detection
of diseases such as lung cancer. Higher radiation dose used for
clinical CT scanning may increase the risk of cancer in the

patients (Zhoubo et al., 2014). However, it is mentioned in
the guidelines of CT scanning that the use of radiation should
be as low as reasonably required. But many times, we have to

compromise with these guidelines to achieve good quality CT
images. On the other-side, low-dose CT imaging may produce
a noisy image which degrade the diagnostic performance.

Thus, there is a need to develop the techniques which can con-
trol the noise in low dose CT scan images.

Various techniques have been investigated for controlling
noise in CT scan imaging. Broadly, these techniques can be

categorized in three major parts : projection based denoising,
iterative reconstruction (IR) based denoising and post process-
ing based image denoising.

Projection based techniques such as projection space
denoising with bilateral filtering and CT noise modeling for
dose reduction in CT imaging (Manduca et al., 2009) work

on raw data or sinogram, where noise filtering is applied on
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raw data or sinogram and reconstructed image comes in the
form of denoised image. Many iterative reconstruction
approaches for noise suppression in CT have also been inves-

tigated, for example, ordered subset reconstruction for X-ray
CT scan (Beekman and Kamphuis, 2001) that optimizes statis-
tical objective functions. Iterative reconstruction techniques

have an advantage of using noise statistics directly in the pro-
jections during the reconstruction process, the disadvantage,
however, is the high computational cost. Post processing based

methods can denoise directly to the reconstructed CT images
by applying linear or nonlinear filters (Motwani et al., 2004).
Several linear or nonlinear filtering methods for noise reduc-
tion in the projection data have been proposed. Linear filters

such as Wiener filter (Li and Zhang, 2010; Naimi et al.,
2015) in the wavelet domain gives optimal results when the sig-
nal distortion is estimated by Gaussian approximation and the

accuracy is measured by calculating Mean Square Error
(MSE). Most of the techniques like bilateral filtering
(Durand and Dorsey, 2002; Manduca et al., 2009), total vari-

ation denoising (Chambolle, 2004; Goldstein and Osher, 2009),
nonlocal means (NLM) denoising (Buades et al., 2005), local
linear SURE based edge-preserving image filtering (LLSURE)

(Qiu et al., 2013) and K-singular value decomposition (K-
SVD) algorithm (Aharon et al., 2006) take an advantage of
statistical properties of objects in image space and preserve
clinical structures such as sharp edges, similarities between

neighboring pixels, etc. In transform-domain denoising tech-
niques, the input data are decomposed into its scale-space rep-
resentation (Mallat, 1989). Various thresholding techniques

for noise reduction have been introduced with wavelet such
as efficient image denoising method based on a new adaptive
wavelet packet thresholding function (Fathi and Naghsh-

Nilchi, 1989), ideal spatial adaptation via wavelet shrinkage
(Chang et al., 2000), SURE-LET approach for image denois-
ing (Thierry and Florian, 2007), etc. For CT image denoising,

selection of a threshold value is a cumbersome task for edge
preservation and noise suppression. By selecting a small
threshold value, the resultant image may left noisy while large
threshold value may produce blurring on the edges of resultant

image. To deal with this situation, an appropriate algorithm is
to be selected to estimate a threshold value. Three major algo-
rithms to estimate threshold value are VISUShrink, SURESh-

rink and BayesShrink. VISUShrink (Donoho and Johnstone,
1994) is non-adaptive universal threshold, which depends only
on the number of samples and known for finding smoothed

images. Its threshold choice can be large due to its dependence
on the number of pixels in the images. From literature, it can
be observed that threshold estimation of VISUShrink tends to
over-smooth the signal while SUREShrink (Donoho, 2010)

uses a hybrid of the universal and the SURE [Stein’s Unbiased
Risk Estimator] thresholds, and performs better than VISUSh-
rink. BayesShrink (Abramovitch et al., 1998) minimizes the

