
Journal of King Saud University – Computer and Information Sciences (2018) 30, 2–17
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
REVIEW
An empirical evaluation of classification algorithms

for fault prediction in open source projects
* Corresponding author.

E-mail addresses: arvinderkaurtakkar@yahoo.com (A. Kaur), kaur.inderpreet19@gmail.com (I. Kaur).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2016.04.002
1319-1578 � 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Arvinder Kaur, Inderpreet Kaur *
Dept: CSE/IT, University School of Information and Communication Technology, Guru Gobind Singh Indraprastha
University, Dwarka, New Delhi 110078, India
Received 23 September 2015; revised 17 March 2016; accepted 8 April 2016
Available online 23 April 2016
KEYWORDS

Metrics;

Fault prediction;

Receiver Operating Charac-

teristics Analysis;

Machine learning;

Nimenyi test
Abstract Creating software with high quality has become difficult these days with the fact that size

and complexity of the developed software is high. Predicting the quality of software in early phases

helps to reduce testing resources. Various statistical and machine learning techniques are used for

prediction of the quality of the software. In this paper, six machine learning models have been used

for software quality prediction on five open source software. Varieties of metrics have been evaluated

for the software including C & K, Henderson & Sellers, McCabe etc. Results show that Random

Forest and Bagging produce good results while Naı̈ve Bayes is least preferable for prediction.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3. Research methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1. Empirical data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2. Metrics evaluated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4. Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1. Numerical performance evaluation indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.1.1. Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.1.2. Sensitivity, specificity and precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1.3. G-mean, F-measure and J_coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2016.04.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:arvinderkaurtakkar@yahoo.com
mailto:kaur.inderpreet19@gmail.com
http://dx.doi.org/10.1016/j.jksuci.2016.04.002
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2016.04.002
http://creativecommons.org/licenses/by-nc-nd/4.0/


Evaluation of classification algorithms for fault prediction 3
4.2. Graphical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2.1. ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2.2. Precision–Recall curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2.3. Cost curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2.4. Lift chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.3. Statistical comparisons of models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5. Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.1. PMD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.2. Find Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3. EMMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.4. Trove. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.5. Dr Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1. Introduction

Building high quality software with limited quality assurance

budgets has become difficult. Various Software prediction
models are used these days to learn fault predictors from soft-
ware metrics. Software fault prediction, prior to the release of
software helps in verification and validation activity and

allocate the limited resources to modules which are predicted
to be fault prone. Early and accurate fault prediction is a better
approach for reducing testing efforts. Study (Mahanti and

Antony, 2005) shows that software companies spend 50–80
percent of their software development effort on testing.

If fault prone modules are known in advance, review, anal-

ysis and testing efforts can be concentrated on those modules.
Early detection of fault prone modules in the software life
cycle has become one of the important goals of fault prediction

because, earlier the detection of fault, the cheaper it is to cor-
rect it. Boehm and Papaccio advised fixing the fault early in the
life cycle can make it cheaper by a factor of 50–200 (Boehm
and Papaccio, 1988). Reliability of delivered products can be

ensured using software quality models.
Software quality estimation using various classifiers is per-

formed where input is some metrics and output is quality attri-

butes. Empirical Study of these classifiers, aids in judgment of
the quality of software being developed.

Various techniques have been suggested to deal with defect

prediction which include categorizing modules, represented by
a set of software metrics or code attributes into fault prone and
non-fault-prone by means of classification model derived from
data as per the previously developed projects (Schneidewind,

1992).This also includes code metrics (e.g., lines of code, com-
plexity) (Li and Henry, 1993; Chidamber and Kemerer, 1994;
Lorenz and Kidd, 1994; McCabe and Associates, 1994; Basili

et al., 1996; Henderson-Sellers, 1996; Ohlsson and Alberg,
1996; Briand et al., 1999; El Emam et al., 2001a,b,c;
Gyimothy et al., 2005; Aggarwal et al., 2006; Nagappan and

Ball, 2005; Nagappan et al., 2006), Process metrics (e.g., num-
ber of changes, recent activity) (Hassan, 2009; Moser et al.,
2008; Bernstien et al., 2007), or previous defects (Kim et al.,

2007; Ostrand et al., 2005; Hassan and Holt, 2005). The
decision is still out on the relative performance of these
approaches. Most of them have been judged were compared
to only few other approaches. In addition, a significant portion

of the evaluations cannot be reproduced since the data used for
their evaluation came from commercial systems and are not
available for public consumption. In some cases, researchers
concluded differently: For example, in the case of size metrics,

Gyimothy et al. reported good results (2005), as opposed to the
findings of Fenton and Ohlsson (2000).

Various types of classifiers have been applied to this task,

including statistical procedures (Basili et al., 1996;
Khoshgoftaar and Seliya, 2004), tree-based methods (Selby
and Porter, 1988; Porter and Selby, 1990; Khoshgoftaar

et al., 2000; Guo et al., 2004; Menzies et al., 2004), neural net-
works (Khoshgoftaar et al., 1995; Khoshgoftaar et al., 1997),
and analogy-based approaches (Khoshgoftaar et al., 2000; El
Emam et al., 2001a,b,c; Khoshgoftaar and Seliya, 2003). How-

ever, as noted in (Myrtveit and Stensrud, 1999; Shepperd and
Kadoda, 2001; Myrtveit et al., 2005) results regarding the
superiority of one method over another or the usefulness of

metric-based classification in general are not always consistent
across different studies. Therefore, ‘‘There is a need to develop
more reliable research procedures before we can have

confidence in the conclusion of comparative studies of soft-
ware prediction models” (Myrtveit et al., 2005).

Various classification algorithms have been applied to a

variety of data sets. Different experimental setup results limit
the ability to understand classifier’s pros and cons. A modeling
technique is good if it is able to perform well on all or at least
most of them. To simplify model comparison, appropriate and

consistent performance measures should be considered.
Evaluating the performance of various approaches is

subject to discussion. While some use Binary classification

(i.e. predicting if a given entity is a buggy or not) others predict
by prioritizing components with most defects. In this paper,
the binary classification technique is used which has been eval-

uated on the basis of the ROC, lift chart and other statistical
parameters.

The datasets used in this work are open source java
projects: PMD, EMMA, Find Bugs, Trove and Dr Java. Open

source projects are different from Industrial projects. Open
source software, is preferred for research as results of these
can be compared and repetition of validation can be per-

formed. Open source projects foster more creativity and have
fewer defects as defects are found and fixed rapidly. (Paulson
et al., 2004).

In this paper, the six well-known classification algorithms
have been used Classifiers selected are Random Forest, Naive



4 A. Kaur, I. Kaur
Bayes, Bagging, J48, logistic regression and IB1. These six
classifiers have been chosen for the current study as previous
studies indicate that these classifiers provide better than aver-

age performance in software fault prediction (Menzies et al.,
2007a,b; Jiang et al., 2008). Many studies have used insuffi-
cient performance metrics which do not show enough level

of details for future comparison. Therefore, the objectives of
this paper include:

1. To compare models for fault prediction on open source
software on the basis of
(i) Performance measures including accuracy, sensitiv-

ity, specificity, Precision, G-mean, F-measure,

J_coefficient.
(ii) Graphical methods which include ROC curve,

Precision Recall curve, Cost curves and Lift charts.

(iii) Non parametric Freidman test followed by the post
hoc Nimenyi test.

2. To compare the results of open source software projects
with industrial data sets.

The paper is organized as follows: Section 2 presents the
overview of Related Work. Section 3 describes the Research
methodology along with datasets and metrics used for the clas-
sifier selection. Section 4 represents the model evaluation tech-

niques, which includes comparison of numerical performance
indices, Graphical evaluation techniques and statistical test
performed. Section 5 consists of the analysis performed on

each of the data sets taken in this work. Section 6 discusses
the guidelines for selecting the best model followed by conclu-
sions in section 7.
2. Related work

Basili et al. (1996) found that several of the (Chidamber and

Kemerer, 1994) metrics were associated with fault proneness
based on a study of eight medium-sized systems, developed
by students.

Tang et al. (1999) analysed (Chidamber and Kemerer, 1994)
OO metrics suite on three industrial applications developed in
C++. They found none of the metrics examined to be signif-
icant except RFC and WMC.

