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Abstract All the higher order ANNs (HONNs) including functional link ANN (FLANN) are sen-

sitive to random initialization of weight and rely on the learning algorithms adopted. Although a

selection of efficient learning algorithms for HONNs helps to improve the performance, on the

other hand, initialization of weights with optimized weights rather than random weights also play

important roles on its efficiency. In this paper, the problem solving approach of the teaching learn-

ing based optimization (TLBO) along with learning ability of the gradient descent learning (GDL)

is used to obtain the optimal set of weight of FLANN learning model. TLBO does not require any

specific parameters rather it requires only some of the common independent parameters like number

of populations, number of iterations and stopping criteria, thereby eliminating the intricacy in selec-

tion of algorithmic parameters for adjusting the set of weights of FLANN model. The proposed

TLBO-FLANN is implemented in MATLAB and compared with GA-FLANN, PSO-FLANN

and HS-FLANN. The TLBO-FLANN is tested on various 5-fold cross validated benchmark data

sets from UCI machine learning repository and analyzed under the null-hypothesis by using Fried-

man test, Holm’s procedure and post hoc ANOVA statistical analysis (Tukey test & Dunnett test).
� 2016 King Saud University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Classification and forecasting tasks are typical process of
learning and knowledge discovery from data in the field of
data mining. Many applications of classification tasks have

been reported in recent years from emerging areas of science
and engineering (Yang et al., 2013; Hajmohammadi et al.,
2014; He et al., 2014; Uysal and Gunal, 2014; Tolambiya

et al., 2010; Mei et al., 2014; Kianmehr et al., 2010; Gillies
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Table 1 Previous literatures on teaching learning based optimization (TLBO).

Reference Contribution Area of application Year

Toğan (2012) TLBO Engineering design 2012

Niknam et al. (2012) MOTLBO Economic dispatch 2012

Zou et al. (2013) TLBO Multi-objective optimization 2013

Roy et al. (2013) QOTLBO Hydro thermal scheduling 2013

Mandal and Roy (2013) QOTLBO Power dispatch 2013

Garcı́a and Mena (2013) MTLBO Distributed generation 2013

Venkata Rao and Kalyankar (2013) TLBO Machining processes 2013

Roy (2013) TLBO Scheduling problem 2013

Roy and Bhui (2013) QOTLBO Load dispatch 2013

Singh et al. (2013) TLBO Power system 2013

Satapathy et al. (2013a) WTLBO Optimization 2013

Satapathy et al. (2013b) OTLBO Optimization 2013

Tuo et al. (2013) HSTL Optimization 2013

Theja et al. (2013) TLBO Power system 2013

Sultana and Roy (2014) TLBO Optimal capacitor placement 2014

Azizipanah-Abarghooee et al. (2014) Gradient based modified TLBO

with Black hole

Scheduling of thermal power systems 2014

Arya and Koshti (2014) TLBO Load shedding 2014

Khalghani and Khoob (2014) TLBO Power quality 2014

Niu et al. (2014) STLBO Fuel and solar cell models 2014

Moghadam and Seifi (2014) Fuzzy-TLBO Energy loss minimization 2014

Cheng (2014) TLBO Temperature calculations 2014

Barisal (2015) TLBO Load frequency control 2015

Ghasemi et al. (2015a) GBTLBO Power dispatch problem 2015

Chen et al. (2015) ITLBO Optimization 2015

Sahu et al. (2016) TLBO Power system 2015

Ghasemi et al. (2015b) ITLBO Power flow 2015
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et al., 2013; Lai and Garibaldi, 2013), which has given moti-
vation and direction to the application of the classification

task in data mining. Although a good number of traditional
classification methods are proposed by many researchers
(Quinlan, 1993; Yung and Shaw, 1995; Hamamoto et al.,

1997; Yager, 2006), for the first time, Zhang (2000) realized
that artificial neural network (ANN) models are alternatives
to various conventional classification methods which are

based on statistics. ANNs are capable of generating complex
mapping between input and the output space and thus they
can form arbitrarily complex nonlinear decision boundaries.
Along the way, there are already several artificial neural net-

works, each utilizing a different form of learning or
hybridization. As compared to higher order neural network,
classical neural networks (Example: MLP) are suffering from

slow convergence and unable to automatically decide the
optimal model of prediction for classification. In the last
few years, to overcome the limitations of conventional

ANNs, some researchers have focused on higher order neural
network (HONN) models (Redding et al., 1993; Goel et al.,
2006) for better performance.

In this paper, it is an attempt to design HONN model with

competitive learning based on a new meta-heuristic optimiza-
tion algorithm for classification of benchmark data sets consid-
ered from well known machine learning data repository. The

encouraging results and absence of the typical algorithm
dependent parameters of the recently developed TLBO algo-
rithm (Rao et al., 2011) inspired us to develop the model:

TLBO-FLANN: a hybrid TLBO based gradient descent
learning-functional link higher order ANN (FLANN) model
for learning from non-linear data.
2. Literature survey

A good number of research papers is reported on various

FLANN models and its application in classification, predic-
tion and forecasting in recent years. Also excellent efforts are
made to improve the performance of these FLANN models

by using various optimization techniques. This section presents
various previous works reported on FLANN models in
classification, prediction and forecasting in data mining. A
classification method by using FLANN with least complex

architecture as compared to multilayer perceptron is antici-
pated by Mishra and Dehuri (2007) and the proposed method
is found to be efficient in terms of ability of handling linearly

non-separable classes by increasing the dimension of input
space. In most cases, the performance and processing time of
FLANN model is found to be better than the other models.

A survey on FLANN is made and PSO based back propaga-
tion learning is proposed by Dehuri and Cho (2009). The basic
concept of FLANN, associated basis functions, learning

schemes and development of FLANNs over time are discussed
in this paper. Also authors have proposed a Chebyshev-
FLANN with hybrid PSO-back propagation learning for
classification. The proposed model is proven to be better as

compared to FLANN by testing with benchmark data sets.
Patra et al. (2009) suggested an efficient FLANN model for
making stock price prediction of the closing price of US stocks

and the proposed model is compared with MLP-based predic-
tion model through several experiments. This proposed
trigonometric FLANN has shown superior performance over

MLP by making more accurate predictions of stock prices.
Prediction of the causing genes in gene diseases by FLANN



Figure 1 Functional link higher order artificial neural network architecture.