Bayes’ risk estimator function assuming generalized Gaussian
approximation and thus finds adaptive threshold value. In
most of the cases, BayesShrink provides better outcomes in

comparison to both VISUShrink and SUREShrink. Thresh-
olding is one of the strategies to clean the pixels or images.
In wavelet based thresholding, small wavelet coefficients in

high frequency bands are removed and large wavelet coeffi-
cients are preserved. Hard and soft thresholding are very pop-
ular methods for thresholding. In hard thresholding (Donoho,
2010), each coefficient value is compared with estimated
threshold value and values less than threshold are replaced
by zero. In soft thresholding (Prakash and Khare, 2014), the
replacement process is same as in hard thresholding, addition-

ally rest of coefficients are modified by subtracting threshold
value from those coefficients. Comparing the two, Soft thresh-
olding gives better performance for visual appearance of

images. Due to hard thresholding, image artifacts may be gen-
erated near the edges on denoised CT images. Soft threshold-
ing has a limitation with large coefficient values which may not

be good for more sophisticated CT images. Other thresholding
schemes have also been proposed, which take the advantages
of both soft and hard thresholding. Some well-known shrink-
age rules are hyperbola function (Vidakovic, 1998), firm

thresholding (Gao and Bruce, 1997), garrote thresholding
(Gao, 1998) and SCAD thresholding (Antoniadis and Fan,
2001).

Recently, some researchers extended the idea of shrinkage
with geometric wavelets methods (Krommweh, 2010) such as
ridgelet, curvelets, contourlets, directionlet and tetrolet. CT

image denoising is a challenging task because of finding correct
noise variation, relationship between coefficients and achieving
an optimal tradeoff between denoising and blurring or arti-

facts. To overcome these challenges, we propose a method
for CT image denoising based on the variation of neighbor-
hood pixels or coefficients.

This paper is organized as follows. In Section 2, a brief

introduction of tetrolet transform is described. In Section 3,
we describe the proposed methodology for CT image denoising
where a locally adaptive shrinkage rule is performed in tetrolet

transform. In Section 4, we describe the experimental results
and compare with some existing denoising methods. Finally,
conclusions are drawn in Section 5.

2. Tetrolet transform

The idea of tetrolet transform comes from a famous computer

game ‘Tetris’, where five geometric patterns (as shown in Fig. 1
(a)) are used with rotation and reflection properties
(Krommweh, 2010). These geometric patterns are known as

tetrominoes. Tetrolet transform is a powerful tool for signal
and image processing tasks because of local enhancement
through tetrominoes, multi-resolution analysis, sub-banding
and localization in both frequency and time domain. All the

tetrominoes are connected with a four equal sized squares.

In tetrolet transform, an image X½i; j�Ni;j¼1 with N ¼ 2P; P 2 N

is divided into 4 � 4 blocks. Each block is covered with any

four free tetrominoes, which is responsible for enhancing the
local structure using properties of rotations and reflections.
These four tetrominoes (Io; I1; I2; I3) are mapped in a unique

order (0, 1, 2, 3) by applying bijective mapping (L) with their
corresponding order. For each tetromino subset (Iv), the dis-
crete basis functions (Krommweh, 2010) are defined as follows:

/Iv
½i; j� :¼ 1=2; ði; jÞ 2 Iv

0; otherwise

�

wl
Iv
½i; j� :¼ 2 ½l;Lði; jÞ�; ði; jÞ 2 Iv

0; otherwise

�

for l ¼ 1; 2; 3, wl
Iv
represents tetrolets and /Iv

is scaling func-

tion. Haar wavelet transform matrix W has four fixed 2 � 2



CT image denoising using locally adaptive shrinkage rule in tetrolet domain 43
squares with 117 solution for disjoint covering of a 4 � 4

board.

W ¼ ð2 ½m; n�Þ3m;n¼0 ¼
1

2

1 1 1 1

1 1 �1 �1

1 �1 1 �1

1 �1 �1 1

0
BBB@

1
CCCA

There are 117 kinds of tilings for covering of a 4 � 4 block
with any four tetrominoes (Jain and Tyagi, 2015). Fig. 1(b)
represents one of the covering from 117 kinds of tilings and

Fig. 1(c) represents its local structure.