Briand et al. (2000) have extracted 49 metrics to identify
a suitable model for predicting fault proneness of classes.
The system under investigation was a medium sized C++

software system developed by undergraduate/graduate stu-
dents. There were eight systems under study, consisting a
total of 180 classes. They used univariate and multivariate

analyses to find the individual and combined impact of
OO metrics and fault proneness. The results showed all met-
rics except NOC (which was found related to fault prone-
ness in an inverse manner) to be significant predictors of

fault proneness.
El Emam et al., 2001a,b,c examined a large telecommunica-

tion application developed in C++ and found that class size

i.e. SLOC has a confused effect of most OO metrics on faults.
Another study by Briand and Wust (2001) used a commer-

cial system consisting of 83 classes. They found the DIT metric

related to fault proneness in an inverse manner and NOC met-
ric to be an insignificant predictor of fault proneness.
Yu et al. (2002) choose eight metrics and they examined the
relationship between these metrics and the fault proneness.
The subject system was the client side of a large network

service management system developed by three professional
software engineers. It was written in Java, and consisted of
123 classes and around 34,000 lines of code. First, they exam-

ined the correlation among the metrics and found four highly
correlated subsets. Then, they used univariate analysis to find
out which metrics could detect faults and which Khoshgoftaar

and Seliya (2004) in their experiments suggested that a module
which is currently in development is likely to be fault prone if it
has similar or same characteristics as of the faulty module
measured by software metric that has been developed or

released earlier in the same environment. So, historical data
guide us to predict fault proneness.

Lessmann et al. (2008) in their studies proposed a frame-

work for comparative software defect prediction experiments
which was applied in large scale empirical comparison of 22
classifiers over 10 datasets from NASA MDP. Advisable

degree of predictive accuracy was observed and thus supports
the view that metric based classification is useful. And also that
no significant performance differences could be detected

amongst top 17 classifiers.
Malhotra and Jain (2012) studied the relationship between

object oriented metrics and fault proneness using logistic
regression method. Receiver Operating Characteristic (ROC)

Analysis was used and performance of predicted models is thus
evaluated based on ROC.

In other studies Malhotra (2014), a statistical model derived

from logistic regression was used to calculate the threshold val-
ues of object oriented, Chidamber and Kemerer metrics. Using
threshold values, they have shown threshold effects at various

risk levels and validated the use of these thresholds on a public
domain, proprietary dataset, KC1 obtained from NASA and
two open source, promise datasets, IVY and JEdit using vari-

ous machine learning methods and data mining classifiers.
Interproject validation was also carried out on three different
open source datasets, Ant and Tomcat and Sakura. Their
results showed that the proposed threshold methodology

works well for the projects of similar nature or having similar
characteristics.

Okutan and Yildiz (2012) used Bayesian networks to deter-

mine the probabilistic influential relationships among software
metrics and defect proneness. They used two more metrics in
addition to the metrics used in Promise data repository, num-

ber of developers (NOD) and source code quality (LOCQ).
They used 9 open source Promise data repository data sets.
Their results showed that response for class (RFC), lines of
code (LOC) and lack of coding quality (LOCQ) are most effec-

tive metrics whereas coupling objects (CBO), weighted method
per class (WMC) and lack of cohesion of methods (LCOM)
are less effective metrics on defect proneness.

The difference between their work and our work is that
their study is applied on industrial data sets whereas our work
is applied on open source projects. This comparative study

would help to determine whether the results obtained from
industrial datasets are applicable to open source datasets or
whether open source projects give different results. Open

source projects are developed entirely in different environment
than that of industrial datasets. Anyone can view, edit or com-
pare the codes of open source with other projects while indus-
trial datasets pose this limitation. Bugs encountered are well



Table 1 Projects description.

Project Total number of

classes

Faulty

classes

Faulty

(%)

Description

PMD 104 60 57.7 Programming mistake detector, PMD errors are not true errors, but rather inefficient

code

FIND

BUGS

226 89 39.4 Find Bugs is an open source program created by Bill Pugh and David Hovemeyer which

looks for Bugs in Java code

EMMA 104 61 58.65 EMMA is an open-source toolkit for measuring and reporting Java code coverage

TROVE 250 10 4.00 Trove provides a free implementation for portions of the Java Collections API

Dr JAVA 405 81 20 Dr Java is a lightweight programming environment for Java designed to foster test-driven

software development

Evaluation of classification algorithms for fault prediction 5
tracked in open source projects as well as industrial projects
but will not be available to public in industrial datasets
(Paulson et al., 2004).

Yeresime et al. (2014) studied application of linear regres-
sion, logistic regression, and artificial neural network methods
for software fault prediction on CK metrics. Here, fault is con-

sidered as dependent variable and CK metric suite as indepen-
dent variables. These statistical models were applied on case
study for Apache integration framework (AIF) version 1.6.

Their results point out importance of weighted method per
class (WMC) metric for fault classification, and hybrid
approach of radial basis function network obtained better
fault prediction rate when compared with other three neural

network models.
Research carried out by Jiang et al. (2008) used NASA

MDP industrial datasets KC1, KC2, KC4, JM1, PC1, PC5,

CM1 and MC2 to evaluate the best amongst the given classifier
models. Their studies were based on comparison of perfor-
mance indices, graphical evaluations and statistical tests for

model selection. This paper follows the framework of analysis
of data as used by Jiang et al. and is in support of the studies
carried out by Jiang et al. (2008).
Table 2 Metrics description.

Metrics Description

WMC Weighted methods per class (NOM: number of methods in the

DIT Depth of inheritance tree

NOC Number of children

RFC Response for a class

CBO Coupling between object classes

LCOM Lack of cohesion in methods

LCOM3 LCOM lack of cohesion in methods is a normalized version of

LCOM metric and its value varies between 0 and 2

IC Inheritance coupling

CBM Coupling between methods

AMC Average method complexity

NPM Number of public methods for a class (also called as CIS: clas

DAM Data access metric

MOA Measure of aggregation

MFA Measure of functional abstraction

CAM Cohesion among methods of class

CC Cyclomatic complexity

LOC Lines of code

Ca Afferent coupling

Ce Efferent coupling
The difference between their work and our work is that
their study is applied on industrial data sets, whereas our work
is applied on open source projects. This comparative study

would help to determine whether the results obtained from
industrial datasets are applicable to open source datasets or
whether open source projects give different results. Open

source projects are developed entirely in a different environ-
ment than that of industrial datasets. Anyone can view, edit
or compare the codes of open source with other projects while

industrial datasets pose this limitation. Bugs encountered are
well tracked in open source projects as well as industrial pro-
jects, but will not be available to public in industrial datasets
(Paulson et al., 2004).
3. Research methodology

Fault proneness is defined as the probability of fault detection
in a class (Briand et al., 2000; Pai, 2007; Aggarwal et al., 2009).
Open source java projects have been used in this work. Open
source software is freely available software so the results of

these can be compared and repetition of validation can be per-
Source

QMOOD metric suite) C & K

C & K

C & K

C & K

C & K

C & K

the Chidamber and Kemerer’s Henderson-Sellers

Quality oriented extension to C &

amp K metric suite

Quality oriented extension to C &

amp K metric suite

Quality oriented extension to C &

amp K metric suite

s interface size) QMOOD

QMOOD

QMOOD

QMOOD

QMOOD

McCabe’s

McCabe’s

Martin’s metrics

Martin’s metrics



Table 3 Confusion matrix.

Predicted

Negative Positive

Actual Negative a b

Positive c d

6 A. Kaur, I. Kaur
formed. Non parametric statistical Friedman test followed by
Nimenyi test is performed for selection of the best classifier

amongst all.

3.1. Empirical data collection

This study uses open source java projects. Their bug infor-
mation has been gathered from the source forge, where the
bug tracker keeps the status of Bugs (open/closed). Source

Forge is dedicated to make open source projects successful.
SourceForge.net is owned and operated by Geeknet Media
and is a Dice Holdings, Inc. company. The data sets are
made for open source java projects which include (PMD),

Find Bugs, EMMA, Trove and Dr Java. Their Bugs are col-
lected from the SOURCEFORGE (an open source bug
tracker) and data without Bugs have been collected from

the source code java files. Using those java files, various
metrics are calculated with the CKJM tool which gives us
metrics including WMC, DIT, NOC, RFC, CBO, LCOM,

LCOM3, IC, CBM, AMC, NPM, DAM, MOA, MFA,
CC, LOC, CA, CE.

Table 1 lists the projects used with their description.