Table 2 Various notations and symbols used in algorithmic

design of proposed scheme.

Notation used Meaning

X Population of weight-sets

xi Each individual weight-set in X

wi;j jth weight value of ith weight-set (xi)

RMSE Root mean square error

Fxi Fitness of xi (ith weight-set in X)

Xmean Mean of the population X

xteacher Selected weight-set as teacher

TF Teaching Factor

X(i) ith weight-set of the population X

XnextðiÞ ith weight-set of the next population X

U Functionally expanded input values

T Target values

l Gradient descent learning parameter

YðkÞ Output of FLANN model for kth pattern

tðkÞ Target value of kth pattern

eðkÞ Error value of kth pattern

DW Error term of the network
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model is proposed by Sun et al. (2009) and compared with
multilayer perceptron (MLP) and support vector machines

(SVM). In this study, three classifiers (i.e. MLP, SVM,
FLANN) have been implemented and the performance of
FLANN classifier is found to be better than MLP and SVM.
Chakravarty and Dash (2009) have proposed functional link

neural fuzzy (FLNF) model to predict the stock market indices
and compared with FLANN model in terms of root mean
square error. The simulation results have been demonstrated

to claim better performance of FLNF over FLANN. Also
the local minima problem which may arise in back propaga-
tion learning algorithm is addressed by using particle swarm
optimization (PSO). A FLANN based model with least mean

square and recursive least square learning algorithm is
employed by Majhi et al. (2009) for forecasting of the stock
markets. Between least mean square learning based FLANN

and recursive least square learning FLANN, the recursive least
square learning FLANN is found to be efficient and has less
computational complexity. A compact and accurate hybrid

FLANN classifier (HFLNN) has been proposed by Dehuri
and Cho (2010) by selecting an optimal subset of favorable
input features by eliminating features with fewer or no predic-
tive information and this method is found to be better as

compared to FLANN and RBFN. The MLP, FLANN and
PSO-FLANN classification models are used and tested by
Mishra et al. (2012) for classification of biomedical data. In

this paper, an efficient dynamic classifier fusion (DCF) has
been proposed along with principal component analysis (PCA)
scheme which is used to extract important input features.

Extracted features are then supplied to LMS classifiers, with
learning based on back propagation and PSO algorithm.
Although MLP is a traditional ANN, surprisingly, in this



Figure 2 Working procedure of the proposed scheme.
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study, they found MLP is better as compared to FLANN and
PSO-FLANN. Dehuri et al. (2012) have proposed an IPSO

(improved PSO) based FLANN classifier (IPSO-FLANN)
and compared with MLP, support vector machine (SVM),
RBFN, FLANN with gradient descent learning and fuzzy

swarm net (FSN) model. Initially, the set of weight values of
FLANN are optimized using IPSO and then those are supplied
to FLANN classifier along with functionally expanded (using

trigonometric basis functions) input patterns for classification.
The ISO-FLANN is simple in architecture and found to be
better as compared to MLP, SVM, FLANN with gradient des-

cent learning and FSN. An efficient classification method
based on FLANN and a hybrid learning scheme based on
PSO and GA have been proposed by Naik et al. (2015a) and
it is found to be relatively better in performance as compared

to other alternatives. The PSO, GA and the gradient descent
search are used iteratively to adjust the parameters of FLANN
until the error is less than the required value, which helps the
FLANN model to get better classification accuracy. Naik
et al. (2015b) have designed a honey bee mating optimization

(HMBO) based learning scheme for FLANN classifier and
compared with FLANN, GA based FLANN, PSO based
FLANN and HS based FLANN classification model. The pro-

posed method mimics the iterative mating process of honey
bees and strategies to select eligible drones for the mating pro-
cess, selection of best weights for FLANN classifiers. A novel

FLANN with a harmony search (HS) algorithm-based GDL
method is proposed by Naik et al. (2014), which requires less
mathematical computation as compared to other similar meth-

ods. The HS based FLANN (HS-FLANN) is more efficiently
able to classify the data than PSO-based FLANN and GA
based FLANN.

In this paper, a FLANN model with hybrid TLBO based

gradient descent learning (GDL) method for learning from
non-linear data for classification task has been proposed and
compared with previously available alternatives.



Table 3 Details on data sets used for experiments.

Data sets Number

of pattern

Number of features

(excluding class label)

Number

of classes

Wine 178 13 03

Iris 150 04 03

Hayesroth 160 04 03

Monk 2 256 06 02

Ionosphere 351 33 02

Hepatitis 80 19 02

Pima 768 08 02

New Thyroid 215 05 03

Bupa 345 06 02

Dermatology 256 34 06

Heart 270 13 02

Table 5 Comparison between GA-FLANN, PSO-FLANN,

HS-FLANN and TLBO-FLANN models based on the fitness.

Datasets Fitness obtained by various hybrid models

GA-

FLANN

PSO-

FLANN

HS-

FLANN

TLBO-

FLANN

Wine 2.462398 2.462398 2.534043 3.057658

Iris 5.972679 5.97268 5.97268 9.411738

Hayesroth 1.888252 1.869618 1.895258 3.118014

Monk 2 2.024735 2.033361 2.037116 3.057657

Ionosphere 1.677268 1.696773 1.67727 2.382388

Hepatitis 2.58331 2.813839 3.276094 2.349537

Pima 2.216361 2.216474 2.217241 2.220777

New

Thyroid

1.888252 1.869618 2.675806 3.118014

Bupa 1.54692 1.547116 1.548419 2.162731

Dermatology 1.888967 1.981951 2.267907 3.690652

Heart 2.128121 2.127275 2.128124 2.696475
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3. Design issues identification

All the FLANN models discussed in the literature survey

implement some form of learning methods which learns from
past data in forecasting and classification tasks in data mining.
Almost all HONNs including FLANN are sensitive to random

initialization of weights and rely on the learning algorithm
adopted. Although a selection of efficient learning algorithms
for HONNs helps to improve the performance, initialization
of weights with optimized weights rather than random weights

also play important roles in efficiency of HONNs. In the liter-
ature survey, it was noticed that, almost all the previously pub-
lished works have addressed the issue of random initialization

of weights in FLANN by using various optimization algo-
rithms like genetic algorithm (GA) (Holland, 1992;
Goldberg, 1989), particle swarm optimization (PSO)

