
Journal of King Saud University – Computer and Information Sciences (2017) 29, 295–302
King Saud University

Journal of King Saud University –
Computer and Information Sciences

www.ksu.edu.sa
www.sciencedirect.com
Comparative analysis of different AES
implementation techniques for efficient resource
usage and better performance of an FPGAq
q This document is a collaborative effort.

* Corresponding author.

E-mail addresses: umer.farooq@lip6.fr (U. Farooq), maslam@

studenten.hs-bremerhaven.de (M.F. Aslam).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2016.01.004
1319-1578 � 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Umer Farooq a,*, M. Faisal Aslam b
aLIP6, Universite Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France
b IAET, UOAS, Bremerhaven, Germany
Received 6 October 2015; revised 22 December 2015; accepted 10 January 2016
Available online 31 March 2016
KEYWORDS

Cryptography;

Embedded security;

AES;

FPGA;

Exploration
Abstract Over the past few years, cryptographic algorithms have become increasingly important.

Advanced Encryption Standard (AES) algorithm was introduced in early 2000. It is widely adopted

because of its easy implementation and robust security. In this work, AES is implemented on FPGA

using five different techniques. These techniques are based on optimized implementation of AES on

FPGA by making efficient resource usage of the target device. Experimental results obtained are

quite varying in nature. They range from smallest (suitable for area critical application) to fastest

(suitable for performance critical applications) implementation. Finally, technique making efficient

usage of resources leads to frequency of 886.64 MHz and throughput of 113.5 Gb/s with moderate

resource consumption on a Spartan-6 device. Furthermore, comparison between proposed tech-

nique and existing work shows that our technique has 32% higher frequency, while consuming

2.63� more slice LUTs, 8.33� less slice registers, and 12.59� less LUT-FF pairs.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

During the past few years, cryptographic algorithms have been
extensively used to fight security threats (Stallings, 2010).
Secure systems are of tremendous importance nowadays.
Secure transmission and storage of data are needed for all
types of solutions, ranging from area sensitive embedded
devices to massively parallel high performance computing

devices. Such diversified area/performance requirements moti-
vated us to explore different implementation techniques for
Advanced Encryption Standard (AES) cryptographic algo-

rithm. AES is an example of symmetric key cryptographic
algorithm and today it is used in many cryptographic applica-
tions. AES algorithm (also known as Rijndael cipher algo-

rithm) was accredited as the new commercial cryptographic
algorithm in 2001 to replace aging Data Encryption Standard
(DES) algorithm (Advanced Encryption Standard, 2001 ).

Hardware-based implementation of AES algorithm is very
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important as it is more secure, faster, and consumes less power
as compared to its software-based implementation.

For hardware-based implementation of AES, Field Pro-

grammable Gate Arrays (FPGAs) are an attractive choice
(Saggese et al., 2003; Elbirt et al., 2001). FPGAs were initially
used as a glue logic. But during the past few years, they have

seen a tremendous growth both in terms of market and capa-
bility and now they are used to implement complex applica-
tions. Recent cryptographic applications, ranging from fully

pipelined parallel architectures to low power low cost imple-
mentations, are now increasingly implemented on FPGAs.
The use of FPGAs has expanded because of the fact that they
require less time to market as compared to their Application

Specific Integrated Circuit (ASIC) counterpart (Kuon and
Rose, 2006). Also, the development process of FPGAs is much
more effective and requires less cost as compared to ASIC

design. Furthermore, the reconfigurable nature of FPGAs
gives the designer the ability to modify the initially imple-
mented algorithm whereas no such provision exists for ASICs.

This feature can be used to configure the device at run time. It
can also be used to address the flaws in already implemented
design and to optimize the algorithm for a fixed set of require-

ments (Dandalis and Prasanna, 2004).
Significant amount of work has been done lately regarding

efficient AES implementation on FPGA. For example, the
authors in Rouvroy et al. (2004) present a sequential imple-

mentation of AES algorithm on FPGA that results in a design
that is well suited for small embedded applications. Implemen-
tation in Van Dyken andDelgado-Frias (2010) focusses on the

design of low power FPGA-based encryption schemes. These
schemes try to achieve best power results without compromis-
ing the throughput of the design. Three implementation

schemes are presented which are compared in terms of area,
and power consumption rates. Similarly, authors in Hoang
and Nguyen present an efficient implementation of AES algo-

rithm on FPGA that results in high throughput and it is well
suited for applications requiring high speed and performance.
Furthermore, authors in Soliman and Abozaid (2011), Gielata
et al. (2008) and Qu et al. (2009) explore pipelining, sub-

pipelining, and loop unrolling techniques to increase the fre-
quency and throughput of AES implementation on FPGA.
The work in Soliman and Abozaid (2011) used inner pipeline

at two, three, or four stages on Xilinx Virtex-5 FPGA
(Xilinx, 2014a) and achieved a maximum throughput of
73.737 Gb/s, maximum frequency of 576.07 MHz. Folded par-

allel architecture is used by Rahimunnisa et al. (2014) to obtain
high throughput. The concept of folding is used to improve the
area utilization while maintaining high throughput. They have
achieved a maximum frequency of 505.5 MHz on a Xilinx

