
Journal of King Saud University – Computer and Information Sciences (2018) 30, 51–66
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
A formal basis for the design and analysis of

firewall security policies
* Corresponding author.

E-mail address: Ahmed.Khoumsi@USherbrooke.ca (A. Khoumsi).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2016.11.008
1319-1578 � 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Ahmed Khoumsi a,*, Mohammed Erradi b, Wadie Krombi b
aDepartment of Electrical & Computer Engineering, University of Sherbrooke, Canada
bENSIAS, Mohammed V University, Rabat, Morocco
Received 29 May 2016; revised 16 November 2016; accepted 16 November 2016
Available online 30 November 2016
KEYWORDS

Firewall security policy;

Automata-based policy;

Completeness verification;

Anomaly detection;

Discrepancy detection;

Mixable policy;

Space and time complexities
Abstract A firewall is the core of a well defined network security policy. This paper presents an

automata-based method to study firewall security policies. We first propose a procedure that syn-

thesizes an automaton that describes a security policy given as a table of rules. The synthesis pro-

cedure is then used to develop procedures to detect: incompleteness, anomalies and discrepancies in

security policies. A method is developed to represent the automaton by a policy qualified as mixable

and that has practical utilities, such as ease to determine the whitelist and the blacklist of the policy.

The developed procedures have been deeply evaluated in terms of time and space complexities.

Then, a real case study has been investigated. The obtained results confirm that the developed pro-

cedures have reasonable complexities and that their actual execution times are of the order of sec-

onds. Finally, proofs of all results are provided.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The world today is fully connected through the internet, while
its security remains a big challenge for the research and indus-

trial communities. Network attacks gain a tremendous atten-
tion and constitute daily threats and preoccupations of
network managers. Firewalls as crucial network security ele-
ments have been widely used as the frontier defense against

these attacks.
A firewall today is considered as the core element of any

well defined network security policy. A firewall security policy
consists of filtering rules that are used to filter incoming and
outgoing traffic (packets) from the secured network. A badly

designed firewall security policy may lead to the acceptance
of malicious packets or the rejection of acceptable packets.
Therefore, the correct design and analysis of firewall security

policies is an important issue that has been addressed by many
researchers, such as Acharya and Gouda (2010, 2011), Al-
Shaer and Hamed (2004), Al-Shaer et al. (2009), Bryant

(1986), Cuppens et al. (2012), Garcia-Alfaro et al. (2008,
2013), Hoffman and Yoo (2005), Kalam et al. (2003),
Kamara et al. (2003), Karoui et al. (2013), Liu et al. (2007,
2008, 2010), Lee and Yannakakis (1996), Lu et al. (2007),

Mallouli et al. (2007), Madhuri and Rajesh (2013),
Mansmann et al. (2012), Pozo et al. (2012), Wool (2004),
and Yuan et al. (2006). Henceforth, the terms policy and rule

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2016.11.008&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Ahmed.Khoumsi@USherbrooke.ca
http://dx.doi.org/10.1016/j.jksuci.2016.11.008
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2016.11.008
http://creativecommons.org/licenses/by-nc-nd/4.0/

52 A. Khoumsi et al.
denote ‘‘firewall security policy” and ‘‘filtering rule”,
respectively.

In existing works, each proposed formalism addresses a

specific firewall design or analysis aspect to resolve a specific
problem. This has motivated the present work where an
automata-based methodology is developed to address different

problems using a single formalism. This methodology is based
on the construction of an automaton that describes a policy
initially specified by a table of rules. This automaton construc-

tion is used to detect incompleteness, anomalies and discrepan-
cies in policies. A method is also proposed to represent the
automaton by a table of rules called mixable policy that has
practical utilities. The proposed procedures have been deeply

evaluated in terms of time and space complexities; note that
our complexity evaluation is more precise than in the litera-
ture. The obtained results are presented as formally proved

propositions. Also, we discuss the results of a real-life policy
use case taken from Chen et al. (2012).

The rest of the paper is structured as follows. Section 2 pre-

sents related work. Preliminaries on policies are given in Sec-
tion 3. In Section 4, we propose a procedure that constructs
an automaton which describes a policy initially specified by a

table of rules. Sections 5–10 show how the procedure of Sec-
tion 4 is applied for a rigorous study of policies. In Section 5,
we present a method that determines if a policy is complete.
Section 6 defines two categories of anomalies, qualified as con-

flicting and nonconflicting. In Section 7, we propose methods
to detect three types of conflicting anomalies: shadowing, gen-
eralization and correlation anomalies. Section 8 proposes

methods to detect two types of nonconflicting anomalies:
LP-redundancy and MP-redundancy. In Section 9, we show
how an automaton describing a policy can be represented in

a practical form called mixable policy. Section 10 presents a
method that detects and resolves discrepancies between several
designs of the same policy. In Section 11, we evaluate the per-

formances of the procedures developed throughout Sections 4
to 10 in terms of space and time complexities. Section 12 dis-
cusses the application of our methodology in a real case study.
We conclude in Section 13 by recalling our contributions and

presenting ideas of future studies. Finally, formal proofs of our
results are presented in Appendix A.

2. Related work and contributions

Previous work on firewalls, such as Hoffman and Yoo (2005),
Wool (2004), Kamara et al. (2003) provide practical analysis

algorithms, for example to test, analyze configuration and
detect vulnerability in policies. Acharya and Gouda (2010,
2011), Liu and Gouda (2008, 2010), Al-Shaer et al. (2009)

are more fundamental and provide analysis algorithms with
estimations of time complexities. Elmallah and Gouda (2014)
show that the analyzes of several problems of firewalls are
NP-hard.

Madhuri and Rajesh (2013) define an anomaly in a policy
by the existence of at least one packet that matches several
rules of the policy. Al-Shaer and Hamed (2004), Karoui

et al. (2013) present techniques to detect anomalies in a policy,
where a policy is specified by a Policy tree in Al-Shaer and
Hamed (2004) and a Decision tree in Karoui et al. (2013).

Garcia-Alfaro et al. (2013), Cuppens et al. (2012) propose
methods to study stateful anomalies.
Liu and Gouda (2008) show how to detect discrepancies
between several designs of the same policy, where the policy
is modeled by a Firewall Decision Diagram (FDD) defined in

Liu and Gouda (2007).
Yuan et al. (2006) introduce a toolkit Fireman which detects

several types of errors, for example a violation or inconsistency

of a policy. Fireman is implemented by Binary Decision Dia-
grams (BDD) (Bryant, 1986).

Mallouli et al. (2007) propose a framework to generate test

sequences to check the conformance of a policy to a specifica-
tion. The system behavior is described by an extended automa-
ton (Lee and Yannakakis (1996)) and the policy that we wish
to apply to this system is described by organization-based

access control (OrBAC) (Kalam et al., 2003).
Lu et al. (2007) propose a method to verify if two policies

are equivalent.

Mansmann et al. (2012) present a tool to visualize and ana-
lyze firewall configurations, where the policy is modeled in a
hierarchical way.

Pozo et al. (2012) propose CONFIDDENT, a model-driven
design, development and maintenance framework for firewalls.

Garcia-Alfaro et al. (2008) propose mechanisms to detect

anomalies in configuration rules of security policies.
In each of the above works, a specific problem is solved

using a given formalism: anomalies, discrepancies and viola-
tion/inconsistencies are studied using a policy tree (Al-Shaer

and Hamed, 2004), a FDD (Liu and Gouda 2007) and a
BDD (Bryant, 1986), respectively. This observation motivated
the works of Krombi et al. (2014), Khoumsi et al. (2014),

where the same model of automata is used to solve various
problems of policies. The present paper improves the latter
two references and completes them with the following new

contributions:

1. We show how our approach can be more interesting than

FDD, especially in terms of efficiency for deleting, adding,
modifying and switching rules in a policy (see Section 4.5).

2. We propose a method to resolve discrepancies between sev-
eral implementations of a policy (see Section 10).

3. We show how to construct mixable policies and clarify their
utility, in particular to determine the whitelist and the
blacklist of a policy (see Section 9).

4. We evaluate space and time complexities to execute the
automaton of a policy, and show that such automaton exe-
cution is more efficient than executing the table of rules of

the policy (see Prop. 18).
5. We formally prove all the results given throughout Sections

4 to 11 (including those already in Krombi et al. (2014),
Khoumsi et al. (2014)) (see Appendix A).

6. We illustrate the application of our approach to a real-life
policy (see Section 12).

7. We explain much more clearly the reason why our complex-

ity evaluation is more precise than in the literature (Sections
11.2, 11.3 and 11.4).

To have a self-contained paper, we present also the main
contributions of Krombi et al. (2014), Khoumsi et al. (2014).

Indeed, since this paper is the first one that formally proves
the results of these two references, their contributions are
presented.

Security enforcement is another relevant issue which can be

briefly defined as preventing automatically an untrusted system

Table 3 Notations used in Figs. 1 and 2.

a1 ¼ 190:170:15:0 b1 ¼ 80:15:15:0

a2 ¼ 190:170:15:255 b2 ¼ 80:15:15:255

I1 ¼ ½0; a1Þ I2 ¼ ½a1; a2� I3 ¼ ða2; 232Þ
J1 ¼ ½0;b1Þ J2 ¼ ½b1;b2� J3 ¼ ðb2; 232Þ
K1 ¼ ½0; 25Þ K2 ¼ ð25; 81Þ K3 ¼ ð81; 83Þ K4 ¼ ð83; 216Þ

Design and Analysis of Firewall Security Policies 53
from violating a security policy. Sui and Mejri (2013) propose
a method to enforce a security policy on an untrusted pro-
gram. Shen et al. (2013) study security enforcement in the con-

text of cloud storage. Security enforcement is one of our near
future work (more details will be given in the list of future
work, Section 13).

3. Preliminaries

A policy of a firewall is a set of rules specifying actions (e.g.

accept, deny) to apply to packets arriving at the firewall. A rule
R can therefore be defined by a pair (Condition, Action) which
means: if Condition is satisfied for a packet P arriving at the

firewall, then Action (authorize or refuse the access) must be
applied to P. Here are more precisions about Condition and
Action of a rule R:

� Condition is specified by several (say m) filtering fields

F 0; . . . ; F m�1, where each F j is a set of values. Every packet

P that reaches the firewall has several headers H 0; . . . ;Hm�1,

where each H j is a value. Condition is satisfied for P (which
is also termed as: P matches R), if for every j ¼ 0; . . .m� 1:

H j belongs to F j.