3.2. Metrics evaluated

Twenty software metrics have been measured on these data
sets. The metrics chosen are the ones which are most com-

monly used for object oriented software. All C & K metrics
and more metrics like Henderson-Sellers and QMOOD have
been taken into account. The Table 2 represents the descrip-

tion of the metrics used. CKJM extended tool has been used
to evaluate the metrics of the open source java projects.

In this paper, the six well-known classification algorithms

have been used Classifiers selected are Random Forest, Naive
Bayes, Bagging, J48, logistic regression and IB1 These six clas-
sifiers have been chosen for the current study as previous stud-
ies indicate that these classifiers provide better than average

performance in software fault prediction (Boehm and
Papaccio, 1988). The comparison of classifiers is based on
performance indices, graphical methods and statistical tests

have been done. It was seen that no one measure is sufficient
Table 4 Accuracy and PD for projects taken.

Classifier/project PMD Find Bugs

Acc. PD Acc. PD

Logistic regression 0.77 0.83 0.64 0.48

Bagging 0.68 0.75 0.85 0.80

Naı̈ve Bayes 0.64 0.88 0.62 0.24

IB1 0.78 0.87 0.74 0.64

J48 0.72 0.72 0.85 0.76

Random Forest 0.73 0.73 0.88 0.80
to give insight on the best classifier selection, rather the selec-
tion should be based on the project cost involved and specific
project needs (Jiang et al., 2008). The Waikato Environment

for Knowledge Analysis (Weka) has been used for implemen-
tation of the classifiers selected.

4. Model evaluation

The models used are compared based on numerical perfor-
mance indices such as accuracy, sensitivity, specificity, Preci-

sion, G-mean, F-measure and J_coefficient. Graphical
evaluation techniques used includes the ROC, Precision Recall
(PR) Curve, Lift charts and Cost curve. Statistical tests are

required to select the best model from given classifiers. Empir-
ical validation of machine learning methods is needed to verify
the potentiality of machine learning algorithms. The results

collected from these empirical studies are considered to be
powerful support for testing any given hypothesis.

4.1. Numerical performance evaluation indices

The most commonly used performance measures have been
described. This section provides information related to their
strengths and weakness. The indices have been calculated

based on the confusion matrix given by the classifier. A confu-
sion matrix (Provost and Kohavi, 1998) contains information
about actual and predicted classifications done by a classifica-

tion system. Performance of such systems is commonly evalu-
ated using the data in the matrix. The following table shows
the confusion matrix for a two class classifier.

The entries in the confusion matrix have the following

meaning in the context of our study:

� a is the number of correct predictions that an instance is

negative,
� b is the number of incorrect predictions that an instance is
positive,

� c is the number of incorrect of predictions that an instance
negative, and

� d is the number of correct predictions that an instance is

positive.

4.1.1. Accuracy

Accuracy is the proportion of the total number of predictions
that are correct. It doesn’t take into account the data distribu-
tion and cost information (Jiang et al., 2008).The Probability

of Detection (PD) is a proportion of positive cases that are cor-
rectly identified (Jiang et al., 2008) (see Table 3).
EMMA TROVE Dr Java

Acc. PD Acc. PD Acc. PD

0.74 0.63 0.99 0.90 0.80 0.16

0.74 0.58 0.97 0.60 0.81 0.26

0.63 0.16 0.70 0.90 0.46 0.95

0.72 0.63 0.98 0.60 0.78 0.47

0.63 0.44 0.98 0.63 0.83 0.44

0.77 0.67 1.00 0.90 0.82 0.41



Evaluation of classification algorithms for fault prediction 7
Table 4 provides the accuracy and probability of detection
rates for five projects: PMD, FIND BUGS, EMMA, TROVE
and Dr JAVA. It can be seen from the results that the highest

accuracy is followed with the lowest detection rate. This lower
detection rate means many faulty modules would be classified
as fault free, which can result into serious failures. Hence, one

cannot rely on the accuracy measure only for performance
measurement of the classifier.

As faulty modules are likely to represent a minority of mod-

ules in the dataset, so the accuracy measure could provide a
wrong impression.

4.1.2. Sensitivity, specificity and precision

The Recall or True Positive rate (TP) or Sensitivity is the pro-
portion of positive cases (faulty modules) that were correctly
identified. It is also termed as Probability of Detection (PD)

(Jiang et al., 2008). The techniques which produce low PD
are poor fault predictors.

Specificity is the proportion of correctly identified negative
cases (fault free modules) .The Probability of False alarm (PF)

is a proportion of negative cases that are classified erroneously
(Jiang et al., 2008).

So; PF ¼ 1� Specificity:

The low value of Specificity will increase the verification

and validation of fault free modules, as they would be incor-
rectly marked as faulty, thus increasing the cost and time
required for the testing of these modules.

The precision (P) is the proportion of the predicted positive
cases that were correct (Jiang et al., 2008). Table 5 presents
these values for open source projects taken in this study. There

always exists a compromise between precision, sensitivity and
specificity. Because sensitivity takes care of faulty modules
and specificity will monitor fault free modules, the perfor-
mance of prediction models based on these measures will be

one sided. So comparing models based on only these measures
cannot provide good evaluation of fault prediction.

4.1.3. G-mean, F-measure and J_coefficient

Compared to accuracy, Geometric mean (McCabe and
Associates, 1994), F-measure (Kubat et al., 1998) and J_coef-
ficient (Lewis and Gale, 1994) give better model performance.

Two G-mean indices are defined. G-mean1 is the square root of
the product of sensitivity and precision. G-mean2 is the square
root of the product of sensitivity and specificity. In software

fault prediction, it is important to identify more faulty modules
which mean a high probability of detection is needed. So if two
classifiers predict with a same or similar PD, the one with

higher specificity would be preferred. Precision defines the
actual faulty modules amongst the predicted fault modules.

G-mean1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PD � Precision

p
ðiÞ

G-mean2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PD � Specificity

p
ðiiÞ

F-measure ¼ ðb2 þ 1Þ � Precision � PD
b2 � Precisionþ PD

ðiiiÞ

J coeff ¼ Sensitivityþ Specificity� 1

¼ PD� 1þ Specificity

¼ PD� PF

ðivÞ
F-measure provides better flexibility which includes the weight

factorb .Thisweight factor helps tomanipulate the cost assigned
to PD and precision. Factor b can have any non negative value.
Setting it to 1 provides equal weight to PD and precision. Higher

the value of b, higher the weight assigned to PD.
Youden (1950) proposed the J_coeff to evaluate models in

medical sciences. El-Emam were first to use it to compare clas-
sifiers (El El Emam et al., 2001a,b,c). When J_coeff is

0,PD ¼ PF, so these classifiers are not of much help. When
J coeff > 0, PD > PF, which means the classifier is good.
Therefore, for if the J coeff ¼ 1 it represents perfect classifica-

tion while J coeff ¼ �1 means the bad case. Table 6 lists the
three measures of projects taken.

These three measures are better than accuracy measure. A

model which is able to detect more fault prone modules is
good. When the project is of a low budget, a smaller number
of faulty prone modules with a low false alarm rate would
be desirable. In such conditions, the flexibility of G-mean,

J_coeff and F-measure would help in better performance eval-
uation. These measures are preferable in evaluating software
fault prediction models as the cost associated with misclassify-

ing a fault prone module is higher than misclassifying it as non
fault prone module, which implies some wastage of resources
in verification activities.

4.2. Graphical methods

Different graphical methods available for performance evalua-
tion include:

� Receiver Operating Characteristic (ROC) curve
� Precision and Recall curve
� Cost curve

� Lift chart.

Studies indicate that cost curves are novel in software engi-

neering literature. All these graphs are derived from confusion
matrix. ROC and Lift chart are closely related (Ling and Li,
1998). Each curve depicts a different view of classification
performance.

4.2.1. ROC curve

ROC is a curve formed by PF, PD pairs. It is a more general

way for classifier’s performance measurement than the numer-
ical indices (Yousef et al., 2004). It provides the better compro-
mise between PD and PF.

Area under the ROC curve (AUC) is commonly used for

performance evaluation. The entire area is of no interest, for
example, the area where PD is low or where the PF is high
and regions with high PF and low PD are indicators of poor

performance. Only the region which has low PF and high
PD is likely to have some impact on the classifier performance.