3. Proposed methodology

Generally, the distribution of noise in CT images follows the
Poisson distribution due to statistical fluctuations on X-ray
projected data (Rabbani et al., 2009). However, different
reconstruction algorithms can change the distribution of noise

model. Thus by Central Limit Theorem (CLT), the noise can
be best modeled by Gaussian distribution (Rabbani, 2009;
Ali and Sukanesh, 2011; Zhu et al., 2012). The CLT in CT
Figure 1 Tetromeno patterns with example. (a) Five tetromeno

patterns. (b) One of the disjoint covering from 117 kind of tilings.

(c) Corresponding local structure of (b).

Rearrange low/high coefficients into 2x2 block

Find and store sparsest tetorlet
representation of each block

Divide into 4x4 blocks

High-pass tetrolet
coefficients and
store subbands

Low-pass tetrolet
coefficients and
store subbands

Decomposition
required?

Denoised  CT image 
(R)

Reconstruction process
(Inverse tetrolet transform using tetromino

covering)

Yes

Store
subbands

Input noisy CT image
(X)

Store subbands of thresholded
high-pass tetrolet coefficients

Denoising
process

No

Locally adaptive thresholding

Restoring position
(Inverse shifting)

Denoised high-pass tetrolet
subbands

Variance based Weighted Average (WAV)

Generate shifted copies of each subbands

Input high-pass tetrolet
subbands

(LH, HL, HH)

Figure 2 Proposed scheme.
images can be obtained by adding values from many different
projections into each voxel of CT images (Hashemi et al., 2015;
Borsdorf et al., 2008; Naimi et al., 2015). With the assumption

that the CT images are corrupted by Gaussian noise with zero
mean and different variances, the scheme is proposed using
locally adaptive shrinkage rule in tetrolet domain.

Let, the noisy image Xði; jÞ be expressed as:

Xði; jÞ ¼ Yði; jÞ þ gði; jÞ ð1Þ
where, g is an additive noise, Y is noiseless image. The block
diagram of the proposed scheme is shown in Fig. 2. For

denoising of noisy CT scanned images, tetrolet transform plays
a major role to enhance the local information of an image
because of multi-scale geometric property.

In our proposed scheme, tetrolet transform is used to
decompose input noisy CT image into low (LL) and high
(LH, HL, HH) frequency subbands. Generally, physicians pre-
fer original noisy images more willingly in comparison to

smooth images for more sophisticated CT images. Therefore,
low frequency tetrolet subbands are not processed. The perfect
optimization for estimating a threshold value is an almost

impossible task for image denoising. Thus as an alternative,
an iterative method (Gupta et al., 2014) is used to get an
Figure 3 Original CT image data set.

Figure 4 Noisy CT image data set r ¼ 20.



Table 1 Average correlation values between multiple thresholded high frequency subbands.

L XLH XHL XHH

CT1 CT2 CT3 CT4 CT5 CT6 CT1 CT2 CT3 CT4 CT5 CT6 CT1 CT2 CT3 CT4 CT5 CT6

L = 1 0.9996 0.9934 0.9826 0.9656 0.9967 0.9989 0.9843 0.9992 0.9965 0.9892 0.9971 0.9992 0.9787 0.9692 0.9856 0.9801 0.9985 0.9994

L = 2 0.9732 0.9810 0.9721 0.9591 0.9741 0.9641 0.9571 0.9843 0.9669 0.9801 0.9793 0.9635 0.9619 0.9491 0.9624 0.9612 0.9703 0.9667

L = 3 0.9510 0.9583 0.9634 0.9310 0.9545 0.9431 0.9391 0.9623 0.9503 0.9511 0.9572 0.9410 0.9592 0.9312 0.9478 0.9598 0.9458 0.9498

L = 4 0.9497 0.9304 0.9331 0.9006 0.9365 0.9211 0.9131 0.9378 0.9395 0.9402 0.9476 0.9351 0.9271 0.9020 0.9378 0.9327 0.9309 0.9274

L = 5 0.9158 0.9043 0.9163 0.8912 0.9019 0.9143 0.9023 0.9191 0.9112 0.9229 0.9086 0.9071 0.9067 0.8932 0.9106 0.9208 0.9069 0.9104
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optimum thresholded value for each coefficient. To accomplish
this, we made several high-frequency tetrolet subbands by
shifting the coefficient position in the direction of x- and/or

y-axis circularly which are known as shifted copies of respec-
tive high-frequency tetrolet subbands. These shifted high fre-
quency subbands are thresholded separately by applying

locally adaptive shrinkage rule using estimated threshold value
and averaged to get final denoised coefficients.