� Action may be Accept or Deny, which consists in authoriz-
ing or preventing P from crossing the firewall.

Table 1 represents the structure of a policy description:

each rule Ri is specified by several fields F0
i ; . . . ;F

m�1
i represent-

ing the condition of Ri, and by the action ai. The rules are
ordered in decreasing priority, i.e. when a packet P arrives at

the firewall, we first verify if P matches R1: if yes, a1 is exe-
cuted; otherwise (i.e. P does not match R1), we verify if P
matches R2. And so on, until we find a rule matched by P or

all the rules are verified.
An example of policy is given in Table 2, where the condi-

tion of each rule is defined by the fields IPsrc, IPdst, Port and

Protocol. The symbol � in the column of Fj means any value of

the domain of Fj. The expression a:b:c:0=x represents the set of
32-bit values obtained by giving all the possible values to the
32� x last bits in the 32-bit value a:b:c:0. A packet P arriving
at the firewall matches a rule Ri if it comes from and is destined

to addresses belonging to IPsrc and IPdst respectively, and is
Table 1 Structure of a policy description.

Rule F0 . . . Fj

R1 F0
1

. . . Fj
1

.

Rn F0
n

. . . Fj
n

Table 2 Example of policy.

Rule IPsrc IPdst

R1 � 80:15:15:0=24

R2 190:170:15:0=24 80:15:15:0=24

R3 190:170:15:0=24 80:15:15:0=24

R4 � �
transmitted through a port belonging to Port by a protocol
belonging to Protocol.

For example, a packet with the headers (190.170.15.10),

(82.15.15.11), (25), (UDP), is a packet that comes from
190.170.15.10, is destined to 82.15.15.11, and is transmitted
through the port 25 by the protocol UDP. This packet is

accepted by the firewall, because Accept is the action of R4,
the unique rule matched by this packet.

4. Automaton construction

In this section, we present the automaton construction proce-
dure. Given a table of several (say n) rules R1; . . . ;Rn specify-

ing a policy F , the procedure constructs an automaton
describing F .

An automaton A can be represented as a graph of states

(represented as nodes) connected by labeled transitions. We
consider automata with a single initial state and one or more
final states. An automaton accepts all the sequences of transi-
tions starting in its initial state and reaching a final state; the

set of these sequences is called the language of the automaton.
The intervals of integers are specified by the usual notation

½a; b�, ½a; bÞ, ða; b� and ða; bÞ. Table 3 defines some notation

used in Figs. 1 and 2.

4.1. First Step: specify each rule by an automaton

Each rule Ri is described by an automaton Ai with mþ 1 states

q0i ; q
1
i ; . . . ; q

m
i , where q0i and qmi are the initial and final states,

respectively. Every q j
i (j – m) is connected to qjþ1

i by a transi-

tion Tj
i labeled by the name of an interval of values of Fj

i . Ai
. . . Fm�1 Action

. . . Fm�1
1

a1

.

. . . Fm�1
n

an

Port Protocol Action

� � Accept

25; 81 TCP Deny

25; 83 � Accept

� � Accept

Figure 1 Step 1: automata obtained from the policy of Table 2.
Figure 2 Step 2: automata obtained by standardizing the

intervals of the automata of Fig. 1.

54 A. Khoumsi et al.
contains also a state Ei such that each state q j
i (j– m) is con-

nected to Ei by the transitions labeled by the intervals which

are complementary to the interval labeling Tj
i . Intuitively,

the state qmi (resp. Ei) is reached when a packet matches (resp.

does not match) Ri.
For example, from the four rules of the policy of Table 2,

we obtain respectively the four automata of Fig. 1. IP
addresses occupy 32 bits, port numbers occupy 16 bits, and

two protocols are considered: UDP and TCP. Singleton inter-
vals are specified by their unique value, like 25, 81, 83.

4.2. Second Step: standardize the intervals of the automata

Let the level of a state q be the number of transitions to be exe-
cuted from the initial state to reach q, and the level of a tran-

sition be the level of its origin state. The various automata
obtained in Step 1 do not use the same alphabet. Consider
for example the level 0 transitions of the automata of Fig. 1:

A1 and A4 use ½0; 232Þ, while A2 and A3 use ½a1; a2�, ½0; a1Þ
and ða2; 232Þ.

The objective of Step 2 is to rewrite the transitions of the
automata so that they have the same alphabet (this rewriting
is useful for Step 3). This is realized by partitioning the domain

of each field Fj into a set of disjoint intervals, such that every
interval labeling a level j transition of anyAi is an union of inter-

vals of the partition. For each level j, we proceed as follows:

� We construct a sorted list (in increasing order) Lj contain-
ing the endpoints of the intervals labeling the level j transi-
tions.For example, for level 0 of the automata of Fig. 1, the

obtained sorted list is L0 ¼ h0; a1; a2; 232i.
� We define the intervals whose endpoints are consecutive ele-
ments of the sorted list. These intervals form a partition of

the domain of the field F j.

For example, from the above sorted list L0, we define the

intervals I1; I2 and I3, which form a partition of ½0; 232Þ. (See
Table 3 for the notation I1; I2 and I3.)

� We consider each transition labeled by an interval I and

replace it by the transitions labeled by the intervals of the
partition that form I.For example, the transition labeled

½0; 232Þ is replaced by 3 transitions labeled I1; I2 and I3,
respectively.
For example, we obtain the automata of Fig. 2 from the
automata of Fig. 1.

4.3. Third Step: combine the automata

The objective of Step 3 is to construct an automaton by apply-
ing a product operator that combines the automata obtained
in Step 2. This operator requires that the automata to be com-

bined have the same alphabet, which justifies Step 2. Let us

first show inductively how two automata A�
1 and A�

2 obtained

in Step 2 are combined into an automaton noted A�
1 �A�

2:

� Construct the initial state hq01; q02i by combining the initial

states q01 and q02 of A�
1 and A�

2.

� For every constructed state hr1; r2i of A�
1 �A�

2 and every

label r:
–If A�
1 and A�

2 have the transitions r1 !r s1 and r2 !r s2
respectively, then construct the state hs1; s2i and the

transition hr1; r2i!r hs1; s2i.
–If A�

1 has the transition r1 !r s1 and r2 ¼ E2, then con-

struct the state hs1;E2i and the transition

hr1;E2i!r hs1;E2i.
–If A�

2 has the transition r2 !r s2 and r1 ¼ E1, then con-

struct the state hE1; s2i and the transition

hE1; r2i!r hE1; s2i.
A simple example of product of two automata is given in

Fig. 3.
The product of more than two automata is simply obtained

by iterating the product of two automata.

We denote by CF the product of A�
1; . . . ;A

�
n. A state of CF

is defined by ðr1; . . . ; rnÞ, where ri may be q j
i or Ei. Each final

state (i.e. without outgoing transition) of CF is of one of the
following types:

� A match state is a state such that ri ¼ qmi for one or several i.

Let Ri be the rule that has the smallest index i such that
ri – Ei; the action of Ri is associated to such a match state.

� The no-match state is the state ðE1;E2; . . . ;EnÞ. No action is

associated to it.

For example, if we apply Step 3 to the four automata of
Fig. 2, we obtain the automaton CF of Fig. 4. In the automata

Figure 3 Product of two simple automata: (c) = product of (a)

and (b).

Figure 4 Step 3: automaton CF obtained by combining the

automata of Fig. 2.

Figure 5 Illustration of rule deletion.

Design and Analysis of Firewall Security Policies 55
of Figs. 1 and 2, the interval labeling each transition was
explicitly specified to help the reader understand Step 2. In
Fig. 4, a more compact notation is used with the symbols �
and notðXÞ. The label � in a transition of level j corresponds

to the domain of the field Fj. For example, the label � in

two transitions of level 2 corresponds to the interval ½0; 216Þ
(domain of F2), which is in fact the union
K1 [K2 [K3 [K4 [f25g [f81g [f83g. If X is a set of values,

then notðXÞ denotes the set � from which we remove X. For
example, the label notð25; 81; 83Þ in a transition of level 2 cor-

responds to ½0; 216Þ without the values 25; 81; 83, which gives
K1 [K2 [K3 [K4.

4.4. Automaton executing a policy

The following proposition states that the automaton CF exe-

cutes F , in the sense that when a packet P reaches a firewall
whose policy is F , we can determine if P is accepted or rejected
by F by executing CF for P:

Proposition 1. Consider a firewall of policy F which is reached

by a packet P whose headers are H0; . . . ;Hm�1. We start in the
initial state of CF and execute the sequence of m transitions

labeled respectively ‘0; . . . ; ‘m�1 such that each ‘j contains Hj.

Let r ¼ hr1; . . . ; rni denote the reached state. For each ri, we
have ri ¼ qmi iff P matches Ri. If r is a match state (which occurs

if P matches one or more rules), the action of the most priority
rule matched by P is exactly the action associated to r in CF .
Let us for example show how the automaton CF of Fig. 4
can be used to execute the policy F of Table 2. Consider that

the firewall is reached by a packet P whose headers H0 to H3

are ð190:170:15:12Þ; ð80:15:15:20Þ, ð23Þ and ðTCPÞ, respec-

tively. We start in hq01; q02; q03; q04i. We execute the transition

labeled 190:170:15:0=24 (containing H0) and reach

hq11; q12; q13; q14i. Then, we execute the transition labeled

80:15:15:0=24 (containing H1) and reach hq21; q22; q23; q24i. Then,
we execute the transition labeled notð25; 81; 83Þ (containing

H2) and reach hq31;E2;E3; q
3
4i. Finally, we execute the transition

labeled TCP (containing H3) and reach hq41;E2;E3; q
4
4i associ-

ated to Accept, hence P is accepted.

4.5. Efficient construction of the automaton

An interesting related work presented by Liu and Gouda
(2007, 2008) models and analyzes policies. Our approach has

the advantage to store the policy rule information in the states
of the automaton. Moreover, with our approach, deleting, add-
ing, modifying and switching rules in a policy does not necessi-
tate to reconstruct the automaton from the beginning.