The advantages of the ROC analysis are its robustness

toward imbalanced class distributions and to varying and sym-
metric misclassification costs (Yousef et al., 2004). Therefore,
it is particularly well suited for software defect prediction tasks
which naturally exhibit these characteristics (Khoshgoftaar

and Seliya, 2004; Menzies et al., 2007a,b). To compare differ-
ent classifiers, their respective ROC curves are drawn in ROC
space. Fig. 1 provides an example of three classifiers, C1, C2,

and C3. C1 is a dominating classifier because its ROC curve
is always above that of its competitors, i.e., it achieves a higher
TP rate for all FP rates.



Table 5 Sensitivity, specificity and precision values for datasets taken.

Classifier/project PMD Find Bugs EMMA TROVE Dr Java

Sensitivity Specificity Precision Sensitivity Specificity Precision Sensitivity Specificity Precision Sensitivity Specificity Precision Sensitivity Specificity Precision

Logistic regression 0.83 0.68 0.78 0.48 0.80 0.70 0.63 0.82 0.71 0.90 1.00 0.90 0.16 0.96 0.50

Bagging 0.75 0.59 0.71 0.80 0.89 0.83 0.58 0.85 0.74 0.60 0.99 0.67 0.26 0.95 0.58

Naı̈ve Bayes 0.88 0.32 0.64 0.24 0.87 0.54 0.16 0.97 0.78 0.90 0.70 0.11 0.95 0.34 0.26

IB1 0.87 0.66 0.78 0.64 0.81 0.69 0.63 0.79 0.68 0.60 0.99 0.75 0.47 0.86 0.46

J48 0.72 0.73 0.78 0.76 0.91 0.85 0.44 0.75 0.56 0.63 1.00 0.83 0.44 0.93 0.61

Random Forest 0.73 0.73 0.79 0.80 0.93 0.89 0.67 0.84 0.74 0.90 1.00 1.00 0.41 0.93 0.58

Table 6 The value of three measures for the projects.

Classifier/

project

PMD Find Bugs EMMA TROVE Dr JAVA

G-mean1 G-mean2 F-measure G-mean1 G-mean2 F-measure G-mean1 G-mean2 F-measure G-mean1 G-mean2 F-measure G-mean1 G-mean2 F-measure

Logistic regression 0.81 0.75 0.81 0.58 0.62 0.57 0.67 0.72 0.67 0.9 0.95 0.90 0.28 0.39 0.24

Bagging 0.73 0.66 0.73 0.81 0.84 0.81 0.65 0.70 0.65 0.63 0.77 0.63 0.38 0.49 0.36

Naı̈ve Bayes 0.75 0.53 0.74 0.36 0.46 0.33 0.35 0.39 0.27 0.31 0.79 0.19 0.49 0.57 0.41

IB1 0.82 0.76 0.82 0.66 0.72 0.66 0.65 0.71 0.65 0.67 0.77 0.67 0.46 0.64 0.46

J48 0.75 0.72 0.75 0.80 0.83 0.80 0.49 0.57 0.49 0.72 0.79 0.63 0.52 0.64 0.51

Random

Forest

0.76 0.73 0.76 0.84 0.86 0.84 0.70 0.75 0.71 0.95 0.95 0.95 0.49 0.62 0.48

8
A
.
K
a
u
r,
I.
K
a
u
r



Figure 1 ROC’s for classifiers used in PMD.

Figure 2 Precision Recall curve in Find Bugs.

Figure 3 Cost curve for Find Bugs using Random Forest.

Figure 4 Cost curve for Find Bugs using Logistic.

Evaluation of classification algorithms for fault prediction 9
The AUC has the potential to significantly improve conver-

gence across empirical experiments in software defect predic-
tion because it separates predictive performance from
operating conditions, i.e., class and cost distributions, and thus
represents a general measure of predictiveness.

The importance of such a general indicator in comparative
experiments is reinforced considering the discussion following
Menzies et al.’s paper (Menzies et al., 2007a,b).That discusses

whether the accuracy of their models is or is not sufficient for
practical applications and whether the method A is or is not
better than the method B (Menzies et al., 2007a,b). Further-

more, the AUC has a clear statistical interpretation: It mea-
sures the probability that a classifier ranks a randomly
chosen fp module higher than a randomly chosen nfp module,
which is equivalent to the Wilcoxon test of ranks El Emam

et al., 2001c. Consequently, any classifier achieving AUC well
above 0.5 is demonstrably effective for identifying fp modules
and gives valuable advice as to which modules should receive

particular attention in software testing.
ROC curves for six classifiers used for PMD dataset is rep-

resented in the Fig. 1. Graph shows that Random Forest tech-

nique provides the best ROC amongst all the six classifiers.

4.2.2. Precision–Recall curve

PR curve may help in differentiating between algorithms used

with better visualization than ROC. Here Recall is represented
on x-axis and Precision on y-axis. Example for PR curve is
shown in Fig. 2 for dataset Find Bugs.
Figure 5 Lift chart of Find Bugs.



10 A. Kaur, I. Kaur
Our area of interest is where precision and Recall both are
high, that makes Random Forest technique better as it outper-
forms the Bagging technique in that particular region.

So in cases where ROC isn’t able to provide the differences
amongst classifiers, PR curve can be of good use.

4.2.3. Cost curve

ROC and PR curve don’t consider the cost of misclassification.
Adams and Hand (1999) defined the loss difference plots to
take the advantage of the misclassification cost ratio.

Drummond and Holte (2006) proposed the cost curve,
which allows describing the classifier’s performance based on
the cost of misclassification.

Cost curves are generated by drawing a straight line con-
necting points (0, PF) and (1, 1-PD). The lower part is formed
by connecting all the intersection points from left to right. Cost

curve for Find Bugs using Random Forest and logistic regres-
sion is shown in Figs. 3 and 4.

ROC and PR curves aim at maximizing the area under the
curve whereas the cost curves minimize the misclassification

cost, that is minimize the lower envelope area. Smaller the
areas in the lower envelope better the performance of the clas-
sifier and hence better cost-benefit ratio.

During comparison of classifiers, it is better to plot all these
curves because they provide complementary facts for the clas-
sifier selection.

4.2.4. Lift chart

Due to limited resources and time constraints for verification
and validation activities, the efficient utilization of resources

to achieve the best quality improvement is a challenge. Lift
chart (Witten and Frank, 2005) also known as Alberg
Diagram (Khoshgoftaar and Seliya, 2004; Ostrand et al.,

2005; Ohlsson and Alberg, 1996; Ohlsson et al., 1997) is
another performance evaluation measure. Lift is measurement
of how efficiently a classifier detects fault prone modules. It
evaluates the ratio of correctly identified faulty modules with

and without predictive model.
In the lift chart, the x-axis represents the percentage of

modules considered and y-axis represents the corresponding

detection rate. The lift chart includes a baseline and a lift
curve. The greater the area between the lift and baseline is,
the better the performance of the classifier.

Lift chart for dataset FIND BUGS with top three classifiers
logistic regression, Bagging and Random Forest is shown in
Fig. 5.

4.3. Statistical comparisons of models

Performance measures are not adequate for comparison of
classifiers; statistical conclusions are required to actually

compare the classifiers (Conover, 1999; Siegel, 1956).
Table 7 Classifiers with their ROC.

Datasets/classifier Naı̈ve Bayes Logistic

PMD 0.69 0.73

EMMA 0.71 0.79

FIND BUGS 0.72 0.81

TROVE 0.83 0.97

DR JAVA 0.75 0.74
The goal is to select the best technique amongst given
techniques. The hypothesis made is:

Ho: There is no difference in performance of six classifiers.
HA: At least one classifier performs significantly better than
others.

Rejection of the null hypothesis can be preceded by the post
hoc test. Demsar (2006) recommends Friedman test followed

by corresponding post-hoc Nemenyi test if more than two clas-
sifiers are taken over multiple datasets. Demsar recommends
these tests as they are less strict on the data. But non paramet-
ric tests do not utilize all the facts available, since the actual

data values are not used. So, parametric tests would be recom-
mended with respect to non parametric tests, when there is a
good reason for them to use.

Procedure provided by Demsar is followed in this work.
Mean AUC as a measure of interest is taken, 10 by 10 cross
validation is performed with 95% confidence level (p= 0.95)

as the threshold to check significance (p < 0.95). We have
taken 6 classifiers over 5 data sets for the Friedman test. The
Friedman test shows whether there is a statistical difference

between the classifiers used or not, and then the Nemenyi test
would be performed to decide which classifier gives the best
result for the 5 datasets used.