In our proposed scheme, BayesShrink method is used to

estimate the threshold value. BayesShrink is a mathematical
framework where it is assumed that each high frequency sub-
bands of tetrolet coefficients are generalized by Gaussian dis-
tribution to estimate the threshold value that minimizes the

Bayesian risk. To denoise high frequency subbands, a thresh-
old value is estimated and thresholding is performed. The
threshold value can be estimated as,

k ¼ r2
g

rY

ð2Þ

where the noise variance ðr2
gÞ can be estimated using robust

median estimator method (Borsdorf et al., 2008) and defined
as:
Figure 8 Results of SURELET.

Figure 9 Results of Bayes thresholding.
r2
g ¼

medianðjXði; jÞjÞ
0:6745

� �2
ð3Þ

and variance r2
W of noiseless image can be extracted as,

r2
Y ¼ max r2

X � r2
g; 0

� �
ð4Þ

where r2
X ¼ 1

w

Pw
i¼1X

2
i and w represents the number of pixels in

a selected block.
In our proposed scheme, a thresholding shrinkage rule

(Gao and Bruce, 1997) is used to denoise high frequency tetro-
let subbands which helps to avoid the limitations of both hard
and soft thresholding. This function also helps to minimize the

overall mean-squared error. The thresholding function can be
expressed as:

bX 0 :¼
X; if jXj > k2
signðXÞ k2ðjXj�k1Þ

k2�k1
; if k1 < jXj 6 k2

0; Otherwise

8><
>: ð5Þ
Figure 10 Results of biorthogonal wavelet thresholding.

Figure 11 Results of proposed scheme.
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After thresholding process, all shifted copies of high fre-
quency tetrolet subbands are restored by shifting coefficients
into their original position and patch wise variance based

weighted average is performed to get final thresholded high
frequency tetrolet subbands. Finally, inverse tetrolet decompo-
sition is performed to obtain final denoised CT image.

Our proposed method consist the following steps:

Step 1: Apply tetrolet decomposition on noisy input CT

image to obtain low and high frequency subbands as below:
Fi

Figure

image
(a) Divide the image into 4 � 4 blocks.
(b) Set the decomposition level and tetromino covering
values (by, 117).

(c) Find and store sparsest tetrolet representation of
each block.
(d) Rearrange low/high coefficients into 2 � 2 blocks

and obtain low and high frequency subbands.
(e) Extraction of further decomposition on low fre-
quency subband:
gure 12 Difference between original and noisy image.

13 Difference between original and LLSURE filtered

.

� For each level, low frequency subbands are decomposed.

Decomposed subbands are known as child node for resp-
ective parent node.

� Calculate the entropy as a cost function (Fathi and Naghsh-

Nilchi, 1989) of each child nodes as well as parent nodes.
� In top down approach manner, check the cost value. If the

cost of parent node is greater than total cost of child nodes;
Continue further decomposition. Otherwise; Stop decom-

position and eliminate children nodes.

Step 2: Prepare k number of shifted copies of high fre-

quency tetrolet subbands by shifting the coefficient posi-
tions in the direction of the x- and/or y-axis circularly.

X0ði; jÞsc ¼ circular shiftfXði; jÞs; ½ishift; jshift�g ð6Þ
where c ¼ 1 . . . k, the value of k depends on the length of
respective high frequency tetrolet subband.

Step 3: For each decomposition level ðLÞ:
Figure

image

Figure

denois
(a) Calculate local noise variance using Eq. (3)
14 Difference between original and bilateral filtered

.