(Kennedy et al., 1995), harmony search (HS) (Geem et al.,
2001), honey-bee mating optimization (HBMO) (Abbass
et al., 2001) etc. In these papers, the optimization algorithms
(GA, PSO, Improved PSO, HS, HMBO etc.) are used to select

the best set of weights for FLANN models for various applica-
tions like prediction, classification and forecasting. Although it
is reported that these optimization techniques are successfully

used in FLANN models for implementation in improved mod-
els like GA based FLANN (GA-FLANN) (Dehuri et al.,
2012), PSO based FLANN (PSO-FLANN) (Dehuri et al.,

2012), IPSO based FLANN (IPSO-FLANN) (Dehuri et al.,
2012), HBMO based FLANN (HBMO-FLANN) (Naik
et al., 2015b) and HS based FLANN (HS-FLANN) (Naik
Table 4 Data sets prepared in 5-fold cross validation for training a

Dataset Data files Number of

Pattern

Task

New Thyroid Newthyroid-5-1tra.dat 172 Training

Newthyroid-5-1tst.dat 43 Testing

Newthyroid-5-2tra.dat 172 Training

Newthyroid-5-2tst.dat 43 Testing

Newthyroid-5-3tra.dat 172 Training

Newthyroid-5-3tst.dat 43 Testing

Newthyroid-5-4tra.dat 172 Training

Newthyroid-5-4tst.dat 43 Testing

Newthyroid-5-5tra.dat 172 Training

Newthyroid-5-5tst.dat 43 Testing
et al., 2014), some weakness of these implementations are the
requirement of various algorithmic controlling parameters
like: (i) selection of mutation rate and type of crossover oper-

ator in GA in GA-FLANN, (ii) choosing of appropriate values
of inertia weight (k), coefficient c1 and c2 in PSO in PSO-
FLANN and IPSO-FLANN (iii) types of crossover operator

selection and choosing drone and worker ratio in HBMO in
HBMO-FLANN and (iv) selection of pitch adjustment rate,
harmony memory consideration rate and bandwidth in HS

in HS-FLANN. The performances of these models are depen-
dent upon such controlling parameters and any changes in
these parameters may not only lead to increase the effort to
develop the program but also the time and space complexity

of the algorithm increases.
Keeping this in view, a new teaching and learning inspired

algorithm (TLBO) is used in FLANN learning model with gra-

dient descent learning (GDL) (Rumelhart et al., 1986) scheme
for classification. This paper attempts to address the intricacy
in adjusting the set of weights of the FLANN model by using

an appropriate learning algorithm. Here the problem solving
approach of the TLBO along with learning ability of the
GDL is used to obtain the optimal set of weights of FLANN

model. In this paper, a FLANN model has been designed with
TLBO algorithm which does not require any algorithmic speci-
fic parameters, rather it requires some of the common indepen-
dent parameters like number of populations, number of
nd testing phase.

Number of Pattern

in class-1

Number of Pattern

in class-2

Number of Pattern

in class-3

120 28 24

30 07 06

120 28 24

30 07 06

120 28 24

30 07 06

120 28 24

30 07 06

120 28 24

30 07 06



Table 6 Comparison between GA-FLANN, PSO-FLANN, HS-FLANN and TLBO-FLANN models based on average fitness on 11

numbers of data sets.

Various hybrid models

GA-FLANN PSO-FLANN HS-FLANN TLBO-FLANN

Average RMSE on 11 data sets 0.473349 0.468362 0.442128 0.345602
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Figure 3 Observation on improvements in fitness of population in various iterations on Wine dataset.

Table 7 Friedman’s ranks of various models on the data sets based on the maximum fitness obtained.

Datasets Fitness obtained by various hybrid models

GA-FLANN PSO-FLANN HS-FLANN TLBO-FLANN

Wine 2.462398 (3) 2.462398 (3) 2.534043 (2) 3.057658 (1)

Iris 5.972679 (3) 5.97268 (2) 5.97268 (2) 9.411738 (1)

Hayesroth 1.888252 (3) 1.869618 (4) 1.895258 (2) 3.118014 (1)

Monk 2 2.024735 (4) 2.033361 (3) 2.037116 (2) 3.057657 (1)

Ionosphere 1.677268 (4) 1.696773 (2) 1.67727 (3) 2.382388 (1)

Hepatitis 2.58331 (3) 2.813839 (2) 3.276094 (1) 2.349537 (4)

Pima 2.216361 (4) 2.216474 (3) 2.217241 (2) 2.220777 (1)

New Thyroid 1.888252 (3) 1.869618 (4) 2.675806 (2) 3.118014 (1)

Bupa 1.54692 (4) 1.547116 (3) 1.548419 (2) 2.162731 (1)

Dermatology 1.888967 (4) 1.981951 (3) 2.267907 (2) 3.690652 (1)

Heart 2.128121 (3) 2.127284 (4) 2.128124 (2) 2.696475 (1)

Friedman’s rank in average 3.455 3 2 1.272
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iterations and stopping criteria (like other optimization tech-
niques). Starting from the development of TLBO, it has been

of keen interest among the diversified researchers and has been
used in various real life applications (Vedat Toğan, 2012;
Niknam et al., 2012; Zou et al., 2013; Roy et al., 2013;

Mandal and Roy, 2013; Garcı́a and Mena, 2013; Venkata
Rao and Kalyankar, 2013; Roy, 2013; Roy and Bhui, 2013;
Singh et al., 2013; Satapathy et al., 2013a,b; Tuo et al., 2013;

Theja et al., 2013; Sultana and Roy, 2014; Azizipanah-
Abarghooee et al., 2014; Arya and Koshti, 2014; Khalghani
and Khoob, 2014; Niu et al., 2014; Moghadam and Seifi,
2014; Cheng, 2014; Barisal, 2015; Ghasemi et al., 2015a;
Chen et al., 2015; Sahu et al., 2016; Ghasemi et al., 2015b)
(Table 1). Although Črepinšek et al. (2012) had raised some

issues relating the performance of TLBO such as: (i) incorrect
use of formulae to evaluate various fitness functions,(ii) con-
trolling parameters, (iii) improper experiment settings etc.;

later on Waghmare (2013) has correctly reexamined, com-
mented and tested on the above raised issues on TLBO. He
has not only tested the algorithm by considering a number

of both constrained and unconstrained functions and found
the algorithm outperforms the other existing evolutionary
algorithms, but he has also been able to prove the
misinterpretation and misconception created by Črepinšek
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et al. about the understanding point of view of TLBO . Also,
he has properly justified the less controlling parameter
required to supply for TLBO; in fact only the common

controlling parameters are required during the experimental
analysis of TLBO, which is claimed by testing the functions
and their improved results. However, in this paper, after all

the required experimental settings, proper tuning of the com-
mon parameters and from the experimental results, it is found
that TLBO outperforms some other existing techniques.