Ken Black’s Book, Business Statistics Li and Henry,

1993 gives the following implementation for the Friedman
test:

x2 ¼ 12

bcðcþ 1Þ
X
j

R2
i � 3bðcþ 1Þ ðvÞ

where b is the number of blocks (rows) and c is the number of
treatment levels (columns). Here k is the number of classifiers

used, N is the number of datasets, Rj is the average rank of

classifier j taken over the given datasets. Rj =
1
N

P
j

r ji , where

r ji is the rank of jth classifier over ith data. Ff is F-

distribution with K-1 and (k-1) (N-1) degrees of freedom and
the critical values available (See Table 7).

The Nemenyi test is the post hoc test applied when the null
hypothesis is rejected. It compares the classifiers with each

other. The critical difference in this test is evaluated as

CD= qa

ffiffiffiffiffiffiffiffiffiffi
kðkþ1Þ
6N

q
, where qa is the critical value in Nemenyi test

Li and Henry, 1993. If the difference of mean ranks between
two classifiers is larger than the value of CD, their perfor-
mance difference is significant.

Here we have N = 5 and k = 6.
Ranking is done with the best classifier assigned the highest

rank. Table 8: shows the ranks assigned to each classifier with

the sum of their ranks and square of ranks to be used in Frei-
dman test.
IB1 J48 Bagging Random Forest

0.76 0.70 0.78 0.82

0.70 0.62 0.79 0.80

0.72 0.82 0.89 0.90

0.76 0.64 0.99 0.99

0.66 0.70 0.79 0.81



Table 8 Classifiers with ranks in different datasets.

Datasets/classifier Naı̈ve Bayes Logistic IB1 J48 Bagging Random Forest

PMD 1 3 4 2 5 6

EMMA 3 4.5 2 1 4.5 6

FIND BUGS 1.5 3 1.5 4 5 6

TROVE 3 4 2 1 5.5 6

DR JAVA 4 3 1 2 5 6

Sum of ranks column wise 12.5 17.5 10.5 10 25 29.5

Sqaure of ranks 156.25 306.25 110.25 100 625 870.25

Table 9 Rank wise ordering of classifiers from best to worst.

Classifier Rank Mean rank

Random Forest 29.5 5.9

Bagging 25 5

Logistic 17.5 3.5

Naı̈ve Bayes 12.5 2.5

IB1 10.5 2.1

J48 10 2

Table 10 Performance results for PMD.

Measure Naı̈ve

Bayes

Logistic IB1 J48 Bagging Random

Forest

PD 0.88 0.83 0.87 0.72 0.75 0.73

1-PF 0.32 0.68 0.66 0.73 0.59 0.73

Precision 0.88 0.83 0.78 0.78 0.71 0.79

Accuracy 0.64 0.77 0.78 0.72 0.68 0.73

G-mean1 0.75 0.81 0.82 0.75 0.73 0.76

G-mean2 0.53 0.75 0.76 0.72 0.66 0.73

F-measure

(b= 1)

0.74 0.81 0.82 0.75 0.73 0.76

J_coeff 0.68 0.32 0.34 0.27 0.41 0.73

Figure 6 ROC’s for classifiers used in PMD.

Figure 7 Lift Chart of PMD.

Evaluation of classification algorithms for fault prediction 11
x2 ¼ 12 � 5
6ð6þ 1Þ � 2168

� �
� 15 � 7 ¼ 18:88

For c = 6 and df = 6–1 = 5. The critical value of

v2:05;5 ¼ 11:0705:. The observed value of chi-square is 18.88

which is higher than the critical value, the decision is to reject

the null hypothesis.
Post hoc Nemenyi test is performed because the null

hypothesis has been rejected in Friedman test that means there

is a difference in performance of the six classifiers used.
With six classifiers, the critical value qa is 2.85. Hence, the

critical difference is

CD ¼ 2:85

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð6þ 1Þ
6 � 5

r
¼ 3:37

Table 9 lists the rank wise ordering of classifiers from best

to worst. The results show that the difference in the mean
ranks of Random Forest, Bagging and Logistic regression is
less than CD so it is statistically insignificant, so they perform

equally well, while the differences in mean ranks of Random
Forest and J48, Random Forest and IB1, Random Forest
and Naı̈ve Bayes, Bagging and Naı̈ve Bayes, Bagging and
IB1, Bagging and J48 are statistically significant differences.
5. Experimental results

In this section, experiments are performed to compare the dif-
ferent fault prediction models. Six models listed earlier have
been taken and evaluated on five open source projects:
PMD. Find Bugs, Emma, Trove and Dr Java.



Table 11 The ranks of classifiers to be used in Nemenyi test

for PMD.

Classifier Rank

Random Forest 6

Bagging 5

IB1 4

Logistic 3

J48 2

Naı̈ve Bayes 1

Table 12 Performance results for Find Bugs.

Measure Naı̈ve

Bayes

Logistic IB1 J48 Bagging Random

Forest

PD 0.24 0.48 0.64 0.76 0.80 0.80

1-PF 0.87 0.80 0.81 0.91 0.89 0.93

Precision 0.54 0.70 0.69 0.85 0.83 0.89

Accuracy 0.62 0.64 0.74 0.85 0.85 0.88

G-mean1 0.36 0.58 0.66 0.80 0.81 0.84

G-mean2 0.36 0.58 0.66 0.80 0.81 0.84

F-measure

(b = 1)

0.36 0.58 0.66 0.80 0.81 0.84

J_coeff 0.54 0.35 0.45 0.67 0.69 0.73

Figure 8 ROC’s for classifiers used in Find Bugs.

Figure 9 Lift Chart of Find Bugs.

12 A. Kaur, I. Kaur
5.1. PMD

Using default measures which can be calculated from the con-
fusion matrix provided by the Weka toolkit for different mod-
els, the Random Forest classification algorithm outperformed

other classifiers by providing the best value on most of the per-
formance measures.

Using G mean and F measure as measures, IB1 outper-

forms other classifiers. Using accuracy, precision or specificity
makes Random Forest as best candidate. J_coeff measure’s
result supports the Random Forest model. Table 10 presents

the performance results for PMD. Since the performance
indices do not cover every aspect of evaluation, the graphical
evaluation is performed, which includes the ROC, PR curves,

Cost curves and Lift chart. Fig. 6.shows the six classifiers used
in analysis where the order of classifiers used is as follows:

Random Forest > Bagging > IB1 > Logistic > J48 >
Naı̈ve Bayes.

The Lift chart in Fig. 7 shows that classifier bagging gives
highest the lift amongst the six models taken. So, the
evaluation shows that before concluding which classifier is

best, the validity of that model should be checked in most of
the cost effective parameters.

The Nemenyi test is performed for a statistical difference

check amongst the classifiers. Table 11 shows the ranks of clas-
sifiers to be used in this test.

The difference between the ranks of Random Forest and

J48, Random Forest and Naı̈ve Bayes, and, that of Bagging
and Naı̈ve Bayes have statistically significant differences as
their difference value is greater than critical difference (CD).

The other differences in performance between Random

Forest, Bagging, IB1 and Logistic are statistically insignificant,
so they perform equally well.
5.2. Find Bugs

Using the default measures which can be calculated from the
confusion matrix provided by the Weka toolkit for different
models, the Random Forest classification algorithm outper-

forms other classifiers by providing the largest value on most
of the performance measures.

The above performance indices show that Random Forest
model outperforms other classifiers. Graphical evaluations

performed include the ROC, PR curves, Cost curves and Lift
chart. Table 12 lists the performance results for Find Bugs.



Figure 10 ROC’s for classifiers used in EMMA.

Table 13 The ranks of classifiers to be used in Nemenyi test

for FIND BUGS.

Classifier Rank

Random Forest 6

Bagging 5

J48 4

Logistic 3

IB1 1.5

Naı̈ve Bayes 1.5

Table 14 Performance results for EMMA.