15 Difference between original and total variation

ed image.
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(b) For each tetrolet coefficients in each subband ðsÞ:
(i) Compute threshold value k1 using Eq. (2)
(ii) Compute threshold value k2, by setting
k2 ¼ 0:9 � k1
(iii) Apply shrinkage rule using Eq. (5)

Step 4: After thresholding on each subband, perform the
inverse shift. The resulting thresholded high frequency

tetrolet coefficients ðbX 0ði; jÞscÞ are shifted back to the origi-

nal position and the multiple high frequency tetrolet modi-
fied subbands are stored.

X00ði; jÞsc ¼ circular shiftf bX 0ði; jÞsc ; ½�ishift;�jshift�g ð7Þ
Step 5: To get final denoised high frequency tetrolet sub-
bands, perform patch wise variance based weighted average
on multiple high frequency tetrolet modified subbands, as

given below (Jain and Tyagi, 2015):

bXði; jÞs ¼
Xk

c¼1

asc � X00ði; jÞsc ð8Þ
Figure 17 Difference between original and Bayes denoised

image.

Figure 16 Difference between original and SURELET filtered

image.
where asc ¼ var�1ðX00
w;sc

ÞPk

c¼1
var�1ðX00

w;sc
Þ
, var�1ð�Þ represents inverse of the

variance, X̂ði; jÞs is the final thresholded value for the coef-

ficient at position ði; jÞ in the subband s and w is local neigh-
borhood which is used to calculate the local variance.

Step 6: Perform the tetrolet reconstruction, to get the final
denoised CT image.

4. Experimental results and discussion

The experimental evaluation is performed on noisy CT images

with size 512x512. The CT scanned test images shown in Fig. 3
(a–f) are obtained from public access database (https://eddie.
via.cornell.edu/cgibin/datac/logon.cgi). The proposed image
denoising scheme is applied to all test images corrupted by

additive Gaussian white noise at four different noise levels
ðrÞ: 10, 20, 30, and 40. Fig. 3(a–f) is considered as CT image
1, 2, 3, 4, 5 and 6 respectively. Fig. 4(a–f) shows noisy test

image data set with ðrÞ ¼ 20.
Figure 19 Difference between original and proposed scheme

based denoised image.

Figure 18 Difference between original and biorthogonal wavelet

based denoised image.

https://eddie.via.cornell.edu/cgibin/datac/logon.cgi
https://eddie.via.cornell.edu/cgibin/datac/logon.cgi


Table 2 MSE, PSNR and IQI of CT denoised images.

Image r MSE PSNR IQI

10 20 30 40 10 20 30 40 10 20 30 40

CT1 LLSURE (Qiu et al., 2013) 40.20 116.17 205.15 281.24 32.09 27.45 25.01 23.64 0.9968 0.9019 0.8864 0.8670

Bilateral (Durand and Dorsey,

2002)

50.35 102.58 154.19 231.24 31.11 28.02 26.25 24.49 0.9952 0.9174 0.8972 0.8711

TV (Goldstein and Osher, 2009) 40.55 96.17 145.90 258.27 32.05 28.30 26.49 24.01 0.9976 0.9175 0.8831 0.8540

SURELET (Thierry and

Florian, 2007)

46.99 102.82 158.88 227.02 31.41 28.01 26.12 24.57 0.9951 0.9168 0.8961 0.8702

Bayes (Chang et al., 2000) 39.27 96.62 145.23 258.27 32.19 28.28 26.51 24.01 0.9971 0.9147 0.8832 0.8521

Bior (Prakash and Khare, 2014) 38.91 93.77 147.59 239.92 32.23 28.41 26.54 24.33 0.9973 0.9139 0.8812 0.8510

Proposed 34.76 88.32 119.42 207.05 32.72 28.67 27.36 24.97 0.9993 0.9298 0.8949 0.8841

CT2 LLSURE (Qiu et al., 2013) 39.90 95.73 155.98 258.27 32.12 28.32 26.20 24.01 0.9971 0.9028 0.8953 0.8669

Bilateral (Durand and Dorsey,

2002)

44.06 78.17 153.13 289.78 31.69 29.20 26.28 23.51 0.9975 0.9198 0.8721 0.8611

TV (Goldstein and Osher, 2009) 40.65 92.27 145.57 235.00 32.04 28.48 26.50 24.42 0.9973 0.9061 0.8801 0.8506