The remaining of the paper is organized as follows:
Section 4 describes the preliminaries like TLBO algorithm,
concept of FLANN and GDL. Section 5 includes the proposed
TLBO-FLANN learning model. Section 6 contains experimen-

tal setup & data preparation. Section 7 discusses the experi-
mental study and result analysis of the proposed method.
Section 8 outlines different statistical tests. Section 9 presents

time complexity analysis. Section 10 concludes our work with
the future development aspects followed by References.
4. Preliminaries

This section presents basic concepts of TLBO, FLANN and
GDL which are the background for the development of the

proposed model.

4.1. Teaching learning based optimization

TLBO (Rao et al., 2011) is a recently developed and competent
optimization technique which is inspired by natural teaching–
learning process in an education system. TLBO mimics the
strategy used by a teacher to teach a group of students effec-

tively and captures the effect of teacher on the learning process
of the students. The working procedure of TLBO suggested by
Rao et al., 2011 can be realized as follows:
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Figure 4 Observation on improvements in fitness o
Teacher phase

Step-1. Initialize population of students X (candidate solutions)

randomly.

Step-2. Calculate the mean of each student in the population

(Xmean).

Step-3. Compute the fitness of each student in the population and

find out the best solution (Xteacher).

Step-4. Generate a new population by modifying the solutions in

initial population based on best solution (teacher), mean of

students in the population (mean) and teaching factorTF.

for i = 1:1: nos of student in the population X

TF ¼ roundð1þ randð1ÞÞ
XiðnewÞ ¼ XiðoldÞ þ randð1ÞðXteacher � TF �XmeanÞ

Endfor

Student phase

Step-5. Update population of student X by comparing fitness of

students in old population X and new population Xnew.

for i = 1:1: nos of student in the population X

if (Xi(old) < Xi (new))

Xi = Xi(new)

Else

Xi = Xi(old)

endif

endfor

Step-6. Randomly select two no. of student from the population

and improvise them.

Select ith and jth student Xi and Xj randomly from the

population.

If (fitness of Xi < fitness of Xj)

XiðnewÞ ¼ XiðoldÞ þ randð1ÞðXj � XiÞ
Else

XjðnewÞ ¼ XjðoldÞ þ randð1ÞðXi � XjÞ
Ifend

Step-7. Check for termination criteria. If reached stop. Else go to

step-2.

Step-8. Exit
60 70 80 90 100

 Number

GA-FLANN
PSO-FLANN
HS-FLANN
TLBO-FLANN

f population in various iterations on Iris dataset.
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Figure 5 Observation on improvements in fitness of population in various iterations on Hayesroth dataset.
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Figure 6 Observation on improvements in fitness of population in various iterations on Monk2 dataset.
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4.2. Functional link artificial neural network

FLANN (Pao, 1989; Pao and Takefuji, 1992) is a class of

higher order neural network that makes use of a higher com-
bination of its inputs. Even if it has a single-layer network, still
it is capable of handling non-linear separable classification

tasks as compared to MLP. The error of FLANN is calculated
based on net output and given target value. A suitable learning
method can be adapted to adjust weight values of FLANN
based on error of the network. Fig. 1 depicts the basic architec-

ture of FLANN. The complete concepts of FLANN and its
implementations may be found from recently published related

work (Naik et al., 2015a, b, 2014).

4.3. Gradient descent learning

Gradient descent learning (GDL) (Rumelhart et al., 1986) is
the most commonly used training method in which weights
are changed in such a way that network error is declined as

rapidly as possible. The complete implementations of GDL
for FLANN can be found from recently published related
work (Majhi et al., 2009; Naik et al., 2015a,b, 2014). Basically,
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Figure 7 Observation on improvements in fitness of population in various iterations on Ionosphere dataset.
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Figure 8 Observation on improvements in fitness of population in various iterations on Hepatitis dataset.

128 B. Naik et al.
a better learning algorithm helps the ANN models for faster

convergence. Further, a use of competitive optimization tech-
nique can improve the performance of a learning algorithm
in terms of fast convergence and accuracy of the ANN model.

5. Proposed method

In this paper, a new metaheuristic algorithm called TLBO is
used to obtain better FLANN learning model. The problem

solving strategy of TLBO along with Gradient Descent Learn-
ing is used to find the best set of weights for FLANN model
for classification task. The objective is to investigate perfor-

mance of TLBO to enhance learning capability of FLANN
classification model as compared to GA, PSO and HS. The
pseudo codes developed during implementation of TLBO

based FLANN (TLBO-FLANN) is presented in this section.
In this paper, the simulation results and the comparisons of
performance of these hybrid FLANN models (GA-FLANN,
PSO-FLANN, HS-FLANN and the proposed TLBO based

FLANN (TLBO-FLANN)) are represented and discussed.
Table 2 represents various notations used for description of
the proposed schemes and designing algorithms.

5.1. TLBO based gradient descent learning FLANN

Initially, the population of weight-sets X (population of

students) is initialized with ‘n’ no.s of weight-sets for FLANN.
Each weight-set in the population X is a vector of weights
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Figure 9 Observation on improvements in fitness of population in various iterations on Pima dataset.
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Figure 10 Observation on improvements in fitness of population in various iterations on New Thyroid dataset.
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initialized randomly between �1 and 1 which are the potential
candidate weight-sets of FLANN model of a particular data

set. Each individual weight-set in X can be defined as:

xi ¼ ðwi;1;wi;2 . . .wi;m�a�ð2�kþ1ÞÞ ð1Þ

X ¼ ðx1; x2 . . . xnÞ ð2Þ
In Eq. (1), the ð2� kþ 1Þ is the No. of functionally

expanded values for a single value in input pattern (for a

chosen value of k), ‘a’ is the number of values (attributes) in
a single input pattern, ‘m’ is the number of patterns in the data
set and ‘n’ is the number of weight-sets in the population X.
The set of weight-sets in X are represented as in Eq. (2). Here,

the objective is to prune out optimal weight-sets for the
FLANN model to obtain better classification accuracy. Each
weight-set xi is set to FLANN individually and the FLANN
model is trained with a particular data set. Based on the output
of FLANN and given target value, the error of the model is

obtained. For a specific data set, the root mean square error
(RMSE) (Eq. (3)) for each weight-set xi is computed using out-
put of the FLANN and given target value (Algorithm 2).