Measure Naı̈ve

Bayes

Logistic IB1 J48 Bagging Random

Forest

PD 0.16 0.63 0.63 0.44 0.58 0.67

1-PF 0.16 0.82 0.63 0.44 0.58 0.67

Precision 0.16 0.71 0.63 0.44 0.58 0.67

Accuracy 0.63 0.74 0.72 0.63 0.74 0.77

G-mean1 0.35 0.67 0.65 0.49 0.65 0.70

G-mean2 0.35 0.67 0.65 0.49 0.65 0.70

F-measure

(b = 1)

0.35 0.67 0.65 0.49 0.65 0.70

J_coeff 0.27 0.55 0.42 0.19 0.43 0.51

Figure 11 Lift chart for EMMA.

Table 15 The ranks of classifiers to be used in Nemenyi test

for EMMA.

Classifier Rank

Random Forest 6

Bagging 4.5

Logistic 4.5

Naı̈ve Bayes 3

IB1 2

J48 1

Table 16 Performance results for Trove.

Measure Naı̈ve

Bayes

Logistic IB1 J48 Bagging Random

Forest

PD 0.90 0.90 0.60 0.63 0.60 0.90

1-PF 0.70 1.00 0.99 1.00 0.99 1.00

Precision 0.11 0.90 0.75 0.83 0.67 1.00

Accuracy 0.70 0.99 0.98 0.98 0.97 1.00

G-mean1 0.31 0.90 0.67 0.72 0.63 0.95

G-mean2 0.79 0.95 0.77 0.79 0.77 0.95

F-measure

(b = 1)

0.19 0.90 0.67 0.63 0.63 0.95

J_coeff 0.20 0.90 0.59 0.59 0.49 0.95

Evaluation of classification algorithms for fault prediction 13
Fig. 8 shows the ROC for six different classifiers. Graph

shows that Random Forest technique provides the best ROC
amongst all the six classifiers.

Fig. 9 shows the Lift chart of Find Bugs. The Nemenyi test
is performed for a statistical difference check amongst the

classifiers. Table 13 shows the ranks of classifiers on the basis
of Nemenyi test (see Fig. 10).

The difference between the ranks of Random Forest and

Naı̈ve Bayes, Random Forest and IB1, and that of Bagging
and IB1, Bagging and Naı̈ve Bayes have statistically significant
differences as their difference value is greater than CD.

The other difference in performance between Random For-
est, Bagging and Logistic is statistically insignificant, so they
perform equally well.

5.3. EMMA

Using the default measures which can be calculated from the
confusion matrix provided by the weka toolkit for different

models, the Random Forest classification algorithm outper-
forms other classifiers by providing the largest value on most
of the performance measures.

Above performance indices show that for parameters
except J-coeff, Random Forest is the best modeling technique.
Table 14 lists the performance results for Emma.

The Lift chart for EMMA is shown in Fig. 11 and supports
Random Forest technique. The Nemenyi test is performed for
a statistical difference check amongst the classifiers. Table 15

shows the ranks of classifiers on the basis of Nemenyi test.



Figure 12 ROC’s for classifiers used in Trove.

Figure 13 Lift Chart for the Trove.

Table 17 The ranks of classifiers to be used in Nemenyi test

for Trove.

Classifier Rank

Random Forest 6

Bagging 5.5

Logistic 4

Naı̈ve Bayes 3

IB1 2

J48 1

14 A. Kaur, I. Kaur
The difference between the ranks of Random Forest and
J48, Random Forest and IB1, and that of Bagging and J48,
Logistic and J48 have statistically significant differences as

their difference value is greater than CD.
The other difference in performance between Random For-

est, Bagging and Logistic is statistically insignificant, so they

perform equally well.

5.4. Trove

Using the default measures which can be calculated from the
confusion matrix provided by the weka toolkit for different
models, the Random Forest classification algorithm outper-

forms other classifiers by providing the largest value on most
of the performance measures.

Evaluation of performance indices shows that modeling
technique logistic regression and Random Forest provide sim-

ilar results. Table 16 lists the performance results for Trove.
ROC curves for six classifiers used for TROVE dataset are

represented in the Fig. 12. Graph shows that Random Forest

technique provides the best ROC amongst all the six classifiers.
Lift Chart for the trove is shown in Fig. 13 which supports

Random Forest technique. The Nemenyi test is performed for

a statistical difference check amongst the classifiers. Table 17
shows the ranks of classifiers on the basis of Nemenyi test.

The difference between the ranks of Random Forest and
J48, Random Forest and IB1, and that of Bagging and J48,

Bagging and IB1 have statistically significant differences as
their difference value is greater than CD.

The other difference in performance between Random

Forest, Bagging and Logistic are statistically insignificant, so
they perform equally well.

5.5. Dr Java

Using the default measures which can be calculated from the
confusion matrix provided by the weka toolkit for different

models, the Random Forest classification algorithm outper-
forms other classifiers by providing the largest value on most
of the performance measures.

Parameters like PD and G-mean2 favour the IB1classifier

while F-measure, G-mean1, specificity, precision and accuracy
are better for J48. Random Forest is overall best in J_coeff.
The selection of classifier would be based on the criteria which

is mostly required in the industry. Table 18 presents the
performance results for Dr Java.
Table 18 Performance results for Dr Java.

Measure Naı̈ve

Bayes

Logistic IB1 J48 Bagging Random

Forest

PD 0.95 0.16 0.47 0.44 0.26 0.41

1-PF 0.34 0.96 0.86 0.93 0.95 0.93

Precision 0.26 0.50 0.46 0.61 0.58 0.58

Accuracy 0.46 0.80 0.78 0.83 0.81 0.82

G-mean1 0.49 0.28 0.46 0.52 0.38 0.49

G-mean 2 0.57 0.39 0.64 0.64 0.49 0.62

F-measure

(b = 1)

0.41 0.24 0.46 0.51 0.36 0.48

J_coeff 0.29 0.12 0.33 0.39 0.19 0.34



Table 19 The ranks of classifiers to be used in Nemenyi test

for Dr Java.

Classifier Rank

Random Forest 6

Bagging 5

Naı̈ve Bayes 4.5

Logistic 3

J48 2

IB1 1

Table 20 Difference of ranges for performance indices in

industrial and open source data sets.

Performance measure Industrial datasets Open source data sets

PD 0.065–0.55 0.16–0.95

1-PF 0.85–0.99 0.16–1.00

Precision 0.25–0.73 0.16–1.00

Accuracy 0.78–0.94 0.62–1.00

G-mean1 0.13–0.56 0.36–0.95

G-mean2 0.25–0.70 0.35–0.95

F-measure (b = 1) 0.11–0.56 0.19–0.90

J_coeff 0.16–0.44 0.12–0.95

Figure 14 ROC’s for classifiers used in Dr Java.

Figure 15 Lift chart of Dr Java.

Evaluation of classification algorithms for fault prediction 15
ROC curves for six classifiers used for Dr Java dataset are

represented in the Fig. 14. Graph shows that Random Forest
technique provides the best ROC amongst all the six classifiers.

The Lift chart of Dr Java is shown in Fig. 15 and favours the

result of Random Forest. The Nemenyi test is performed for a
statistical difference check amongst the classifiers. Table 19
shows the ranks of classifiers on the basis of Nemenyi test.

The difference between the ranks of Random Forest and

J48, Random Forest and IB1, and that of Bagging and IB1,
Naı̈ve Bayes and IB1 have statistically significant differences
as their difference value is greater than CD.

The other difference in performance between Random For-
est, Bagging and Naı̈ve Bayes are statistically insignificant, so
they perform equally well.
6. Conclusions

Software fault prediction branch is growing owing to the pro-

mise it provides in improving the quality of software and guid-
ing in software verification and validation techniques. Various
studies have been done on the NASA datasets with module

metrics and their fault values. Studies have proposed different
techniques for selecting the ‘‘best” classifier amongst them.
Performance comparison amongst various classifiers selected
is still not the well-studied area in the empirical software

engineering literature.
Studies carried out by Jiang et al. (2008) on industrial

datasets and the analysis performed on open source projects

in this paper have produced similar results.
Out of the six prediction models selected,

� Random Forest always performed best and stayed on top
rank. So, in study by Jiang et al. (2008), the results of
Random Forest are eliminated (as it makes the model
selection rather trivial). While in this paper, Random Forest

results have been taken and they support the studies carried
out by Jiang et al.

� Bagging was observed to follow up Random Forest.

� Naı̈ve Bayes is least preferable for prediction.
� Performance indices have a following range in industrial
and open source datasets as shown in Table 20.