Let us first consider rule deletion, i.e. we have to obtain the
automaton AFnR from AF . We will illustrate our procedure by

the example of Fig. 3, where (a) and (b) are the automata of
two rules R1 and R2 and (c) is the automaton of the policy

F consisting of R1 and R2. So, if we remove R2 from F , our
procedure should generate (a) from (c). In a first step, we erase
the state labels of the automaton of R from the states of the

automaton of F . In our example, we erase the state labels of

(b) (i.e. q02; q
1
2; q

2
2;E2) from (c) and obtain (1) of Fig. 5. In a sec-

ond step, we remove the transitions whose origin and destina-
tion states are labeled identically. In our example, we remove

the outgoing transitions of state E1 in (1) of Fig. 5 and obtain
(2) of Fig. 5. In a third step, we minimize the automaton. In
our example, we combine the two states E1 in (2) of Fig. 5

and obtain (a) of Fig. 3.

Adding R to F is simple: we construct the automaton of R

(as shown in Section 4.1) and then make the product of the
automata of F and R (as shown in Section 4.3).
Replacing a rule R1 by a rule R2 is achieved by combining
the procedures of deleting R1 and adding R2.

Switching two rules Ri and Rj consists in switching between

ri and rj in each state hr1; r2; . . .i and then reassigning

actions to match states.

Therefore, an advantage of our approach is that deleting,
adding, modifying and switching rules do not necessitate to

reconstruct the automaton from the beginning.

5. Detecting incompleteness

A policy F is said complete if every packet that could reach the
firewall matches one or more rules of F . Otherwise, the policy

Figure 6 Automaton CFnR4
obtained from the policy F of

Table 2 without R4.

56 A. Khoumsi et al.
is said incomplete. In other words, a policy is incomplete if it
does not define actions to take for some packets. It is therefore
desirable that a designed policy is complete, and hence it is rel-
evant to determine if a policy is complete or not. The following

proposition allows to determine if a policy is incomplete, it is
deduced from Prop. 1:

Proposition 2. A policy F is incomplete iff its automaton CF

contains the no-match state.

For example, the policy of Table 2 is complete because the

no-match state is absent from its automaton of Fig. 4. Con-
sider the policy consisting of only the rules R1 to R3 (i.e. with-
out R4), whose automaton CFnR4

is represented in Fig. 6. This

policy is incomplete because the no-match state is present in its

automaton. Concretely, none of the rules R1 to R3 is matched
by the packets that are not destined to an address in
80.15.15.0/24.
6. Anomaly categorization

By anomaly, we mean the possibility that the same packet

matches several rules. As noted in Madhavi and Raghu
(2014), several studies have been done to classify anomalies,
such as Al-Shaer and Hamed (2004), Yuan et al. (2006),
Hu et al. (2012). We have identified two categories of

anomalies:

� A conflicting anomaly occurs when the same packet matches

several rules that have different actions. Conflicting anoma-
lies are studied in Section 7.

� A nonconflicting anomaly occurs when the same packet

matches several rules that have the same action. In Section 8
we study redundancy anomalies, which are a relevant type
of nonconflicting anomalies.

7. Detection of conflicting anomalies

We consider three anomalies defined in Al-Shaer and Hamed
(2004) and propose methods to detect them.
7.1. Detection of shadowing anomalies

Consider two rules Ri and Rj that have different actions (i.e.
ai – aj) and such that Ri precedes Rj (i.e. i < j). Rj is shadowed

by Ri if Ri is matched by all the packets matching Rj. There-

fore, Rj is never applied. From this definition and Prop. 1,

we deduce the following proposition:

Proposition 3. Consider a policy F and two of its rules Ri and
Rj. Rj is shadowed by Ri iff: i < j; ai – aj; and 8 match state

hr1; . . . ; rni of CF , rj ¼ qmj) ri ¼ qmi .

Consider for example the policy of Table 2 and its automa-

ton CF of Fig. 4. R2 is shadowed by R1 because:
1 < 2; a1 ¼ Accept – a2 ¼ Deny, and CF has no match state

with q42 and without q41. Therefore, R2 is never applied.

7.2. Detection of generalization anomalies

Consider two rules Ri and Rj that have different actions and
such that Ri precedes Rj. Rj generalizes Ri if Rj matches more

packets than Ri. From this definition and Prop. 1, we deduce
the following proposition:

Proposition 4. Consider a policy F and two of its rules Ri and

Rj. Rj generalizes Ri iff: i < j; ai – aj; 8 match state

hr1; . . . ; rni of CF , ri ¼ qmi) rj ¼ qmj ; and 9 match state

hr1; . . . ; rni of CF s.t. ri ¼ Ei and rj ¼ qmj .

Consider for example the policy of Table 2 and its automa-
ton CF of Fig. 4. R4 generalizes R2 because:
2 < 4; a2 ¼ Deny– a4 ¼ Accept, and CF has no match state

with q42 and without q44 and has several match states with both

q44 and E2.

7.3. Detection of correlation anomalies

Consider two rules Ri and Rj that have different actions. Ri

and Rj correlate if: (1) some packets match Ri but not Rj,

(2) some packets match Rj but not Ri, and (3) some packets

match both Ri and Rj. From this definition and Prop. 1, we

deduce the following proposition:

Proposition 5. Consider a policy F and two of its rules Ri and

Rj. Ri and Rj correlate iff: i – j; ai – aj; 9 match state

hr1; . . . ; rni of CF s.t. ri ¼ Ei and rj ¼ qmj ; 9 match state

hr1; . . . ; rni of CF s.t. ri ¼ qmi and rj ¼ Ej; and 9 match state

hr1; . . . ; rni of CF s.t. ri ¼ qmi and rj ¼ qmj .

Consider for example the policy of Table 2 and its automa-
ton CF of Fig. 4. R2 and R3 correlate because:

2– 3; a2 ¼ Deny– a3 ¼ Accept, and CF has the following 3
match states which are respectively of the three categories spec-

ified in Prop. 5: hq41;E2; q
4
3; q

4
4i, hq41; q42;E3; q

4
4i, hq41; q42; q43; q44i.

8. Detection of redundancy anomalies

In this section, we study a type of nonconflicting anomalies,

referred to as redundancy anomalies as defined in Al-Shaer
and Hamed (2004).

Design and Analysis of Firewall Security Policies 57
8.1. Formal definitions of redundancy anomalies

We have determined two types of redundancy between two
rules Ri and Rj: LP-redundancy and MP-redundancy.

8.1.1. LP-redundancy

It is used to define redundancy of the least priority (LP) rule
among two rules. Rj is said LP-redundant to Ri if:

i < j; ai ¼ aj; and 8 packet P: P matches Rj) P matches

Ri.
Intuitively, among two rules with the same action, if the

most priority rule matches more packets than the other rule,
then removing the latter does not affect the policy.

8.1.2. MP-redundancy

It is used to define redundancy of the most priority (MP) rule
among two rules. Ri is said MP-redundant to Rj if:

i < j; ai ¼ aj; 8 packet P: if P matches Ri, then P matches

also Rj; 9 packet P s.t. P matches Rj and not Ri; and 8 Rk

between Ri and Rj s.t. ak – ai: 9= packet matching both Ri

and Rk.

Intuitively, among two rules with the same action, if the
least priority rule matches more packets than the other rule,
then removing the latter does not affect the policy if such

removal does not allow the application of another rule with
a different action.

MP-redundancy can be expressed using the three conflicting
anomalies (Section 7) as follows:

Proposition 6. Ri is MP-redundant to Rj iff: i < j; ai ¼ aj; 8
packet P: P matches Ri) P matches Rj; 9 packet that matches

Rj and not Ri; and 9= Rk between Ri and Rj s.t.: Rk is shadowed

by Ri, or Rk generalizes Ri, or Rk and Ri correlate.

Our definition is local in the sense that we define redun-

dancy of a rule with respect to (w.r.t) another rule. We can
use the global definition ‘‘Ri is redundant in a firewall F” from
the local definition, as follows: Ri is said redundant in a fire-

wall F , if F contains a Rj s.t. Ri is redundant to Rj.

Acharya and Gouda (2011) use the global definition of redun-

dancy without using the local definition.
Note that our definition of MP-redundancy is different

from the definition of redundancy given in Al-Shaer and

Hamed (2004). The latter is erroneous because there are situa-
tions where a rule is diagnosed by Al-Shaer and Hamed (2004)
as redundant to another rule, while in reality its removal

affects the policy.

8.2. Detecting LP-redundancy anomaly

Based on the definition of LP-redundancy and Prop. 1:

Proposition 7. Consider a policy F and its automaton CF . A
rule Rj is LP-redundant to a rule Ri iff: i < j; ai ¼ aj; and 8
match state hr1; . . . ; rni of CF : rj ¼ qmj) ri ¼ qmi .

Consider for example the policy F of Table 2 and its
automaton CF of Fig. 4. R3 is LP-redundant to R1 because:
1 < 3; a1 ¼ a3 ¼ Accept, and there is no match state of F con-

taining q43 and not q41.
8.3. Detecting MP-redundancy anomalies

Based on the definition of MP-redundancy and Prop. 1:

Proposition 8. Consider a policy F and its automaton CF . A

rule Ri is MP-redundant to Rj iff: i < j; ai ¼ aj; 8 match state

hr1; . . . ; rni of CF : ri ¼ qmi) rj ¼ qmj ; 9 match state hr1; . . . ; rni
of CF s.t. ri ¼ Ei and rj ¼ qmj ; and 8 k s.t. i < k < j and ak – ai,

9= match state hr1; . . . ; rni of CF s.t. ri ¼ qmi and rk ¼ qmk .

Consider for example the policy F of Table 2 and its

automaton CF of Fig. 4. R3 is MP-redundant with R4 because:

3 < 4; a3 ¼ a4 ¼ Accept, 9= match state containing q43 and not

q44, 9 match states containing both E3 and q44, and 9= rule Rk

between R3 and R4.

9. Mixable policies

The objective is to construct a specific representation of the

automaton CF describing a policy F . Such a representation
is denoted Fm and called mixable policy. We will explain in
Section 9.2 why Fm is useful.

9.1. Extraction of a mixable policy

Let the semantics of a policy be the set of pairs (packet, action)

specifying the action generated for each packet that could
arrive at the firewall. Two policies are said equivalent if they
have the same semantics. Let a path of the automaton CF be

a sequence ½q0; q1; . . .� of connected states of CF , that leads

from the initial state q0 to a final state of CF . For a policy F

and its automaton CF , we extract a mixable policy Fm from

CF as follows: for every path ½q0; q1; . . . ; qm� whose final state

qm is a match state, we extract the rule (Condition, Action) such
that:

� each field F j of Condition is the set of values labeling the

transitions linking qj to qjþ1, for j ¼ 0; . . . ;m� 1;
� Action is the action associated to qm.