Based on RMSE’s, fitness of the weight-sets are computed

by using Eq. (4). The RMSE of predicted output values byi of

a target variable yi is computed for ‘n’ different predictions
as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðyi � ŷiÞ2
n

s
ð3Þ

Fxi ¼
1

RMSEi

ð4Þ
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Figure 11 Observation on improvements in fitness of population in various iterations on Bupa dataset.
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In Eq. (4), xi is the ith weight-set in the population, RMSEi

is the root mean square error of ith weight-set and Fxi is the

fitness of ith weight-set xi.
After evaluation of fitness values for each weight-set in X,

the weight-set with maximum fitness is selected as Teacher
(xteacher). From the population of X, the mean of the weight-
sets (Xmean) is computed by calculating the mean of all the
weight-sets in X. After the calculation of teaching factor (TF)

(Algorithm-1), the next population Xnext is generated from X,
Xmean, xteacher and TF (Step-4 of Algoritm-1). Then the
weight-sets in initial population X are updated by comparing
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Figure 12 Observation on improvements in fitness of po
fitness of weight-sets in X and Xnext (Step-5 of Algoritm-1).
The resultant population of weight-sets X. goes through
improvisation steps (Step-6 of Algoritm-1) in which two

weight-sets are randomly selected from the population X and
best among them are chosen as weight-set for the next genera-
tion Xnext by comparing their fitness, thereby giving more

chances to migrate better weight-sets for the next generation.
These processes are continued until maximum iteration is
reached or increase in fitness of weight-sets in X is not
significant. The complete flow of execution can be realized in

Fig. 2.
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 Number

GA-FLANN
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pulation in various iterations on Dermatology dataset.
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Algorithm 1. TLBO based gradient descent learning FLANN

(TLBO-FLANN)

1. Initialize n number of weight-sets (Population of students).

X = {x1, x2, . . ., xn}, where each xi is a potential weight-set of

FLANN model which is initialized randomly as

xi ¼ fwi;1;wi;2; . . . ;wi;m�a�ð2�kþ1Þg.
2. Calculate mean of all the weight-sets (xmean) in the population

X.

3. Compute fitness of all the weight-sets in X by using Algorithm-

2 (fitfromtrain procedure) and select weight-set with maximum

fitness as best weight-set (xteacher).

4. Generate next population Xnext by using weight-sets in old

population X, Xmean, xteacher and TF:

for i=1:1: nos of weight-sets in the population X

TF ¼ roundð1þ randð1ÞÞ
xi ¼ xi þ randð1Þðxteacher � TF � XmeanÞ
XnextðiÞ ¼ xi

endfor

5. Update population of weight-sets X by comparing fitness of

weight-sets in X and Xnext:

for i = 1:1: nos of weight-sets in the population X

if (X(i) < Xnext(i))

X(i) = Xnext(i)

endif

endfor

6. Randomly select two weight-sets from the population and

improvise them:

for k =1:1: nos of weight-sets in the population X

Select ith and jth weight-sets xi and xj randomly from

population X.

Compute fitness of xi by using algorithm-2 as

Fi = fitfromtrain (u, xi, t, l).
Compute fitness of xj by using algorithm-2 as

Fj = fitfromtrain (u, xj, t, l).
If (Fi < Fj)

XnewðiÞ ¼ xi þ randð1Þðxj � xiÞ
Else

XnewðjÞ ¼ xj þ randð1Þðxi � xjÞ
Ifend

Endfor

7. Check for termination criteria:

if (maximum nos of generation reached)

then go to step-8.

else go to step-2

endIf

8. Exit

Algorithm 2. fitfromtrain procedure

Function F= fitfromtrain (u, xi, t, l)
Let ‘u’ be the functionally expanded input data and ‘xi’ be the

selected weight-set from the population. The vector S is computed

as S= u. xi.
The output vector ‘y’ is computed by using tanh activation

function as y = tanh(S).

The errors of the network ‘e’ is computed by using target vector

‘t’ and output vector ‘y’ as e= t � y

Compute error term dðkÞ ¼ 1�y2
k

2

� �
� eðkÞ, for k= 1,2. . .L
where L is the number of patterns

If u ¼ ðu1;u2 . . .uLÞ, e ¼ ðe1; e2 . . . eLÞ and d ¼ ðd1; d2 . . . dLÞ
are vectors which represent set of functional expansion, set of errors

and set of error terms respectively, then weight factor of w ‘DW’ is

computed as follows: DWq ¼
PL

i¼1
2�l�ui�di
L

� �
Compute root mean square error (RMSE) by using Eq. (3) from

target vector ‘t’ and output vector ‘y’

Compute fitness ‘F’ of the network instance of FLANN model as

F= 1/RMSE (Eq. (4)).

end
6. Experimental setup & data preparation

In this section, the environment for simulation, the data set
used for training & testing phase and parameter settings for
proposed methods during simulation are presented. All the
hybrid models (GA-FLANN, PSO-FLANN, HS-FLANN

and TLBO-FLANN) are implemented in MATLAB (Version
9.0) in a system with Window XP operating system. After
obtaining the results of simulation, statistical analysis has been

carried out using SPSS statistical tool (Version 16.0). The
benchmark data sets (Table 3) used for training and testing
phase for classification are originated from UCI machine

learning repository (Bache et al., 2013) and processed by
KEEL software (Alcalá-Fdez et al., 2011). The detailed
descriptions about all these data sets can be obtained at
‘http://archive.ics.uci.edu/ml/’ and ‘http://keel.es/’.