SURELET (Thierry and

Florian, 2007)

50.82 100.24 155.62 219.72 31.07 28.12 26.21 24.71 0.9952 0.9168 0.8962 0.8712

Bayes (Chang et al., 2000) 40.18 96.40 146.58 253.55 32.09 28.29 26.47 24.09 0.9976 0.9154 0.8851 0.8552

Bior (Prakash and Khare, 2014) 39.09 100.01 152.08 241.03 32.21 28.13 26.39 24.31 0.9961 0.9148 0.8863 0.8521

Proposed 33.57 80.18 123.90 207.52 32.87 29.09 27.20 24.96 0.9993 0.9081 0.8999 0.8875

CT3 LLSURE (Qiu et al., 2013) 51.53 100.01 151.73 252.39 31.01 28.13 26.32 24.11 0.9941 0.8801 0.8781 0.8649

Bilateral (Durand and Dorsey,

2002)

49.09 80.55 152.78 266.73 31.22 29.07 26.29 23.87 0.9979 0.9080 0.8832 0.8642

TV (Goldstein and Osher, 2009) 40.18 102.82 152.78 258.27 32.09 28.01 26.29 24.01 0.9984 0.8960 0.8728 0.8572

SURELET (Thierry and

Florian, 2007)

46.99 81.29 125.62 210.90 31.41 29.03 27.14 24.89 0.9950 0.8920 0.8705 0.8613

Bayes (Chang et al., 2000) 42.08 98.19 144.90 235.54 31.89 28.21 26.52 24.41 0.9947 0.9073 0.8837 0.8609

Bior (Prakash and Khare, 2014) 43.15 94.20 133.68 225.98 31.78 28.39 26.87 24.59 0.9933 0.9061 0.8828 0.8660

Proposed 40.27 73.29 125.04 207.05 32.08 29.48 27.16 24.97 0.9961 0.9089 0.8879 0.8663

CT4 LLSURE (Qiu et al., 2013) 59.44 102.82 159.61 230.18 30.39 28.01 26.10 24.51 0.9942 0.8998 0.8709 0.8553

Bilateral (Durand and Dorsey,

2002)

43.15 86.11 155.62 258.27 31.78 28.78 26.21 24.01 0.9981 0.9031 0.8789 0.8601

TV (Goldstein and Osher, 2009) 56.37 100.94 141.93 232.85 30.62 28.09 26.61 24.46 0.9962 0.8914 0.8682 0.8565

SURELET (Thierry and

Florian, 2007)

51.53 102.11 154.55 246.64 31.01 28.04 26.24 24.21 0.9953 0.9012 0.8869 0.8659

Bayes (Chang et al., 2000) 55.09 92.48 147.25 244.38 30.72 28.47 26.45 24.25 0.9976 0.9023 0.8843 0.8636

Bior (Prakash and Khare, 2014) 52.49 89.55 144.57 225.98 30.93 28.61 26.53 24.59 0.9978 0.9043 0.8813 0.8661

Proposed 46.78 83.96 139.66 216.31 31.43 28.89 26.68 24.78 0.9979 0.9059 0.8892 0.8693

CT5 LLSURE (Qiu et al., 2013) 44.88 92.27 140.95 268.58 31.61 28.48 26.64 23.84 0.9971 0.8812 0.8633 0.8567

Bilateral (Durand and Dorsey,

2002)

50.24 103.53 196.82 268.28 31.12 27.98 25.19 23.91 0.9934 0.8966 0.8712 0.8533

TV (Goldstein and Osher, 2009) 55.09 100.48 151.73 260.66 30.72 28.11 26.32 23.97 0.9932 0.8734 0.8609 0.8598

SURELET (Thierry and

Florian, 2007)

49.21 95.95 138.06 249.50 31.21 28.31 26.73 24.16 0.9953 0.9012 0.8769 0.8619

Bayes (Chang et al., 2000) 44.47 86.71 132.15 246.64 31.65 28.75 26.92 24.21 0.9960 0.8912 0.8883 0.8610