The obtained mixable policy Fm is equivalent to F , because
it is extracted from CF that executes F .

For example, for the policy F of Table 4, and assuming

that Protocol can be TCP or UDP, we obtain the automaton
of Fig. 7. Its 15 paths are: [1, 2, 5, 11, 17], [1, 2, 5, 11, 18],
[1, 2, 5, 12, 18], [1, 2, 6, 12, 18], [1, 2, 7, 13, 19], [1, 3, 8, 14,

20], [1, 3, 8, 15, 21], [1, 3, 9, 15, 21], [1,3,9,16,21],
[1,3,9,16,22], [1,3,10,15,21], [1,4,9,15,21], [1, 4, 9, 16, 21], [1,
4, 9, 16, 22], [1, 4, 10, 15, 21].

Since CF has 15 paths, the extracted mixable policy Fm has
15 rules; it is represented in Table 5. The symbol # means
‘‘same label as in the above box”.

9.2. Utility of mixable policies

The automaton CF and its corresponding mixable policy Fm

are closely related: each rule of Fm corresponds to a path of

CF leading from the initial state to a final state, and conversely.
We obtain the following propositions:

Table 4 Example of policy.

Rule IPsrc IPdst Port Protocol Action

R1 � 210:215:68:203 81 TCP Accept

R2 190:170:15:0=24 80:15:15:0=24 � � Deny

R3 194:204:201:0=28 210:215:68:204 25 � Accept

R4 190:170:15:0=24 � � � Accept

R5 � � � � Deny

Figure 7 Automaton CF of the policy F of Table 4.

58 A. Khoumsi et al.
Proposition 9. A mixable policy consists of disjoint rules, i.e.
every packet matches at most one rule.

Proposition 10. The semantics of a mixable policy is not influ-
enced by the order of its rules.

Props. 9 and 10 imply that each rule of Fm can be analyzed
independently of the other rules. Indeed, when we consider a
rule of Fm, we know that it cannot be in competition with

another rule (due to Prop. 9) and we do not have to take into
account its position in the table of rules (due to Prop. 10). Let
us explain how these properties imply that a mixable policy is
an adequate representation for answering to the following

question: In a policy, what are the set of accepted packets and
the set of denied packets?
Table 5 Mixable policy Fm of the policy F of Table 4.

Rule IPsrc IPdst

R1 190:170:15:0=24 210:215:68:203

R2 # #

R3 # #

R4 # notð210:215:68:20
80:15:15:0=24Þ

R5 # 80:15:15:0=24

R6 194:204:201:0=28 210:215:68:204

R7 # #
R8 # 210:215:68:203

R9 # #

R10 # #

R11 # notð210:215:68:20
210:215:68:204Þ

R12 notð190:170:15:0=24, 210:215:68:203

194:204:201:0=28Þ
R13 # #
R14 # #

R15 # notð210:215:68:203
Indeed, since the rules of Fm are disjoint, the condition of
each rule is a relevant description of a subset of packets. The

conditions of the Accept-rules (i.e. rules with action Accept)
of Fm constitute a partition of the whole set of packets
accepted by F . In other words, the set of Accept-rules of Fm

constitutes a ‘‘whitelist” of F . Similarly, the set of
Deny-rules of Fm constitutes a ‘‘blacklist” of F . Hence, the
complexity of determining the whitelist and the blacklist of a

policy F is in the order of the number of rules of Fm.
With the original table of F , the whitelist and blacklist can

be determined in general only by verifying the reaction of the
policy for each possible packet. The number of possibilities to

be verified is bounded by the product of the domain sizes of the
m fields. For example, consider the 4 fields IPsrc, IPdst, Port
and Protocol, and assume that their domains are

½0; 232Þ; ½0; 232Þ; ½0; 216Þ and ½0; 28Þ, respectively. Hence, we

may have to consider 232 � 232 � 216 � 28 ¼ 288 possibilities.
Since the number of possibilities of packets to consider in a
policy F is in general much higher than the number of rules

of Fm, we deduce that Fm is more adequate than the original
table of F to determine the withelist and blacklist of F .

However, the price to be paid for the above advantage of
Fm is that in general Fm has much more rules than the original

table of F . For this reason, Fm is not intended to be an
implementation of F . Mixable policies are only intended to
be consulted by designers or managers. An efficient implemen-

tation of F is to execute its automaton (as it will be stated in
Prop. 18).
Port Protocol Action

81 TCP Accept

81 UDP Accept

notð81Þ � Accept

3, � � Accept

� � Deny

25 � Accept

notð25Þ � Deny

notð81Þ � Deny

81 TCP Accept

81 UDP Deny

3, � � Deny

notð81Þ � Deny

81 TCP Accept

81 UDP Deny

Þ � � Deny

Table 6 First table of rules.

Rule Interface IPsrc IPdst Port Protocol Action

R1 0 � 190:170:0:1 25 TCP Accept

R2 0 224:168:0:0=16 � � � Deny

R3 � � � � � Accept

Table 7 Second table of rules.

Rule Interface IPsrc IPdst Port Protocol Action

R1 0 224:168:0:0=16 � � � Deny

R2 0 � 190:170:0:1 25 TCP Accept

R3 0 � 190:170:0:1 � � Deny

R4 � � � � � Accept

Figure 8 Step 1 of discrepancy detection: automata resulting

from Tables 6 and 7.

Figure 9 Step 2 of discrepancy detection: product automaton C

Design and Analysis of Firewall Security Policies 59
10. Detecting and resolving discrepancies

To ensure a rigorous design of a policy, the authors of Liu and

Gouda (2008) propose that the same informal specification of
the policy is given to several teams: each team designs a table
of rules based on the specification, and then a comparative

study of the various tables is made to detect possible discrep-
ancies between them.

Let us propose a procedure to detect discrepancies between
tables of rules. We assume that the tables of rules are complete,

because incompleteness is undesirable and must be detected
and removed before going further (see Section 5). The applica-
tion of our procedure will be illustrated with the pair of Tables

6 and 7 taken from Liu and Gouda (2008). Note that these
tables have an additional field Interface (taking value 0 or 1).
We will use the notation of Table 8 in the automata of Figs. 8

and 9.

10.1. Discrepancy detection

10.1.1. Step 1: computing the automaton of each table of rules

Consider that several teams have designed several tables of
rules T1; . . . ;Tp for the same policy. We apply the procedure

of Section 4 to each table of rules to construct automata

C1; . . . ;Cp. However, when constructing standard intervals

(Section 4.2) of each Ci, we consider the intervals used in all

the tables so that all the automata ðCiÞi¼1...p will have the same

alphabet.
For example, for Tables 6 and 7, the resulting automata C1

and C2 are represented in Fig. 8. Match states are represented
by ellipses, where a or d denotes the action Accept or Deny

associated to a match state.
Table 8 Notations used in Figs. 8 and 9.

Notation Meaning Notation Meaning

a 224.168.0.0 a Accept

b 224:168:255:255 d Deny

c 190.170.0.1

obtained from automata ðCiÞi¼1;2 of Fig. 8.
10.1.2. Step 2: computing a product automaton

We compute the product C of the automata ðCiÞi¼1...p obtained
in Step 1, using the product operator defined in Section 4.3.

Each state of C is defined by h/1; . . . ;/pi, where /i is a state

of Ci. h/1; . . . ;/pi is said a match state if each /i is a match

state in Ci.
For example, the automaton C of Fig. 9 is the product of

the automata C1 and C2 of Fig. 8.

60 A. Khoumsi et al.
10.1.3. Step 3: detecting discrepancies

Discrepancy detection is based on the following proposition:

Proposition 11. Each match state of C associated to distinct
actions represents a discrepancy.

For example, three discrepancies are detected in the
automaton C of Fig. 9. Rectangles represent the match states

with discrepancies, while ellipses represent the match states
without discrepancy.

10.2. Discrepancy resolution

For each detected discrepancy, the various teams of designers
discuss and agree on a single action. For the example of Fig. 9,

the result of resolution is that one action is selected for each
rectangular state.

11. Space and time complexities

11.1. Computation of complexities

We define two categories of fields: a great field takes values in a
domain of size > n, and a small field takes values in a domain
of size 6 n. If for example we take n ¼ 1000, then IPsrc, IPdst

and Port are great fields (since their domain sizes 232 and 216

are greater than 1000), and Protocol is a small field (in prac-
tice, much less than 1000 protocols are considered). Our calcu-
lations of complexities are based on the following parameters:

n= number of rules of a table; when we study several (p)
tables (to detect discrepancies), n is the sum of the sizes

of the p tables (hence n > p);
m= number of fields ðF jÞj¼0;...;m�1 in a rule;

l= number of great fields;

fj = domain size of F j;
U= product of all domain sizes f j, i.e.

U ¼ f 0 � . . .� f m�1;
u = product of the domain sizes f j of the small fields;

D = sum of the domain sizes f j of the small fields.

To present our results in a suitable form for comparison
with the literature, we also define:

dj ¼ log2ðf jÞ, i.e. we need ddje bits to code all the values of

F j (ddje is the smallest integer P dj);

D ¼ log2ðUÞ ¼ d0 þ � � � þ dm�1;

d ¼ log2ðuÞ sum of the dj of the small fields.

We assume dj P 1 (i.e. fj P 2, each field takes a value

among several values), n > D and 2n > nm (realistic when n is

sufficiently greater than m). These assumptions and the above
definitions imply: l 6 m 6 D, d 6 D (i.e. u 6 U), and
D 6 ðm� lÞ � n.

For example, with 4 fields IPsrc, IPdst, Port and Protocol,

we have m ¼ 4. Assume that d0 ¼ d1 ¼ 32 (32 bits to code
IPsrc and IPdst), d2 ¼ 16 (16 bits to code Port), d3 ¼ 8 (8 bits
to code Protocol). Hence, D ¼ 32þ 32þ 16þ 8 ¼ 88,

f0 ¼ f1 ¼ 232; f2 ¼ 216; f3 ¼ 28 and U ¼ 288. For 88 < n < 216,

the assumptions ‘‘di P 1; n > D and 2n > nm” are satisfied,
the great fields are IPsrc, IPdst and Port, and the unique small
field is Protocol. Therefore, l ¼ 3 (number of great fields),
d ¼ d3 ¼ 8 (number of bits to code the small field), and

D ¼ u ¼ f3 ¼ 28 (domain size of the small field).