6.1. Cross validation

In this paper, all the data sets used for classification are pre-

pared for cross validation by using 5-fold cross validation
technique (Larson, 1931; Mosteller et al., 1968). During the
preparation of data sets for the 5-fold cross validation, 5

pairs of data set samples are created and each pair contains
data sets for the training and testing phase. For example
(Table 4), the ‘newthyroid-5-1tra.dat’ and ‘newthyroid-5-1ts

t.dat’ data are a pair of data sets sample of New Thyroid
data set which are used for the training and testing phase
for a single run respectively. As 5-fold cross validation is
employed, the New Thyroid data sets contain 5 such pairs

of data set samples for training and testing the algorithms.
The 5-fold cross validated data set for New Thyroid data
set is presented in Table 4. All other data sets are prepared

for 5-fold cross validation in the same way and collected
from KEEL data set repository. The maximum fitness from
their respective RMSEs on 5-fold cross validation data set

during training and testing phase is listed in Table 5. The
maximum fitness values obtained by various algorithms on
training data (‘newthyroid-5-1tra.dat’, ‘newthyroid-5-2tra.da

t’, ‘newthyroid-5-3tra.dat’, ‘newthyroid-5-4tra.dat’ and ‘new
thyroid-5-5tra.dat’) for training phase and testing data (‘new
thyroid-5-1tst.dat’, ‘newthyroid-5-2tst.dat’, ‘newthyroid-5-3ts
t.dat’, ‘newthyroid-5-4tst.dat’ and ‘newthyroid-5-5tst.dat’)

for testing phase and are posted. This process is repeated
for all other data sets in Table 3 and maximum fitness is
posted in Table 5.

http://archive.ics.uci.edu/ml/
http://keel.es/
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6.2. Parameter setting used for simulation

The FLANN parameters and TLBO parameters are set to sug-
gested values from previous related works (Rao et al., 2011;
Dehuri et al., 2012; Naik et al., 2014; Pao et al., 1989) on trial

and error basis.
FLANN parameter:
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TLBO parameter:
For FLANN, the learning

parameter ‘l’ is set to 0.13 in

gradient descent learning by

testing the models in the range

0–3. For functional expansion in

FLANN, the value of n is set to

5, thereby each value in the

input pattern is expanded to 11

number of functionally

expanded input values (As in

FLANN model, it is suggested

(Pao et al., 1989; Pao and

Takefuji, 1992) to generate 2n

+ 1 number of functionally

expanded input values for a

single value in the input pat-

tern). The number of function-

ally input values increases

hugely if a larger value of n is

selected and the small value of n

is unable to handle the non-

linear nature of real world data

sets. To make a balance between

them, we have used the tested

and suggested value of n

(Dehuri et al., 2012; Naik et al.,

2014) for functional expansion
For TLBO, we have set the

common algorithmic

parameters by testing the model

by considering the suggested

values (Population size = 40;

Number of generations = 100;

Stopping Criteria =Maximum

number of generation) from

previous related works (Rao

et al., 2011)
20 30 40 5

Generatio

vation on improvements in fitness of
7. Result obtained

Table 5 describes the comparison of maximum fitness obtained
by all models and Table 6 represents average RMSEs obtained

by four models: GA-FLANN, PSO-FLANN HS-FLANN and
TLBO-FLANN on all 11 no of data sets. In this study, the per-
formance of GA, PSO, HS and TLBO are examined in order

to know the improvement of weight-sets in the population
by these algorithms in various iterations. The changes in fitness
of weight-sets in different iterations are observed in all the 11
number of data sets and the Figs. 3–13 demonstrates the

improvements of fitness of weight-sets in the population.

8. Proof of statistical significance of the results

In this section, the statistical comparison of all the models over
multiple data sets (Demsar, 2006) is presented to argue that the
projected method is statistically better and significantly differ-

ent from other alternative methods by using Friedman test
(Friedman, 1937, 1940). List of results on which these tests
have been carried out is presented in Table 7.

8.1. Friedman test

The Friedman test is a non-parametric statistical method

which computes average ranks of algorithms by using Eq. (5)
and compares them.

Rj ¼ 1

N

X
i

rji ð5Þ

In Eq. (5), rji is the rank of the jth of k number of models on

ith of N number of data sets. In Table 7, the ranks of each

model on various data sets are shown in braces. Based on rji,

the average ranks of four models are found out from

equation 5. The average ranks for all models: GA-FLANN,
0 60 70 80 90 100

n Number

GA-FLANN
PSO-FLANN
HS-FLANN
TLBO-FLANN

population in various iterations on Heart dataset.



Figure 14 Density plot for 4.514 FFstatistic and (3, 30) degree of freedom by selecting a= 0.01.

Table 8 Result of Holm statistical test.

i Learning models z-values p-values a
ðk�iÞ

1 TLBO-FLANN : GA-FLANN 3.969 0.000036 0.0033

2 TLBO-FLANN : PSO-FLANN 3.141 0.000842 0.005

3 TLBO-FLANN : HS-FLANN 1.32 0.093418 0.01
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PSO-FLANN HS-FLANN and TLBO-FLANN are found as

fR1 ¼ 3:455;R2 ¼ 3;R3 ¼ 2;R4 ¼ 1:272g respectively. The X2
F

value is computed from average rank Rj of each model by

using Eq. (6). In this study, we got the value of X2
F as

10.263. From the value of X2
F, the Friedman statistics FF is

computed by Eq. (7) and found as 4.514. The Friedman

statistics are distributed according to X2
F with (k � 1) degree
Figure 15 Results of a one-w
of freedom under the null-hypothesis (H0) and the critical
value of the F-distribution can be obtained from FF with
(k � 1) and (k � 1) * (N � 1) degree of freedom. In our case,
for the four number of classifiers and 11 number of data sets,

the FF = 4.514 with 4 � 1 = 3 and (4 � 1) * (11 � 1) = 30
degrees of freedom and the crucial value = 4.510 is obtained
from suitably selecting a = 0.01. Density plot for degree of

freedom (3, 30) is obtained and displayed in Fig. 14. The
null-hypothesis is clearly rejected, as the critical value 4.510
is less than FF statistic (4.514).

H0: All the learning models have the same rank and differ-
ences between them are merely random, hence they are
equivalent.

X2
F ¼ 12N

kðkþ 1Þ
� � X

j

R2
j �

kðkþ 1Þ2
4

 !
ð6Þ
ay-ANOVA statistical test.