It is rare that one model will be best for all the projects in
software quality assessment. While some models will be advan-

tageous when few modules are fault prone, others will show
their prominence in traditional comparison methods for binary
classification like ROC or PR curves, thus providing easy
adaptability in a wide range of project conditions.



16 A. Kaur, I. Kaur
We hope the approach and steps for evaluation given in this
paper are capable to provide better understanding and hence
would increase the statistical validity for future studies.

References

Adams, N.M., Hand, D.J., 1999. Comparing classifiers when the

misallocation costs are uncertain. Pattern Recognit. 32, 1139–1147.

http://dx.doi.org/10.1016/S0031-3203(98)00154-X.

Aggarwal, K.K., Singh, Y., Kaur, A., Malhotra, R., 2006. Empirical

study of object-oriented metrics. J. Object Technol. 5 (8), 149–173.

Aggarwal, K.K., Singh, Y., Kaur, A., Malhotra, R., 2009. Empirical

analysis for investigating the effect of object-oriented metrics on

fault proneness: A replicated case study. Software Process Improv.

Pract. 16 (1), 39–62. http://dx.doi.org/10.1002/spip.389s.

Basili, V., Briand, L., Melo, W.L., 1996. A validation of object-

oriented design metrics as quality indicators. IEEE Trans. Software

Eng. 22 (10), 751–761.

Bernstien, A., Ekanayake, J., Pinzger, M., 2007. In: Proceedings of

IWPSE 2007 Ninth International Workshop on Principles of

Software Evolution in Conjuction with the 6th ESEC/FSE Joint

Meeting, pp. 11–18. http://dx.doi.org/10.1145/1294948.1294953.

Boehm, B., Papaccio, P., 1988. Understanding and controlling

software costs. IEEE Trans. Software Eng. 14, 1462–1477.

Briand, L., Wust, J., 2001. Replicated case studies for investigating

quality factors in object-oriented designs. Empir. Softw. Eng. 6 (1),

11–58.

Briand, L., Daly, J., Wust, J., 1999. A unified framework for coupling

measurement in object-oriented systems. IEEE Trans. Software

Eng. 25, 91–121.

Briand, L., Daly, J., Porter, V., Wust, J., 2000. Exploring the

relationships between design measures and software quality. J.

Syst. Software 5, 245–273.

Chidamber, S., Kemerer, C.F., 1994. A metrics suite for object-

oriented design. In: IEEE Trans. Software Eng., vol. 6, pp. 476–

493, SE-20.

Conover, W.J., 1999. Practical Nonparametric Statistics. Wiley, New

York.

Drummond, C., Holte, R.C., 2006. Cost curves: an improved method

for visualizing classifier performance. Mach. Learn. 65 (1), 95–130.

http://dx.doi.org/10.1007/s10994-006-8199-5.

Demsar, J., 2006. Statistical comparisons of classifiers over multiple

data sets. J. Mach. Learn. Res. 7, 1–30.

El Emam, K., Benlarbi, S., Goel, N., Rai, S., 2001a. The confounding

effect of class size on the validity of object-oriented metrics. IEEE

Trans. Software Eng. 27 (7), 630–650.

El Emam, K., Melo, W., Machado, J., 2001b. The prediction of faulty

classes using object-oriented design metrics. J. Syst. Software 56,

63–75.

El Emam, K., Benlarbi, S., Goel, N., Rai, S., 2001c. Comparing case-

based reasoning classifiers for predicting high-risk software com-

ponents. J. Syst. Software 55 (3), 301–320.

Fenton, N.E., Ohlsson, N., 2000. Quantitative analysis of faults and

failures in a complex software system. IEEE Trans. Software Eng.

26 (8), 797–814.

Guo, L., Ma, Y., Cukic, B., Singh, H., 2004. Robust prediction of

fault-proneness by random forests, Proc. 15th Int’l Symp. Software

Reliability Eng..

Gyimothy, T., Ferenc, R., Siket, I., 2005. Empirical validation of

object-oriented metrics on open source software for fault predic-

tion. IEEE Trans. Software Eng. 31 (10), 897–910.

Henderson-Sellers, B., 1996. Object-Oriented Metrics, Measures of

Complexity. Prentice Hall, ISBN 0-13-239872-9.

Hassan, A., Holt, R., 2005. The top ten list: dynamic fault prediction.

In: 21st IEEE International Conference on Software Maintenance

(ICSM’05), pp. 263–272, ISSN: 1063-6773.
Hassan, 2009. Predicting faults using the complexity of code changes.

In: Proceedings of 31st International Conference on Software

Engineering, ICSE 2009, pp. 78–88.

Jiang, Y., Cukic, B., Ma, Y., 2008. Techniques for evaluating fault

prediction models. Empir. Software Eng. 13, 561–595.

Khoshgoftaar, T.M., Pandya, A.S., Lanning, D.L., 1995. Application

of neural networks for predicting faults. Ann. Software Eng. 1 (1),

141–154.

Khoshgoftaar, T.M., Ganesan, K., Allen, E.B, Ross, F.D., 1997.

Predicting fault prone modules with case based reasoning. In:

Proceedings of the Eighth International Symposium on Software

Reliability Engineering, pp. 27–35. http://dx.doi.org/10.1109/

ISSRE.1997.630845.

Khoshgoftaar, T.M., Ganesan, K., Allen, E.B., 2000. Case-based

software quality prediction. Int. J. Software Eng. Knowl. Eng. 10

(2), 139–152.

Khoshgoftaar, T.M., Seliya, N., 2003. Analogy-based practical clas-

sification rules for software quality estimation. Empir. Software

Eng. 8 (4), 325–350.

Khoshgoftaar, T.M., Seliya, N., 2004. Comparative assessment of

software quality classification techniques: an empirical study.

Empir. Software Eng. 9, 229–257.

Kim, S., Zimmermann, T., Whitehead, E., Zellar, A., 2007. Predicting

faults from cached history. In: Proceedings of 29th International

Conference on Software Engineering, pp. 489–498. http://dx.doi.

org/10.1109/ICSE.2007.66.

Kubat, M., Holte, R.C., Matwin, S., 1998. Machine learning for the

detection of oil spills in satellite radar images. Mach. Learn. 30 (2–

3), 195–215. http://dx.doi.org/10.1023/A:1007452223027.

Lewis, D., Gale, W., 1994. A sequential algorithm for training text

classifiers. In: Annual ACM Conference on Research and Devel-

opment in Information Retrieval, the 17th Annual International

ACM SIGIR Conference on Research and Development in

Information Retrieval. Springer-Verlag, New York, NY, pp. 3–12.

Lessmann, S., Baesens, B., Mues, C., Pietsch, S., 2008. Benchmarking

classification models for software defect prediction: a proposed

framework and novel findings. IEEE Trans. Software Eng. 34 (4),

485–496.

Li, W., Henry, S., 1993. Object oriented metrics that predict

maintainability. J. Syst. Software 23 (2), 111–122.

Ling, C.X., Li, C., 1998. Data mining for direct marketing: problems

and solutions. In: Proc. of the 4th Intern. Conf. on Knowledge

Discovery and Data Mining, pp. 73–79, New York.

Lorenz, M., Kidd, J., 1994. Object-Oriented Software Metrics.

Prentice-Hall.

Malhotra, R., Jain, A., 2012. Fault prediction using statistical and

machine learning methods for improving software quality. J. Inf.

Process. Syst. 8 (2), 241–262.

Malhotra, R., 2014. Comparative analysis of statistical and machine

learning methods for predicting faulty modules. Appl. Soft

Comput. 21, 286–297.

Mahanti, R., Antony, J., 2005. Confluence of six sigma, simulation

and software development. Manag. Audit. J. 20 (7), 739–762.

McCabe & Associates, 1994. McCabe Object Oriented Tool User’s

Instructions.

Menzies, T., DiStefano, J., Orrego, A., Chapman, R., 2004. Assessing

Predictors of Software Defects, Proc. Workshop Predictive Soft-

ware Models.

Menzies, T., Greenwald, J., Frank, A., 2007a. Data mining static code

attributes to learn defect predictors. IEEE Trans. Software Eng. 33

(1), 2–13. http://dx.doi.org/10.1109/TSE.2007.256941.

Menzies, T., Dekhtyar, A., DiStefano, J., Greenwald, J., 2007b.

Problems with precision: a response to comments on data mining

static code attributes to learn defect predictors. IEEE Trans.

Software Eng. 33 (9), 637–640.