Proposition 12. The procedure to construct the automaton has

space and time complexities in Oðnlþ1 � 2dÞ; the latter is upper-
bounded by Oðnmþ1Þ and Oðn� 2DÞ.

Proposition 13. Incompleteness detection has space and time

complexities in Oðnlþ1 � 2dÞ; the latter is upper-bounded by

Oðnmþ1Þ and Oðn� 2DÞ.

Proposition 14. Detecting conflicting and LP-redundancy

anomalies has space and time complexities in Oðnlþ2 � 2dÞ;
the latter is upper-bounded by Oðnmþ2Þ and Oðn2 � 2DÞ.

Proposition 15. Detecting MP-redundancy anomalies has a

space complexity in Oðnlþ2 � 2dÞ; the latter is upper-bounded

by Oðnmþ2Þ and Oðn2 � 2DÞ. Detecting MP-redundancy anoma-

lies has a time complexity in Oðnlþ3 � 2dÞ; the latter is upper-

bounded by Oðnmþ3Þ and Oðn3 � 2DÞ.

Proposition 16. Extracting a mixable policy has space and time

complexities in Oðnlþ1 � 2dÞ; the latter is upper-bounded by

Oðnmþ1Þ and Oðn� 2DÞ.
Consider p policies F 1; . . . ;F p, let n1; n2; . . . ; np be their

respective numbers of rules, and n ¼ n1 þ � � � þ np.

Proposition 17. Detecting and resolving discrepancies between

F 1; . . . ;F p has space and time complexities in Oðnlþ1 � 2dÞ; the
latter is upper-bounded by Oðnmþ1Þ and Oðn� 2DÞ.

For a policy F and a packet P, we can determine the action

Accept or Deny dictated by F for P, by executing the table of
F (by consulting its rules, as explained in Section 3) or the
automaton CF (as shown in Prop. 1). If we execute the table

of F , we may have to verify the m fields of the n rules; the time
complexity is therefore in Oðm� nÞ. The next Prop. 18 implies
that executing CF is less costly than executing the table of F .

Proposition 18. Executing the automaton CF for a packet P has

a space complexity in Oð1Þ, while its time complexity is in
Oðl� nþ DÞ; the latter is upper-bounded by Oðm� nÞ.
11.2. Comparison with complexities in related work

In Elmallah and Gouda (2014), it is proved that several anal-

ysis and design problems of firewalls are NP-hard. With our
terminology, their result is that the time complexity of several

problems is in Oðn� 2DÞ. On the other hand, the authors of
Acharya and Gouda (2010, 2011), Liu and Gouda (2008,

2010), Al-Shaer et al. (2009) solve analysis problems with algo-

rithms whose estimated time complexity is in Oðnmþ1Þ. Our

contribution is that the estimations Oðnmþ1Þ and Oðn� 2DÞ
are upper bounds of our estimation Oðnlþ1 � 2dÞ.

Note that we are not pretending that our approach is less
complex than in the literature. What we want to show is that

1 Due to space limitation, the table of 87 rules is not presented here;

Design and Analysis of Firewall Security Policies 61
our estimation of complexity is more precise than in the litera-
ture. This better precision has been possible because we have
separated the fields in two categories: great fields and small

fields. When all fields are great, our expression nlþ1 � 2d is

equal to nmþ1 (i.e. expression of Acharya and Gouda (2010,

2011), Liu and Gouda (2008, 2010), Al-Shaer et al. (2009)).

When all fields are small, our expression nlþ1 � 2d is equal to

n� 2D (i.e. expression of Elmallah and Gouda (2014)).

11.3. Intuitive justification of the precision of our complexity
evaluation

In this section, we justify intuitively why our complexity eval-

uation is more precise than in the literature. After Steps 1 and
2 of the automaton construction procedure (Sections 4.1 and
4.2), the domain of each field becomes defined by a partition
of subsets, where we can reason on each subset as if it were

a single value. The partition of each field Fj is constructed as

follows. For each field Fj and each rule, we have an interval

of values of Fj defined by a pair of values (minimal and max-
imal values). We regroup the pairs of values for all the rules

and then order them in increasing order into a list Lj. The

important fact is that we have realized that the size of Lj has
the following two upper-bounds:

� The first upper-bound is the order of the number of rules:
OðnÞ. This upper-bound is due to the fact that we have 2
values per rule, and hence at most 2n values for all the rules.

� The second upper-bound is the order of the domain size of

F j : Oð2djÞ ¼ Oðf jÞ. This upper-bound is due to the fact

that the number of subsets cannot exceed the number of

possible values of F j.

These two upper-bounds of the size of Lj are also upper-
bounds of the number of subsets that constitute the partition

of Fj.

If we use only the upper-bound OðnÞ, we obtain complexi-

ties in the form Oðnmþ1Þ, i.e. the expression of Acharya and

Gouda (2010, 2011), Liu and Gouda (2008, 2010), Al-Shaer
et al. (2009).

If we use only the upper-bound Oð2djÞ, we obtain complex-

ities in the form Oðn� 2DÞ, i.e. the expression of Elmallah and

Gouda (2014).

11.4. Field reduction

Let us define the notion of field reduction to clarify the fact
that the worst case complexities of Section 11.1 are generally
much higher than the actual complexities obtained with con-

crete examples.
As we have seen in Section 11.3, after Steps 1 and 2 of the

automaton construction procedure, the number of subsets that

constitute the partition of each field Fj is upper-bounded by

both OðnÞ and Oð2djÞ, i.e. by OðWjÞ where Wj ¼ minð2dj ; nÞ
i.e. the smallest of 2dj and n. In other words, Steps 1 and 2
of the synthesis procedure imply a conceptual reduction of

the domain size of each Fj: from Oð2djÞ to OðWjÞ. This is in fact

the worst case reduction, which is in general much smaller than
the reductions actually obtained with concrete examples,
because in general the obtained partitions have much less than
Wj subsets.

This important difference between the worst case reduction
and an actual reduction implies that the worst case complexi-

ties of Section 11.1 are generally much higher than the actual
complexities obtained with concrete examples. This fact will
be illustrated in Section 12.

12. Case study

We have applied our method to several examples. Due to space
limitation, we have opted to present the results obtained for

one example, namely the real-life policy of Chen et al. (2012)
which is anonymized due to the privacy and security concern.

The policy of Chen et al. (2012) consists of 87 rules1 (R1 to

R87) expressed in 5 fields, whose domain sizes are reduced as
follows by Steps 1 and 2 of the synthesis procedure:

Source IP address: its domain ½0; 232Þ is partitioned in 19

subsets, hence its domain size is actually reduced from 232

to 19.

Destination IP address: its domain ½0; 232Þ is partitioned in
18 subsets, hence its domain size is actually reduced from

232 to 18.

Source port: its domain ½0; 216Þ is partitioned in 2 subsets,

hence its domain size is actually reduced from 216 to 2.

Destination port: its domain ½0; 216Þ is partitioned in 35 sub-

sets, hence its domain size is actually reduced from 216 to 35.

Protocol: its domain ½0; 28Þ is partitioned in 6 subsets, hence

its domain size is actually reduced from 28 to 6.

In this example, the worst case reduction is to reduce the
domain size of each field to the number of rules, i.e. 87, because

all the fields are great (l ¼ 5 and d ¼ 0). After the actual reduc-
tion, all fields become small fields whose domain sizes are 19, 18,
2, 35, 6, i.e. l ¼ 0 and d ¼ log2ð19� 18� 2� 35� 6Þ 	 17:13.

Hence, Oðnlþ1 � 2dÞ is equal to Oð876Þ 	 433� 109 with the

worst case reduction, and becomes Oð87� 217:13Þ 	 12� 106

with the actual reduction. As for the expression Oðl� nþ DÞ
of the time complexity to apply the policy by executing its

automaton, it is equal to Oð5� 87Þ ¼ Oð435Þ with the worst
case reduction, and becomes Oð19þ 18þ 2þ 35þ 6Þ ¼ Oð80Þ
with the actual reduction.

The constructed automaton has 14,543 states, among which
there are 296 match states. Since the automaton contains also
the no-match state, the policy is incomplete. The following
anomalies are detected:

� R21 generalizes R2;
� R54 generalizes R48;

� R55 generalizes R49;
� R56 generalizes R50;
� R87 generalizes: R7;R9, R27–R38, R45–R47;R51;R76;R79–

R84, R86;
� R12 correlates with: R2;R39-R41;
� R6 correlates with: R7;R9, R27–R38, R45;R46;R51;
� R85 correlates with: R7;R9, R27–R38, R45;R46;R51;
it can be consulted in Chen et al. (2012).

62 A. Khoumsi et al.
� R85 is MP-redundant to R87.

The generated mixable policy contains 101,780 rules,
among which there are 2317 Accept-rules and 99,463 Deny-

rules. The great number of rules can make this mixable policy
unattractive, but the relatively reduced number of Accept-rules
could motivate the designer to examine the whitelist.

Despite the large sizes of the automaton and the mixable

policy, their constructions last less than 10 s, while the other
operations (completeness verification, anomaly detections, exe-
cution of the automaton) last less than 1 s. The implementa-

tion of our method runs on a VMware ESXi5.1 server using
a 4vCPU in a Linux environment.

13. Conclusion

13.1. Recapitulation of our contributions

A procedure is proposed to construct an automaton which
describes a (firewall security) policy given as a table of rules.

The procedure is then applied as a common basis to develop
analysis and design procedures to:

� apply a policy by executing its automaton;

� detect incompleteness in a policy;
� detect conflicting and nonconflicting anomalies in a policy;
� extract a mixable policy;

� detect and resolve discrepancies between table of rules.

We evaluate space and time complexities of every developed

procedure more precisely than in the literature. Our methodol-
ogy is illustrated by applying it to a real-life policy. All the
obtained results are formally proved.

13.2. Future work

We plan to study the following subjects:

� To study stateful firewalls, i.e. policies that behave depend-
ing on the filtered traffic history.

� To design adaptive policies that change dynamically with
the filtered traffic.

� To study how to resolve conflicting anomalies in security

policies whose rules have the same priority. In the present
paper, conflicting anomalies are automatically resolved by
selecting the action (Accept or Deny) of the most priority

rule among the conflicting rules.
� To study how our formalism can be used for security
enforcement on untrusted programs. The objective is to cor-
rect automatically a program P so that it satisfies a security

policy U. Our basic approach would be to model P by an
automaton AP , and then to combine AP in a certain way
with an automaton AU modeling U. The result would be

an automaton modeling a program which can make all
and only the executions of P that satisfy U. Our idea is
inspired from Sui and Mejri (2013), with the difference that

Sui and Mejri (2013) model P and U by a specific process
algebra instead of automata.