Figure 16 Results of Tukey and Dunnett statistical test.

Figure 17 Observations on models in their homogeneous group based on their level of significance.
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Table 9 Various notations used in time complexity analysis

on various models.

Symbol

used

Meaning

T(n) Time complexity of the models on input of n number

of solution vector (weight-set)

O Big-oh asymptotic notation

n Number of weight-sets in the population.

nc Number of attributes in weight-sets

c Constant time

j, l Number of functionally extended input patterns

k Number of features in each functionally extended

input pattern
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FF ¼ ððN� 1ÞX2
FÞ

ðNðK� 1Þ � X2
FÞ

ð7Þ

After the rejection of null-hypothesis from Friedman test,
the post hoc test has been carried out by using the Holm pro-
cedure (Demsar, 2006; Luengo et al., 2009; Garcia et al., 2010)
in order to compare the performance of the proposed model

with other models based on z-score value and p-value.

8.2. Holm procedure

In this section, theHolmprocedure (Holm, 1979) is used for pair
wise comparison based on their z-score value and p-value. The
Eq. (8) is used to obtain z-value and p-value is computed from

the z-value and table of the normal distribution.

z ¼ ðRi � RjÞffiffiffiffiffiffiffiffiffiffi
kðkþ1Þ
6N

q ð8Þ

Here, z is the z-score value, k is the number of models and
N is the number of data sets. The Ri and Rj are average ranks

of ith and jth model respectively. All four models are com-
pared based on z-value, p-value and a

ðk�iÞ (Table 8), where ‘i’

is the model’s number. By using the Holm test, while compar-
ing pi values with corresponding a

ðk�iÞ values, we observed that,

in almost all cases pi is less than a
ðk�iÞ (except comparison

between TLBO-FLANN with HS-FLANN). Hence, on this
basis the null-hypothesis is rejected. Thus, the proposed
classification model TLBO-FLANN is statistically better

and significantly different from other models (except
HS-FLANN). While comparing with HS-FLANN, the
Table 10 Time complexity analysis on GA based FLANN (GA-FL

Algorithm step Time complexi

Fitness evaluation in FLANN model ðn � ðc � ððj � k
Mating pool construction ðnþ ðnþ cÞÞ
Crossover ððn=2Þ � cÞ
Selection ðn � cÞ
Stopping criteria check ðn � cÞ
Overall time complexity TðnÞ ¼ ðn � ðc �

TðnÞ ¼ Oððn �
TLBO-FLANN is found to be better but not significantly
better than HS-FLANN because, p-value is not less than
respective a

ðk�iÞ value.

8.3. Post-hoc ANOVA statistical analysis (Tukey test &

Dunnett test)

After the rejection of the null-hypothesis from the Friedman
test in the Section 8.1 and analysis under the Holm procedure
in Section 8.2, in this section, the ANOVA statistical analysis

(Fisher, 1959) has been carried out by using Tukey Test &
Dunnett test to get generalized statistics on the performance
of all models.

In this paper, the statistics on all model’s performance is
computed under ANOVA test by using SPSS (Version: 16.0)
statistical tool. All the methods are executed for ten no.s of
runs on each data set. The test has been carried out with

95% confidence interval, 0.05 significant level and linear poly-
nomial contrast (Fig. 15). To get the differences between the
performances of classifiers, the Post-hoc test is conducted by

using Tukey test (Tukey, 1949) and Dunnett test (Dunnett,
1980). The Tukey test is carried out for comparisons of perfor-
mance of all models with each other and the Dunnett test for

comparison of all models with base classification model (pro-
posed model). The results from Tukey test and Dunnett test
are presented in Fig. 16. As a conclusion of these tests, we

noticed that, the mean differences (between-classification mod-
els variability) among models are larger than the standard
errors (between-error variability) (Fig. 16). Also in Dunnett
test (Fig. 16), we observed the same as that of Tukey test.

Hence the null-hypothesis can be clearly rejected. Further-
more, all the models in their homogeneous group based on
their level of significance are presented in Fig. 17.

9. Time complexity analysis

In this section, all the models that we have considered are ana-

lyzed by comparing their time complexities. The notations
used for time complexity analysis are listed in Table 9. Tables
10–13 represent the number of program steps taken by the

models: GA-FLANN, PSO-FLANN, HS-FLANN and
TLBO-FLANN respectively. In this analysis, we noted that
time complexity T(n) of GA-FLANN, PSO-FLANN,

HS-FLANN and TLBO-FLANN are dominated by the
factor ðn � ðc � ððj � k � cÞ þ ðl � cÞÞÞÞ, ðc � ðn � ðc � ððj � k � cÞþ
ðl � cÞÞÞÞÞ, ðc � ðn � ðc � ððj � k � cÞ þ ðl � cÞÞÞÞÞ and ðc � ðn�
ðc � ððj � k � cÞ þ ðl � cÞÞÞÞÞ respectively. The time complexities
ANN) model.

ty

� cÞ þ ðl � cÞÞÞÞ

ððj � k � cÞ þ ðl � cÞÞÞÞ þ ðnþ ðnþ cÞÞ þ ððn=2Þ � cÞ þ ðn � cÞ þ ðn � cÞ
ðc � ððj � k � cÞ þ ðl � cÞÞÞÞÞ



Table 11 Time complexity analysis on PSO based FLANN (PSO-FLANN) model.

Algorithm step Time complexity

Fitness evaluation in FLANN model ðn � ðc � ððj � k � cÞ þ ðl � cÞÞÞÞ
Local best selection ð2 � ðn � ðc � ððj � k � cÞ þ ðl � cÞÞÞÞ þ ðn � cÞÞ
Global best selection ðn � cÞ
Velocity calculation ðn � nc � cÞ
Particle position updation ðn � cÞ
Stopping criteria check ðn � cÞ
Overall time complexity TðnÞ ¼ ðn � ðc � ððj � k � cÞ þ ðl � cÞÞÞÞ þ ð2 � ðn � ðc � ððj � k � cÞ þ ðl � cÞÞÞÞ

þðn � cÞÞ þ ðn � cÞ þ ðn � nc � cÞ þ ðn � cÞ þ ðn � cÞ
TðnÞ ¼ Oðc � ðn � ðc � ððj � k � cÞ þ ðl � cÞÞÞÞÞ

Table 12 Time complexity analysis on HS based FLANN (HS-FLANN) model.