Bior (Prakash and Khare, 2014) 44.06 89.75 131.54 241.03 31.69 28.60 26.94 24.31 0.9967 0.8971 0.8895 0.8601

Proposed 41.69 85.91 133.37 237.72 31.93 28.79 26.88 24.37 0.9979 0.9097 0.8812 0.8625

CT6 LLSURE (Qiu et al., 2013) 50.35 85.52 147.59 286.47 31.11 28.81 26.44 23.56 0.9965 0.8909 0.8616 0.8407

Bilateral (Durand and Dorsey,

2002)

47.98 82.42 137.42 276.74 31.32 28.97 26.75 23.71 0.9943 0.9078 0.8702 0.8653

TV (Goldstein and Osher, 2009) 39.72 81.67 155.62 239.92 32.14 29.01 26.21 24.33 0.9961 0.9117 0.8714 0.8575

SURELET (Thierry and

Florian, 2007)

48.09 92.91 140.30 221.86 31.31 28.45 26.66 24.67 0.9948 0.9013 0.8709 0.8617

Bayes (Chang et al., 2000) 49.09 87.51 144.90 239.37 31.22 28.71 26.52 24.34 0.9977 0.9064 0.8811 0.8672

Bior (Prakash and Khare, 2014) 49.66 88.12 138.06 231.24 31.17 28.68 26.73 24.49 0.9971 0.9001 0.8898 0.8688

Proposed 38.91 88.32 135.54 219.82 32.23 28.67 26.81 24.71 0.9971 0.9108 0.8903 0.8691
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4.1. Experimental evaluation

With the motivation that in most of the cases, denoising is
dependent on the neighborhood pixels or coefficients, our
scheme is designed where high frequency tetrolet coefficients
are thresholded by changing neighborhood coefficients using

circular shifting and multiple thresholded high frequency
subbands are obtained as discussed in proposed methodology
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section. In our proposed scheme, two threshold values ðk1 and
k2Þ are used in thresholding function. The threshold value ðk1Þ
can be obtained from Eq. (2). Another threshold value ðk2Þ is
used to provide less sensitivity for small variations in the data
and also for smaller overall mean-squared error (Minasyan
et al., 2006). The value of ðk2Þ should be between zero to k1.
Here all experimental results are obtained by setting the
threshold value ðk2Þ as k2 ¼ 0:9k1. The results may slightly
vary by setting different values of k2. The variation between

multiple thresholded high frequency subbands can be observed
by correlation values. Table 1 shows the obtained average cor-
relation values between multiple thresholded high frequency
subbands (r ¼ 20).

To achieve maximum edge preserving and effective noise
reduction, patch wise variance based weighted average is per-
formed on multiple thresholded high frequency subbands

where the patch size is used as 3 � 3. Using inverse tetrolet
decomposition, final denoised image is obtained.

4.2. Performance evaluation

The performance of CT image denoising schemes can be mea-
sured using MSE, PSNR and Image Quality Index (IQI).

For input image (X) and denoised image (R), the IQI can be
defined as:

IQI ¼ 4rXRXR

r2
X þ r2

Rð Þ ðXÞ2 þ ðRÞ2Þ
h i ð9Þ

where,

X ¼ 1
N

PN
i¼1Xi; R ¼ 1

N

PN
i¼1Ri; r2

X ¼ 1
N�1

PN
i¼1ðXi � XÞ2; r2

R ¼
1

N�1

PN
i¼1ðRi � RÞ2 and rXR ¼ 1

N�1

PN
i¼1ðXi � XÞðRi � RÞ.

The quality of image index range lies between 1 and �1.
The best value 1 represents an identical value of input image
pixel and denoised image pixel. The lowest value �1 shows

that the pixel values are uncorrelated.
Peak Signal-to-Noise Ratio (PSNR) is an important factor

to evaluate denoising performance. The higher PSNR values
represent more similarity between the denoised and original

images. For input image (X) and denoised image (R), the
PSNR is expressed as:

PSNR ¼ 10� log10
255�255
MSE

� � ð10Þ
where, Mean Square Error (MSE) is defined as

MSE ¼ 1

mn

Xm�1

i¼0

Xn�1

j¼0

½Xði; jÞ � Rði; jÞ�2
4.3. Comparisons

To validate the superiority of the proposed scheme, its perfor-
mance is compared in terms of visual quality, MSE, PSNR and

Image Quality Index (IQI) of the denoised images using some
standard existing methods. For strong comparison, both wave-
let and non-wavelet based existing standard methods are used.