� We are presently working on a project on security policies

in a medical cloud environment. The idea is to provide a
cloud infrastructure through which doctors in different
regions collaborate to perform an effective diagnosis to a

patient in emergency situation. In such a heterogeneous dis-
tributed environment, a particular problem that may arise is
the situation where security policies of different sites/provi-

ders are contradictory, which we call inter-policies anomaly.
So, in addition to the (intra-policy) anomalies studied in
Sections 7 and 8, the objective is now to study how to detect
and resolve inter-policies anomalies.In this project, we will

also study security enforcement in the context of cloud stor-
age. We will be inspired especially by Shen et al. (2013).

� Consider a component C that communicates with other

components without crossing a firewall, while we want the
firewall policy to be respected. We are looking at how to
develop a method that extracts a local policy applicable

to C from the firewall policy.

Acknowledgements

We would like to thank Prof. Yahya Benkaouz for his valuable
participation in the preparation of the final version of the

paper.

Appendix A. Proofs of Propositions

A.1. Proof of Proposition 1.

1. In each A�
i computed in Step 1, when we execute the m con-

secutive transitions whose labels contain H 0; . . . ;Hm�1,
respectively: we reach state qmi if P matches Ri, and we

reach Ei if P does not match Ri.
2. The final state reached in CF for a packet P is hr1; . . . ; rni iff

the final state reached in each A�
i is ri, for i ¼ 1 . . . n.

3. From items 1 and 2, we deduce: ri ¼ qmi or ri ¼ Ei, and P
matches the rule Ri iff ri ¼ qmi .

4. To each match state hr1; . . . ; rni of CF , we associate the
action ai with the smallest index i s.t. ri ¼ qmi .

5. From items 3 and 4, we deduce that if r is a match state, it is

associated with the action of the most priority rule that is
matched by P .

A.2. Proof of Proposition 2

Prop. 1 implies that the final state of CF reached for a packet P
is the no-match state hE1;E2; . . . ;Eni iff P matches none of the

rules R1 to Rn. Therefore, CF has not the no-match state iff
every packet matches one or more rules.

A.3. Proof of Proposition 3

By definition, Rj is shadowed by Ri iff: i < j; ai – aj; and for
every packet P, if Pmatches Rj then Pmatches Ri. From Prop.

1, the latter condition is equivalent to: for every match state
hr1; . . . ; rni of CF , rj ¼ qmj) ri ¼ qmi .

A.4. Proof of Proposition 4

By definition, Rj generalizes Ri iff: (1) i < j; (2) ai – aj; and (3)
Rj matches more packets than Ri. Condition 3 is equivalent to:

Design and Analysis of Firewall Security Policies 63
(3.1) for every packet P, if P matches Ri then P matches Rj;

and (3.2) there exists a packet that matches Rj and not Ri.

From Prop. 1, condition 3.1 is equivalent to: for every match

state hr1; . . . ; rni of CF , ri ¼ qmi) rj ¼ qmj ; and condition 3.2

is equivalent to: there exists a match state hr1; . . . ; rni of CF

s.t. ri ¼ Ei and rj ¼ qmj .

A.5. Proof of Proposition 5

By definition, Ri and Rj correlate iff: (1) i– j; (2) ai – aj; (3)
there exist packets that match Rj and not Ri; (4) there exist

packets that match Ri and not Rj; and (5) there exist packets

that match both Ri and Rj. From Prop. 1, condition 3 is equiv-

alent to: there exists a match state hr1; . . . ; rni of CF s.t. ri ¼ Ei

and rj ¼ qmj ; condition 4 is equivalent to: there exists a match

state hr1; . . . ; rni of CF s.t. ri ¼ qmi and rj ¼ Ej; and condition

5 is equivalent to: there exists a match state hr1; . . . ; rni of CF

s.t. ri ¼ qmi and rj ¼ qmj .

A.6. Proof of Proposition 6

The three anomalies with conflict can be expressed as follows,
where Px denotes the set of packets matching Rx:

� Rk is shadowed by Ri iff: i < k; ai – ak , and Pk #Pi.
� Rk generalizes Ri iff: i < k; ai – ak , and Pi
 Pk .
� Rk and Ri correlate iff: i – k; ai – ak , Pi \ Pk –£, Pi �Pk

and Pk �Pi.

Using the above expressions, let us first prove that for a rule
Rk, the following two expressions E1 and E2 are equivalent:

E1:(i < k) and (ak – ai) and (there exist packets matching
both Ri and Rk).

E2:(Rk is shadowed by Ri) or (Rk generalizes Ri) or (Rk and
Ri correlate).
1. The existence of packets matching both Ri and Rk is equiv-
alent to Pi \ Pk – £.

2. Pi \ Pk –£ is equivalent to: (Pk #Pi) or (Pi
 Pk) or

(Pi \ Pk –£ and Pi �Pk and Pk �Pi).
3. From items 1 and 2, we deduce that E1 is equivalent to the

disjunction: (i < k; ai – ak , and Pk #Pi) or (i < k; ai – ak ,
and Pi
 Pk) or (i < k; ai – ak , Pi \ Pk –£, Pk �Pi, and
Pk �Pi).

4. The three components of the disjunction of item 3 are

equivalent to ”Rk is shadowed by Ri”, ”Rk generalizes Ri

and ”Rk and Ri correlate”, respectively.
5. From items 3 and 4, we deduce that E1 and E2 are

equivalent.

Using the equivalence between E1 and E2, the definition of
”Ri is MP-redundant to Rj” can be expressed as Prop. 6.

A.7. Proof of Proposition 7

By definition, Rj is LP-redundant to Ri if: (1) i < j, (2) ai ¼ aj,
and (3) Ri matches all the packets matching Rj.

From Prop. 1, condition 3 is equivalent to: for every match
state hr1; . . . ; rni of CF : if rj ¼ qmj , then ri ¼ qmi .
A.8. Proof of Proposition 8

By definition, Ri is MP-redundant to Rj if: (1) i < j; (2) ai ¼ aj;
(3) if a packet P matches Ri, then P matches Rj; (4) there exists

a packet that matches Rj and does not match Ri; and (5) there

exists no rule Rk s.t. i < k < j, ak – ai, and there exist packets
matching both Ri and Rk.

From Prop. 1, condition 3 is equivalent to: for every final
state hr1; . . . ; rni of CF : ri ¼ qmi) rj ¼ qmj ; condition 4 is

equivalent to: there exists a match state hr1; . . . ; rni of
CF s.t. ri ¼ Ei and rj ¼ qmj ; and condition 5 is equivalent to:

for every k s.t. i < k < j and ak – ai, there exists no match state
hr1; . . . ; rni of CF s.t. ri ¼ qmi and rk ¼ qmk .
A.9. Proof of Proposition 9

By construction, the automaton CF is deterministic, hence
to each packet corresponds exactly one path of CF . To
each path of CF leading to a match state corresponds
exactly one rule of Fm, and vice versa. No rule of Fm

corresponds to any path of CF leading to a no-match state.
In conclusion, each packet matches at most one rule
of Fm.

A.10. Proof of Proposition 10

The order of the rules influences the semantics of a policy only

if there exist packets matching several rules. From Prop. 9,
there exists no packet matching several rules of a mixable pol-
icy. Therefore, the semantics of a mixable policy is not influ-

enced by the order of its rules.

A.11. Proof of Proposition 11

For any packet P, the match state reached in C is

h/1; . . . ;/pi iff the match state reached in each Ci is /i, for

i ¼ 1 . . . p. A match state h/1; . . . ;/pi of C is associated to

actions ða1; . . . ; apÞ iff each state /i of Ci is associated to

action ai, for i ¼ 1; . . . ; p. From Prop. 1, the action dictated
by Ti for a packet P is the action associated to the match
state reached in Ci, for i ¼ 1; . . . ; p. From these three facts,

reaching a state of C associated to distinct actions corre-
sponds to a situation where distinct actions are dictated to
a packet.
A.12. Preliminary result for the computation of complexities

Let Wj ¼ minðfj; nÞ ¼ minð2dj ; nÞ, i.e. Wj is the smallest of fj
and n.

By definition of a great field Fj, we have n < 2dj and hence
Wj ¼ n. Therefore, the product of the Wj’s of the l great fields

is equal to nl and smaller than 2D�d.

By definition of a small field Fj, we have 2dj 6 n and hence

Wj ¼ 2dj . Therefore, the product of the Wi’s of the m� l small

fields is ¼ 2d and 6 nm�l.

Therefore, W0 � � � � �Wm�1 ¼ nl � 2d, which is smaller

than both nl � nm�l ¼ nm and 2D�d � 2d ¼ 2D.

64 A. Khoumsi et al.
A.13. Proof of Prop. 12

Complexity of Step 1

Space and time complexities to construct one state or one tran-

sition of Ai are in Oð1Þ. Each Ai contains mþ 2 states and a
limited number (i.e. Oð1Þ) of transitions from each state.
Hence, space and time complexities to construct each Ai are
in OðmÞ. Hence, space and time complexities to construct the

n ðAiÞ1...n are in Oðm� nÞ.

Complexity of Step 2

For every level j, the sorted list Lj is constructed as follows:

� For every automaton Ai: we consider the intervals labeling

the transitions from the state qj
i . We construct a sorted list

(in increasing order) Lj
i which contains the endpoints of

those intervals.

� The lists ðLj
i Þi¼1...n are combined to obtain a sorted list Lj.

Space and time complexities to construct each Lj
i are in

Oð1Þ, because the cardinality of Lj
i is in Oð1Þ. Hence, space

and time complexities to construct all Lj
i

(i ¼ 1 . . . n; j ¼ 0 . . .m� 1) are in Oðn�mÞ.
Lj is constructed by merging ðLj

i Þi¼1...n. If we use the merge

sort algorithm, space and time complexities are in OðnÞ and
Oðn� logðnÞÞ, respectively. Hence, space and time complexi-

ties to construct all Lj (j ¼ 0 . . .m� 1) are in Oðm� nÞ and
Oðm� n� logðnÞÞ, respectively.