Moser, R., Pedrycz, W., Succi, G., 2008. A comparative analysis of the

efficiency of change metrics and static code attributes for defect

http://dx.doi.org/10.1016/S0031-3203(98)00154-X
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0010
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0010
http://dx.doi.org/10.1002/spip.389s
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0020
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0020
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0020
http://dx.doi.org/10.1145/1294948.1294953
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0030
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0030
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0035
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0035
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0035
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0040
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0040
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0040
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0045
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0045
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0045
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0050
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0050
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0050
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0055
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0055
http://dx.doi.org/10.1007/s10994-006-8199-5
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0065
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0065
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0070
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0070
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0070
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0075
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0075
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0075
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0080
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0080
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0080
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0085
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0085
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0085
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0090
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0090
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0090
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0095
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0095
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0095
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0100
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0100
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0105
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0105
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0105
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0110
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0110
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0110
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0120
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0120
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0125
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0125
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0125
http://dx.doi.org/10.1109/ISSRE.1997.630845
http://dx.doi.org/10.1109/ISSRE.1997.630845
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0135
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0135
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0135
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0140
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0140
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0140
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0145
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0145
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0145
http://dx.doi.org/10.1109/ICSE.2007.66
http://dx.doi.org/10.1109/ICSE.2007.66
http://dx.doi.org/10.1023/A:1007452223027
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0160
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0160
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0160
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0160
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0160
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0165
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0165
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0165
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0165
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0170
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0170
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0175
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0175
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0175
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0180
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0180
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0185
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0185
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0185
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0190
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0190
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0190
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0195
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0195
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0200
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0200
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0205
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0205
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0205
http://dx.doi.org/10.1109/TSE.2007.256941
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0215
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0215
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0215
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0215
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0220
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0220


Evaluation of classification algorithms for fault prediction 17
prediction. In: ACM/IEEE 30th International Conference on

Software Engineering, pp. 181–190, ISSN: 0270-5257.

Myrtveit, I., Stensrud, E., 1999. A controlled experiment to assess the

benefits of estimating with analogy and regression models. IEEE

Trans. Software Eng. 25 (4), 510–525.

Myrtveit, I., Stensrud, E., Shepperd, M., 2005. Reliability and validity

in comparative studies of software prediction models. IEEE Trans.

Software Eng. 31 (5), 380–391.

Nagappan, N., Ball, T., 2005. Use of relative code churn measures to

predict system defect density. In: Proceedings 27th International

Conference on Software Engineering, 2005. ICSE 2005, pp. 284–

292, ISSN 0270-5257.

Nagappan, N., Ball, T., Murphy, B., 2006. Using Historical In-Process

and Product Metrics for Early Estimation of Software Failures.

ISSRE 6.

Ohlsson, N., Alberg, H., 1996. Predicting fault-prone software

modules in telephone switches. IEEE Trans. Software Eng. 22

(12), 886–894. http://dx.doi.org/10.1109/32.553637.

Ohlsson, N., Eriksson, A.C., Helander, M.E., 1997. Early risk-

management by identification of fault-prone modules. Empir.

Software Eng. 2 (2), 166–173. http://dx.doi.org/10.1023/

A:1009757419320.

Ostrand, T.J., Weyuker, E.J., Bell, R.M., 2005. Predicting the location

and number of faults in large software systems. IEEE Trans.

Software Eng. 31 (4), 340–355. http://dx.doi.org/10.1109/

TSE.2005.49.

Okutan, A., Yıldız, O.T., 2012. Software defect prediction using

Bayesian networks. Empir. Software Eng. 19 (1), 154–181.

Paulson, James W., Giancario, S., Eberlein, A., 2004. An empirical

study of open spource and closed source software products. IEEE

Trans. Software Eng. 4 (4), 246–256.

Porter, A.A., Selby, R.W., 1990. Evaluating techniques for generating

metric-based classification trees. J. Syst. Software 12 (3), 209–218.

Provost, F., Kohavi, R., 1998. Guest editors introduction: on applied

research in machine learning. Mach. Learn. 30 (2–3), 127–132.
Pai, G., 2007. Empirical analysis of software fault content and fault

proneness using Bayesian methods. IEEE Trans. Software Eng. 33

(10), 675–686. http://dx.doi.org/10.1109/TSE.2007.70722.

Siegel, S., 1956. Nonparametric Statistics. McGraw-Hill, New York.

Selby, R.W., Porter, A.A., 1988. Learning from examples: generation

and evaluation of decision trees for software resource analysis.

IEEE Trans. Software Eng. 14 (12), 1743–1756.

Schneidewind, N.F., 1992. Methodology for validating software

metrics. IEEE Trans. Software Eng. 18 (5), 410–422.

Shepperd, M., Kadoda, G., 2001. Comparing software prediction

techniques using simulation. IEEE Trans. Software Eng. 27 (11),

1014–1022.

Tang, M., Kao, M., Chen, M., 1999. An empirical study on Object-

oriented metrics. In: Proceedings of Sixth International Software

Metrics Symposium, pp. 242–249. http://dx.doi.org/10.1109/

METRIC.1999.809745.

Witten, I.H., Frank, E., 2005. Data mining: Practical Machine

Learning Tools and Techniques. Morgan Kaufmann.

Yu, P., Systa, T., Muller, H., 2002. Predicting fault-proneness using OO

metrics. An industrial case study. In: Proceedings of Sixth European

Conference on Software maintenance and Reengineering, 99-107,

ISSN, pp. 1534–5351. http://dx.doi.org/10.1109/CSMR.2002.995794.

Yeresime, S., Lov, K., Rath, S.K., 2014. Statistical and Machine

Learning for Software Fault Prediction Using CK Metric Suite: A

Comparative Analysis, International Scholarly Research Notices

(ISRN) Software Engineering Volume 2014, 15 pages, 2014. Article

ID 251083.

Youden, W., 1950. Index for rating diagnostic tests. Cancer 3, 32–35.

http://dx.doi.org/10.1002/1097-0142(1950)3:1<32:: AID-CNCR28

20030106>3.0.CO;2-3.

Yousef, W.A., Wagner, R.F., Loew, M.H., 2004. Comparison of non-

parametric methods for assessing classifier performance in terms of

ROC parameters. In Proceedings of Applied Imagery Pattern

Recognition Workshop, vol. 33, issue 13–15, pp. 190–195.

http://refhub.elsevier.com/S1319-1578(16)30022-2/h0220
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0220
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0225
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0225
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0225
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0230
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0230
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0230
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0235
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0235
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0235
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0235
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0240
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0240
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0240
http://dx.doi.org/10.1109/32.553637
http://dx.doi.org/10.1023/A:1009757419320
http://dx.doi.org/10.1023/A:1009757419320
http://dx.doi.org/10.1109/TSE.2005.49
http://dx.doi.org/10.1109/TSE.2005.49
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0260
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0260
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0115
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0115
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0115
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0265
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0265
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0270
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0270
http://dx.doi.org/10.1109/TSE.2007.70722
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0280
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0285
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0285
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0285
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0290
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0290
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0295
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0295
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0295
http://dx.doi.org/10.1109/METRIC.1999.809745
http://dx.doi.org/10.1109/METRIC.1999.809745
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0305
http://refhub.elsevier.com/S1319-1578(16)30022-2/h0305
http://dx.doi.org/10.1109/CSMR.2002.995794
http://dx.doi.org/10.1002/1097-0142(1950)3:1&lt;32::AID-CNCR2820030106>3.0.CO;2-3
http://dx.doi.org/10.1002/1097-0142(1950)3:1&lt;32::AID-CNCR2820030106>3.0.CO;2-3

	An empirical evaluation of classification algorithms for fault prediction in open source projects
	1 Introduction
	2 Related work
	3 Research methodology
	3.1 Empirical data collection
	3.2 Metrics evaluated

	4 Model evaluation
	4.1 Numerical performance evaluation indices
	4.1.1 Accuracy
	4.1.2 Sensitivity, specificity and precision
	4.1.3 G-mean, F-measure and J_coefficient

	4.2 Graphical methods
	4.2.1 ROC curve
	4.2.2 Precision–Recall curve
	4.2.3 Cost curve
	4.2.4 Lift chart

	4.3 Statistical comparisons of models

	5 Experimental results
	5.1 PMD
	5.2 Find Bugs
	5.3 EMMA
	5.4 Trove
	5.5 Dr Java

	6 Conclusions
	References