The existing methods used for comparison are LLSURE (Qiu
et al., 2013), Bilateral filtering (Durand and Dorsey, 2002),
Total variation (Goldstein and Osher, 2009), SURELET

(Thierry and Florian, 2007), wavelet based Bayes thresholding
using Daubechies 8 (DB8) (Chang et al., 2000) and medical
image denoising based on soft thresholding using bi-
orthogonal 1.3 (bior 1.3) multiscale wavelet transform
(Prakash and Khare, 2014).

Figs. 5–11 are showing the results of LLSURE (Qiu et al.,
2013), Bilateral filtering (Durand and Dorsey, 2002), Total
variation (Goldstein and Osher, 2009), SURELET (Thierry

and Florian, 2007), wavelet based Bayes thresholding (Chang
et al., 2000), medical image denoising based on soft threshold-
ing using biorthogonal multiscale wavelet transform (Prakash

and Khare, 2014) and proposed scheme respectively. The
image quality is measured by visual inspection as there is no
generally accepted objective way to judge the image quality
of a denoised image. There are two criteria widely used in

the literature are: (1) visibility of the artifacts and (2) preserva-
tion of edge details. The performance of LLSURE method as
shown in Fig. 5, is not satisfactory, specially in homogenous

regions and near the edges. The method of Bilateral filtering
as shown in Fig. 6, provides smoother edge preserved results
in homogenous regions. For higher noise level, edge preserva-

tion of small detail parts are not satisfactory for clinical pur-
pose. The results of Total Variation (TV) denoising as shown
in Fig. 6, give edge preserved smooth denoised images but tex-

ture is not as good as for clinical purpose. The results of
SURELET, wavelet based denoising using Bayes thresholding
and Biorthogonal wavelet thresholding as shown in Figs. 8–10
respectively are providing smoother edge preserved results in

homogenous regions. As the noise level increases, Bayes and
Biorthogonal wavelet thresholding methods failed to provide
the smooth data over the homogenous regions. SURELET

also failed to provide satisfactory results on the edges over
the higher noise level. The proposed scheme performs several
intermediate results using variation and averaging on high fre-

quency coefficients to get final denoised image. The proposed
denoising method employs a locally adaptive thresholding
where all tetrolet coefficients of each high-frequency subbands

are thresholded using the coefficients in their local neighbor-
hoods. It is observed that the results of proposed scheme pro-
vide better outcomes for effectively noise reduction and edge
preservation of the CT images. Fig. 12 shows the difference

between the original and noisy images. Figs. 13–19 show the
results as the difference between the original images and the fil-
tered ones for each method where visually it can be observed

that proposed scheme gives better outcomes in most of the
cases. Table 2 shows MSE, PSNR (in dB) and IQI values of
the denoised images relative to their original images for pro-

posed and existing methods. The best values among all the
methods are represented in bold. The results shown in Table 2
demonstrate that in most of the cases, the proposed method is
superior to all other methods.

5. Conclusions

An alternate post processing approach of iterative method has

been proposed to denoise the CT images using locally adaptive
thresholding rule in tetrolet domain. Patch wise variance based
weighted average gives the strength to get finer details and

effective denoising. The proposed method can be implemented
very simply and more efficiently than many existing denoising
methods. In most of the cases, the MSE, PSNR and IQI values

of proposed scheme are better in comparison to existing meth-
ods. Apart from MSE, PSNR and IQI, the visual quality of
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proposed scheme over the CT images is better in terms of clin-
ically relevant details. Experimental results demonstrate that
our proposed method: (i) effectively eliminate the noise in

CT images, (ii) preserve the edge and geometrical structures,
and (iii) retain clinically relevant details.
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