The number of transitions from each state q j
i of each

automaton A�
i is bounded by both Oð2djÞ and OðnÞ i.e. by

OðWjÞ. The bound Oð2djÞ is due to the fact that 2dj is the num-

ber of possible values of Fj, which is P the number of transi-

tions from q j
i . The bound OðnÞ is due to the fact that it is the

order of the cardinality of Lj, which is P the number of tran-

sitions from q j
i . Hence, space and time complexities to con-

struct all the transitions of each automaton A�
i are in

OðW0 þ � � � þWm�1Þ. Space and time complexities to construct

all the states of each A�
i are in OðmÞ. Therefore, space and time

complexities to construct all the A�
i are in

OðnðW0 þ � � � þWm�1ÞÞ.

Complexity of Step 3

Let us consider the construction of CF in Step 3 level by level.

At each level j, we evaluate space and time complexities to con-
struct the states of level j (i.e. the states that are reached after j
transitions from the initial state) and the transitions from level

j� 1 to level j.
Space and time complexities to construct a state

r ¼ hr1; . . . ; rni of CF are in OðnÞ, because we construct and

store the n components of r. Space and time complexities to
construct a transition t between two constructed states of levels
j and jþ 1 are in Oð1Þ, because we store the label of t.

Level 0: The initial state r0 is the unique state of level 0.
Space and time complexities of its construction are in OðnÞ.

Level 1: Using the same reasoning as in the proof of Step 2,

the number of transitions from r0 is in OðW0Þ. Hence, the num-
ber of states at level 1 is in OðW0Þ. Therefore: space and time
complexities to construct the transitions from level 0 to level
1 are in OðW0Þ, and space and time complexities to construct
the states at level 1 are in Oðn�W0Þ.

Level 2: Using the same reasoning as in the proof of Step 2,
the number of transitions from each state of level 1 is in OðW1Þ.
Since the number of states of level 1 is in OðW0Þ, we obtain

that: the number of states at level 2 and the number of transi-
tions from level 1 to level 2 are in OðW0 �W1Þ. Therefore:
space and time complexities to construct the states at level 2

are in Oðn�W0 �W1Þ, and space and time complexities to
construct the transitions from level 1 to level 2 are in
OðW0 �W1Þ. And so on . . .until level m.

Level m: Using the same reasoning as in the proof of Step 2,

we obtain that: space and time complexities to construct the
states at level m are in Oðn�W0 � � � � �Wm�1Þ; and space
and time complexities to construct the transitions from level

m� 1 to level m are in OðW0 � � � � �Wm�1Þ.
At each level j, the number of states is also bounded by 2n,

because each state is defined by n 2-value components ri
(ri ¼ q j

i or ri ¼ Ei, for i ¼ 1 . . . n). But this bound has no influ-
ence because it is greater than the other identified bounds, due

to the assumptions n > D and 2n > nm.
All levels: By adding the complexities of all levels, we obtain

that space and time complexities to construct CF are in

Oðn�W0Þ þOðn�W0 �W1Þ þ � � � þOðn�W0 � � � � �Wm�1Þ.
From di P 1 and n > D, we obtain Wi P 2, from which we
deduce that W0 þ ðW0 �W1Þ þ � � � þ ðW0 � � � � �Wm�1Þ 6 2�
ðW0 � � � � �Wm�1Þ. Hence, space and time complexities to con-
struct CF are in Oðn�W0 � � � � �Wm�1Þ.

Associating actions: The space complexity to associate an
action to a match state of CF is in Oð1Þ, because we only need

to store the action associated to the state. Since there are at
most OðW0 � � � � �Wm�1Þ match states in CF , the space com-
plexity to associate actions to all these states is in

OðW0 � � � � �Wm�1Þ. The time complexity to associate an
action to a match state of CF is in OðnÞ, because we may need
to consult the n components of the state. Since there are at

most OðW0 � � � � �Wm�1Þ match states in CF , the time com-
plexity to associate actions to all these states is in
Oðn�W0 � � � � �Wm�1Þ.

Total complexity

Since Steps 1 and 2 are less complex than Step 3, we obtain
that space and time complexities to construct CF are in

Oðn�W0 � � � � �Wm�1Þ, which is equal to Oðnlþ1 � 2dÞ and

smaller than Oðnmþ1Þ and Oðn� 2DÞ.

A.14. Proof of Proposition 13

We consider that in the construction of the automaton CF , the
no-match state (if any) is placed at the top of the list of states
of CF .

Verifying completeness from CF can be achieved by check-

ing if the top state is associated to an action. Therefore, space
and time complexities to verify completeness from CF are in
Oð1Þ.

Since we need to construct CF , space and time complexities
to verify completeness from the original table of F are the
same as those given by Prop. 12.

Design and Analysis of Firewall Security Policies 65
A.15. Proof of Propositions 14and 15

A.15.1. Space complexity of Props. 14 and 15

For each pair ði; jÞ, we store the identifiers of the match states

of CF where anomalies between rules Ri and Rj are detected.

Since the number of match states is in OðW0 � � � � �Wm�1Þ,
the space to store all the identifiers for one pair ði; jÞ is in
OðW0 � � � � �Wm�1Þ. Since the number of pairs ði; jÞ is in

Oðn2Þ, the total space complexity to detect anomalies from

CF is in Oðn2 �W0 � � � � �Wm�1Þ, which is equal to

Oðnlþ2 � 2dÞ and smaller than Oðnmþ2Þ and Oðn2 � 2DÞ. This
is the result because it is greater than the space complexity
to construct CF .

A.15.2. Time complexity of Prop. 14

For each pair ði; jÞ, the time complexity to check if a match
state of CF has an anomaly (shadowing, generalization, corre-

lation or LP-redundancy) between rules Ri and Rj is in Oð1Þ,
because we only need to check the components i and j of the

state. Since the number of match states is in

OðW0 � � � � �Wm�1Þ and the number of pairs ði; jÞ is in Oðn2Þ,
the total time complexity is in Oðn2 �W0 � � � � �Wm�1Þ, which
is equal to Oðnlþ2 � 2dÞ and smaller than Oðnmþ2Þ and

Oðn2 � 2DÞ. This is the result because it is greater than the time

complexity to construct CF .

A.15.3. Time complexity of Prop. 15

For each pair ði; jÞ, the time complexity to check if a match

state of CF contains an MP-redundancy anomaly between
rules Ri and Rj is in OðnÞ, because we may need to check

the components i; . . . ; j of the state. Since the number of
match states is in OðW0 � � � � �Wm�1Þ and the number of

pairs ði; jÞ is in Oðn2Þ, the total time complexity is in

Oðn3 �W0 � � � � �Wm�1Þ, which is equal to Oðnlþ3 � 2dÞ
and smaller than Oðnmþ3Þ and Oðn3 � 2DÞ. This is the
result because it is greater than the time complexity to con-

struct CF .

A.16. Proof of Proposition 16

In CF , the number of paths is in the order of the number
of final states, i.e. OðW0 � � � � �Wm�1Þ. The maximum space
and time complexities are obtained with this maximum
number of paths, which is reached when there is a single

value in each field of each path. Hence, in this extreme
case, to extract the rule corresponding to each path, we

need to store all the fields Fj of the path, for
j ¼ 0; . . . ;m� 1, where each field is of size 1. Therefore,
space and time complexities to extract one rule from CF

are in OðmÞ. Consequently, space and time complexities to
extract all the rules of Fm are in Oðm�W0 � � � � �Wm�1Þ,
which is equal to Oðm� nl � 2dÞ, and hence less costly than
the construction of CF , due to the assumption n > D (which

implies n > m).
Since we need to construct CF which has been proved to be

more costly than the above complexities, space and time

complexities to extract Fm from F are the same as those given
by Prop. 12.
A.17. Proof of Proposition 17

A.17.1. Detecting Discrepancies

Let n1; . . . ; np be the numbers of rules of the p tables, respec-

tively, and n ¼ n1 þ � � � þ np. Computing C is as costly as com-

puting the automaton of a single policy F with n rules. Hence,

space and time complexities to compute C are in

Oðn�W0 � � � � �Wm�1Þ, which is equal to Oðnlþ1 � 2dÞ and

smaller than Oðnmþ1Þ and Oðn� 2DÞ.
Oð1Þ is the space complexity to verify the equality of the

actions of each match state r of C, because we store an identi-
fier of the state if it contains a discrepancy. For all the match
states of C, we obtain OðW0 � � � � �Wm�1Þ which is the order

of the number of match states of C.
OðpÞ is the time complexity to verify the equality of the

actions of each match state r of C, because we check at most
the p actions of r. For all the match states of C, we obtain

Oðp�W0 � � � � �Wm�1Þ, because the number of match states
of C is in OðW0 � � � � �Wm�1Þ.

Since n > p, the total space and time complexities to detect

discrepancies are in Oðn�W0 � � � � �Wm�1Þ, which is equal to

Oðnlþ1 � 2dÞ and smaller than Oðnmþ1Þ and Oðn� 2DÞ.

A.17.2. Resolving discrepancies

The teams of designers agree on which action Accept or Deny
is selected for each detected discrepancy. We assume that the
time complexity of an agreement for a discrepancy is in

Oð1Þ. Since the maximum number of discrepancies is in the
order of the number of match states of C, i.e.
OðW0 � � � � �Wm�1Þ, the time complexity of all agreements is

in OðW0 � � � � �Wm�1Þ. Since agreement is a human process,
its space complexity is in Oð0Þ.

From the assumption n > D (hence n > m), we can easily
check that the above time and space complexities to agree on

one action for each detected discrepancy are smaller than the
time and space complexities to detect discrepancies. Hence,
time and space complexities to detect and resolve discrepancies

are those to detect discrepancies.

A.18. Proof of Proposition 18

The automaton CF is executed in at most m steps by going
through a path of length m from the initial state to a match
state. In each step j ¼ 1 . . .m, we are in a state of level j� 1

in which we have to verify the outgoing transitions and select
one of them. We have seen in Section A.13 that the number of
outgoing transitions from each state of level j is in Wj. Hence,

the time complexity to go through the m levels is in

OðW0 þ � � � þWm�1Þ. For each great field Fj, we have Wj ¼ n.

By summing the Wj of the l great fields, we obtain l� n.

For each small field Fj, we have Wj ¼ 2dj which is the domain

size of Fj. By summing the Wj of the small fields, we obtain D.
Hence, the total time complexity to execute CF is in
Oðl� nþ DÞ.

From D 6 ðm� lÞ � n, we obtain that Oðl� nþ DÞ is
bounded by Oðm� nÞ.

The space complexity to execute CF is in Oð1Þ, because we

only need to store the current state and the current verified
transition.