Algorithm step Time complexity

Initialization of harmony memory (HM), harmony memory size, harmony

memory consideration rate, pitch adjustment rate and, bandwidth

c

Computes MCP (memory consideration probability), PAP (pitch adjustment

probability) and RP (randomization probability).

c

Improvise HM to get new harmony memory (NHM) ðHMS � cÞ
Update the HM based on comparison between solution vectors of HM and NHM ðHMS � c � ðn � ðc � ððj � k � cÞ þ ðl � cÞÞÞÞÞ
Fitness evaluation in FLANN model ðn � ðc � ððj � k � cÞ þ ðl � cÞÞÞÞ
Stopping criteria 1

Overall time complexity TðnÞ ¼ cþ cþ ðHMS � cÞ þ ðHMS � c � ðn � ðc � ððj � k � cÞ
þðl � cÞÞÞÞÞ þ ðn � ðc � ððj � k � cÞ þ ðl � cÞÞÞÞ+1

TðnÞ ¼ Oðc � ðn � ðc � ððj � k � cÞ þ ðl � cÞÞÞÞÞ

Table 13 Time complexity analysis on TLBO based FLANN (TLBO-FLANN) model.

Algorithm step Time complexity

Mean calculation ðn � cÞ
Fitness evaluation in FLANN model ðn � ðc � ððj � k � cÞ þ ðl � cÞÞÞÞ
Teacher selection ðn � cÞ
Next population generation ðn � cÞ
Population updation ðn � cÞ
Improvisation of population ððn � 2 � ðc � ððj � k � cÞ þ ðl � cÞÞÞÞ þ ðn � cÞÞ
Stopping criteria 1

Overall time complexity TðnÞ ¼ ðn � cÞ þ ðn � ðc � ððj � k � cÞ þ ðl � cÞÞÞÞ þ ðn � cÞ þ ðn � cÞ þ ðn � cÞ
þððn � 2 � ðc � ððj � k � cÞ þ ðl � cÞÞÞÞ þ ðn � cÞÞ þ 1

TðnÞ ¼ Oðc � ðn � ðc � ððj � k � cÞ þ ðl � cÞÞÞÞÞ

Table 14 Comparison of various models based on time

complexity.

Implemented algorithms Time complexity

GA-FLANN Oððn � ðc � ððj � k � cÞ þ ðl � cÞÞÞÞÞ
PSO-FLANN Oðc � ðn � ðc � ððj � k � cÞ þ ðl � cÞÞÞÞÞ
HS-FLANN Oðc � ðn � ðc � ððj � k � cÞ þ ðl � cÞÞÞÞÞ
TLBO-FLANN Oðc � ðn � ðc � ððj � k � cÞ þ ðl � cÞÞÞÞÞ
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of all the algorithms are listed in Table 14. Here, we conclude
that the time complexity of all the models is dominated by the

time complexity of the basic step ‘Fitness Evaluation in
FLANN model’ (Algorithm-2) which is ðn � ðc � ððj � k � cÞþ
ðl � cÞÞÞÞ. The proposed method TLBO-FLANN is equivalent
with other models (GA-FLANN, PSO-FLANN and
HS-FLANN) in terms of time complexity but it is better

in learning ability as compared to other alternatives
GA-FLANN, PSO-FLANN and HS-FLANN.

10. Discussion & conclusion

The proposed TLBO-FLANN model can be computed at a
low cost due to that less complex architecture of FLANN

and TLBO requires few common algorithmic specific parame-
ters and mathematical computations. Also TLBO is free from
complicated operators (like crossover in GA) and parameters

(like c1, c2 in PSO and HMCR, PAR & bw in HS). The per-
formance of TLBO-FLANN can be improved by adopting
other improved versions of TLBO.
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In this study, we analyzed the proposed TLBO-FLANN by
using various statistical methods like Friedman test, Holm
procedure, Tukey & Dunnett Test post hoc test and one-

way-ANOVA. As a result, a clear rejection of null-
hypothesis is noticed in Friedman Test and Tukey & Dunnett
test post hoc test, but in the Holm procedure, the null-

hypothesis is rejected except between TLBO-FLANN and
HS-FLANN. This is because; the proposed TLBO-FLANN
model is statistically better and significantly different from

GA-FLANN and PSO-FLANN models. On the other hand,
the TLBO-FLANN outperforms HS-FLANN in terms of
accuracies but not significantly different and higher than HS-
FLANN. From rigorous tests under well known statistical

methods (Friedman test, Post-hoc test by Holm procedure,
Tukey test, Dunnett test and one-way-ANOVA), we claim
the proposed TLBO-FLANN model is better and outperforms

other alternative hybrid models (GA-FLANN, PSO-FLANN
and HS-FLANN).

In time complexity analysis, it is observed that, the pro-

posed method TLBO-FLANN is similar to other alternatives
(GA-FLANN, PSO-FLANN and HS-FLANN), but the per-
formance of TLBO-FLANN is better than GA-FLANN,

PSO-FLANN and HS-FLANN in term of learning capability.
The future work is comprised of integration of other new and
improved variants of TLBO with FLANN in diverse applica-
tions of data mining.
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distributed generation location and size using a modified teaching–

learning based optimization algorithm. Electr. Power Energy Syst.

50, 65–75.

Garcia, S., Fernandez, A., Luengo, J., Herrera, F., 2010. Advanced

nonparametric tests for multiple comparisons in the design of

experiments in computational intelligence and data mining: exper-

imental analysis of power. Inf. Sci. 180, 2044–2064.

Geem, Z.W., Kim, J.H., Loganathan, G.V., 2001. A new heuristic

optimization algorithm: harmony search. Simulation 76, 60–70.

Ghasemi, Mojtaba, Taghizadeh, Mahdi, Ghavidel, Sahand, Aghaei,

Jamshid, Abbasian, Abbas, 2015a. Solving optimal reactive power

dispatch problem using a novel teaching–learning-based optimiza-

tion algorithm. Eng. Appl. Artif. Intell. 39, 100–108.

Ghasemi, Mojtaba, Ghavidel, Sahand, Gitizadeh, Mohsen, Akbari,

Ebrahim, 2015b. An improved teaching–learning-based optimiza-
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