66 A. Khoumsi et al.
References

Acharya, H.B., Gouda, M.G., 2010. Projection and division: linear

space verification of firewalls. In: 30th Int. Conf. on Distributed

Computing Systems (ICDCS). Genova, Italy, pp. 736–743.

Acharya, H.B., Gouda, M.G., 2011. Firewall verification and redun-

dancy checking are equivalent. In: 30th IEEE Int. Conf. on

Computer Communication (INFOCOM). Shanghai, China, pp.

2123–2128.

Al-Shaer, E., Hamed, H., 2004. Modeling and management of firewall

policies. IEEE Trans. Netw. Service Manage. 1 (1), 2–10.

Al-Shaer, E., Marrero, W., El-Atawy, A., Elbadawi, K., 2009.

Network configuration in a box: Towards end-to-end verification

of networks reachability and security. In: 17th IEEE Int. Conf. on

Network Protocols (ICNP). Princeton, NJ, USA, pp. 736–743.

Bryant, R.E., 1986. Graph-based algorithms for boolean function

manipulation. IEEE Trans. Comput. 35 (8).

Chen, F., Liu, A., Hwang, J., Xie, T., 2012. First step towards

automatic correction of firewall policy faults. ACM Trans.

Autonomous Adaptive Syst. 7 (2).

Cuppens, F., Cuppens-Boulahia, N., Garcia-Alfaro, J., Moataz, T.,

Rimasson, X., 2012. Handling stateful firewall anomalies. In: 27th

IFIP International Information Security and Privacy Conference

(SEC). Heraklion, Crete, Greece, pp. 174–186.

Elmallah, E., Gouda, M.G., 2014. Hardness of firewall analysis. In:

Intern. Conf. on NETworked sYStems (NETYS). Marrakesh,

Morocco.

Garcia-Alfaro, J., Cuppens, F., Cuppens-Boulahia, N., 2008. Com-

plete analysis of configuration rules to guarantee reliable network

security policies. Int. J. Inf. Security 7 (2), 103–122.

Garcia-Alfaro, J., Cuppens, F., Cuppens-Boulahia, N., Perez, S.M.,

Cabot, J., 2013. Management of stateful firewall misconfiguration.

Comput. Security 39, 64–85.

Hoffman, D., Yoo, K., 2005. Blowtorch: a framework for firewall test

automation. In: 20th IEEE/ACM Int. Conf. on Automated

Software Engineering (ASE). Long Beach, California, USA, pp.

96–103.

Hu, H., Ahn, G., Kulkarni, K., 2012. Detecting and resolving firewall

policy anomalies. IEEE Trans. Dependable Secure Comput. 9 (3).

Kalam, A.A.E., Baida, R.E., Balbiani, P., Benferhat, S., Cuppens, F.,

Deswarte, Y., Miège, A., Saurel, C., Trouessin, G., 2003. Organi-

zation based access control. In: IEEE 4th International Workshop

on Policies for Distributed Systems and Networks (POLICY). Lake

Come, Italy.

Kamara, S., Fahmy, S., Schultz, E., Kerschbaum, F., Frantzen, M.,

2003. Analysis of vulnerabilities in internet firewalls. Comput.

Security 22 (3), 214–232.

Karoui, K., Ftima, F.B., Ghezala, H.B., 2013. Formal specification,

verification and correction of security policies based on the decision

tree approach. Int J Data Netw Security 3 (3), 92–111.
Khoumsi, A., Krombi, W., Erradi, M., 2014. A formal approach to

verify completeness and detect anomalies in firewall security

policies. In: 7th Intern. Symposium on Foundations & Practice of

Security (FPS). Montreal, Canada.

Krombi, W., Erradi, M., Khoumsi, A., 2014. Automata-based

approach to design and analyze security policies. In: Intern. Conf.

on Privacy, Security and Trust (PST). Toronto, Canada.

Lee, D., Yannakakis, M., 1996. Principles and methods of testing finite

state machines – a survey. Proc. IEEE 84, 1090–1126.

Liu, A.X., Gouda, M.G., 2007. Structured firewall design. Comput.

Netw. Int. J. Comput. Telecommun. Netw. 51 (4), 1106–1120.

Liu, A.X., Gouda, M.G., 2008. Diverse firewall design. IEEE Trans.

Parallel Distributed Syst. 19 (9), 1237–1251.

Liu, A.X., Gouda, M.G., 2010. Complete redundancy removal for

packet classifiers in TCAMs. IEEE Trans. Parallel Distribut. Syst.

21 (4), 424–437.

Lu, L., Safavi-Naini, R., Horton, J., Susilo, W., 2007. Comparing and

debugging firewall rule tables. IET Inf. Security 1 (4), 143–151.

Madhavi, S., Raghu, G., 2014. Segment generation approach for

firewall policy anomaly resolution. Int. J. Comput. Sci. Inf.

Technol. (IJCSIT) 5 (1), 6–11.

Madhuri, M., Rajesh, K., 2013. Systematic detection and resolution of

firewall policy anomalies. Int. J. Res. Comput. Commun. Technol.

(IJRCCT) 2 (12), 1387–1392.

Mallouli, W., Orset, J., Cavalli, A., Cuppens, N., Cuppens, F., 2007. A

formal approach for testing security rules. In: 12th ACM Sympo-

sium on Access control models and technologies (SACMAT).

Sophia Antipolis, France.

Mansmann, F., Göbel, T., Cheswick, W., 2012. Visual analysis of

complex firewall configurations. In: 9th International Symposium

on Visualization for Cyber Security (VizSec). Seattle, WA, USA,

pp. 1–8.

Pozo, S., Gasca, R., Reina-Quintero, A., Varela-Vaca, A., 2012.

CONFIDDENT: a model-driven consistent and non-redundant

layer-3 firewall ACL design, development and maintenance frame-

work. J Syst Softw 85 (2), 425–457.

Shen, Q., Yang, Y., Wu, Z., Wang, D., Long, M., 2013. Securing data

services: a security architecture design for private storage cloud

based on HDFS. Int. J. Grid Utility Comput. 4 (4), 242–254.

Sui, G., Mejri, M., 2013. FASER (Formal and Automatic Security

Enforcement by Rewriting) by BPA algebra with test. Int. J. Grid

Utility Comput. 4 (2/3), 204–211.

Wool, A., 2004. A quantitative study of firewall configuration errors.

Computer 37 (6), 62–67.

Yuan, L., Mai, J., Su, Z., Chen, H., Chuah, C.-N., Mohapatra, P.,

2006. FIREMAN: A toolkit for firewall modeling and analysis. In:

IEEE Symposium on Security and Privacy (S&P). Berkeley/

Oakland, CA, USA.

http://refhub.elsevier.com/S1319-1578(16)30118-5/h0005
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0005
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0005
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0010
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0010
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0010
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0010
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0015
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0015
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0020
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0020
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0020
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0020
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0025
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0025
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0030
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0030
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0030
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0035
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0035
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0035
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0035
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0040
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0040
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0040
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0045
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0045
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0045
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0050
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0050
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0050
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0055
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0055
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0055
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0055
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0060
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0060
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0065
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0065
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0065
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0065
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0065
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0070
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0070
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0070
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0075
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0075
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0075
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0080
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0080
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0080
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0080
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0085
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0085
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0085
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0090
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0090
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0095
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0095
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0100
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0100
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0105
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0105
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0105
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0110
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0110
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0115
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0115
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0115
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0120
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0120
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0120
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0125
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0125
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0125
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0125
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0130
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0130
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0130
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0130
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0135
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0135
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0135
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0135
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0140
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0140
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0140
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0145
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0145
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0145
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0150
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0150
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0155
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0155
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0155
http://refhub.elsevier.com/S1319-1578(16)30118-5/h0155

	A formal basis for the design and analysis of�firewall security policies
	1 Introduction
	2 Related work and contributions
	3 Preliminaries
	4 Automaton construction
	4.1 First Step: specify each rule by an automaton
	4.2 Second Step: standardize the intervals of the automata
	4.3 Third Step: combine the automata
	4.4 Automaton executing a policy
	4.5 Efficient construction of the automaton

	5 Detecting incompleteness
	6 Anomaly categorization
	7 Detection of conflicting anomalies
	7.1 Detection of shadowing anomalies
	7.2 Detection of generalization anomalies
	7.3 Detection of correlation anomalies

	8 Detection of redundancy anomalies
	8.1 Formal definitions of redundancy anomalies
	8.1.1 LP-redundancy
	8.1.2 MP-redundancy

	8.2 Detecting LP-redundancy anomaly
	8.3 Detecting MP-redundancy anomalies

	9 Mixable policies
	9.1 Extraction of a mixable policy
	9.2 Utility of mixable policies

	10 Detecting and resolving discrepancies
	10.1 Discrepancy detection
	10.1.1 Step 1: computing the automaton of each table of rules
	10.1.2 Step 2: computing a product automaton
	10.1.3 Step 3: detecting discrepancies

	10.2 Discrepancy resolution

	11 Space and time complexities
	11.1 Computation of complexities
	11.2 Comparison with complexities in related work
	11.3 Intuitive justification of the precision of our complexity evaluation
	11.4 Field reduction

	12 Case study
	13 Conclusion
	13.1 Recapitulation of our contributions
	13.2 Future work

	Acknowledgements
	Appendix A Proofs of Propositions
	A.1 Proof␣of Proposition 1
	A.2 Proof␣of Proposition 2
	A.3 Proof␣of Proposition 3
	A.4 Proof␣of Proposition 4
	A.5 Proof␣of Proposition 5
	A.6 Proof␣of Proposition 6
	A.7 Proof␣of Proposition 7
	A.8 Proof␣of Proposition 8
	A.9 Proof␣of Proposition 9
	A.10 Proof␣of Proposition 10
	A.11 Proof␣of Proposition 11
	A.12 Preliminary result for the computation of complexities
	A.13 Proof␣of Prop. 12
	Complexity of Step 1
	Complexity of Step 2
	Complexity of Step 3
	Total complexity

	A.14 Proof␣of Proposition 13
	A.15 Proof␣of Propositions 14and 15
	A.15.1 Space complexity of Props. 14 and 15
	A.15.2 Time complexity of Prop. 14
	A.15.3 Time complexity of Prop. 15

	A.16 Proof␣of Proposition 16
	A.17 Proof␣of Proposition 17
	A.17.1 Detecting Discrepancies
	A.17.2 Resolving discrepancies

	A.18 Proof␣of Proposition 18

	References