Virtex-6 device. More recent work (Farashahi et al., 2014) pre-
sents a high speed hardware implementation of AES algorithm
on Xilinx Virtex-5 device. They have achieved a throughput of

86 Gb/s and a maximum theoretical frequency of 671.5241

MHz.
The main contribution of the work presented in this paper

is that, here, we explore different implementation techniques.
Depending upon the optimization applied, the results of imple-
mented techniques range from the smallest to fastest imple-

mentation. Smaller implementation techniques require
1 Theoretical frequency limited by maximum available frequency of

FPGA which is 550 MHz
minimal resources and they are more suitable for embedded
applications. On the other hand, high throughput techniques
appear to be more resource hungry but they are suitable for

high performance applications where throughput is a bigger
concern than the amount of resources being used. As described
in Section 2, AES is an iterative algorithm and we make use of

this iterative approach to optimize its implementation. Fur-
thermore, when considering FPGA hardware, resource map-
ping can play an important part as it can greatly influence

the efficiency of a design. Benefits of an otherwise well opti-
mized algorithm would be lost. Highlight of this work is that
techniques presented here make use of efficient algorithm
implementation as well as efficient resource mapping to

explore their impact on architecture resource usage. Our
results using Xilinx Spartan-6 (Xilinx, 2014b), Virtex-5 devices
show that by carefully optimizing the algorithm implementa-

tion and by efficiently mapping the hardware resources, small
area and high throughput can be achieved for different tech-
niques. Furthermore, when compared with recent state-of-

the-art results, our optimal technique gives better or compara-
ble throughput while using significantly less FPGA resources.

The remainder of the paper is organized as follows. In Sec-

tion 2, an overview of AES encryption algorithm is provided.
In this section, brief description of different modules of AES
algorithm is presented. Section 3 presents key optimization
and resource mapping techniques for AES algorithm. Further,

a discussion is presented in this section on how these tech-
niques can result in good area and delay trade-offs. Experi-
mental results are discussed in Section 4 demonstrating how

different exploration techniques result in different area and
performance values. Paper is finally concluded in Section 5
with a summary of some ideas that can be explored in future.

2. Overview of AES Rijndael design

In 2000, National Institute of Standards and Technology

(NIST) selected Rijndael (Daemen and Rijmen, 2000) as the
new Advanced Encryption Standard (AES) in order to replace
aging Data Encryption Standard (DES). AES was selected

because of its robust security properties and simple implemen-
tation both in software and hardware. AES is an iterative
round based symmetric key block cipher that supports key size
of 128, 192, 256 bits and block size of 128 bits. The use of lar-

ger key sizes increases the cryptographic strength but requires
that greater number of iterative rounds be performed. In this
work we focus on AES implementation with key size of 128

bits as it is sufficient for most purposes and is most commonly
used.

2.1. Cipher module

Implementation of AES on hardware can be mainly divided
into two modules: one is cipher module and other is key expan-

sion module. Cipher module is responsible for performing
encryption/decryption on the data while key expansion module
is responsible for preparing the key that is required for each
round of cipher. In case of 128 bit key, cipher module performs

ten rounds of substitution and permutation to transform the
input data to ciphered data. For the first 9 rounds of encryp-
tion, cipher module makes use of SubByte, ShiftRow, MixCol-

umn, AddRoundKey operations and for final round
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Mixcolumn operation is skipped to complete the encryption
process. Based on the original key, key expansion module cal-
culates key that is used in each round by aforementioned oper-

ations. Fig. 1 shows standard structure of AES algorithm. It
can be seen from the figure that different functions of cipher
module combined with key expansion module perform the

encryption on input data through an iterative process. Input
data in AES is often represented as 4 � 4 bytes array and it
is termed as ‘‘state”. A brief discussion on different operations

of cipher module and key expansion module is recalled
(Advanced Encryption Standard, 2001) here.

SubByte function performs a non-linear transformation
independently on each byte of the input state. This transforma-

tion is performed by substituting each byte of the state with a
value from substitution box (also termed as S-box). There are
16 parallel S-boxes each with 8 inputs and 8 outputs. The

S-box operation is the only nonlinear transformation of AES
algorithm. It is an invertible operation and can be used for
decryption process too. The construction of S-box is achieved

by combining two transformations. The first transformation is
performed by taking the multiplicative inverse in the finite field
GF(28) where an all zero bit input is mapped to itself. In the

second part, affine transformation is performed over GF(2).
The input is an 8 bit vector in GF(2) and it is multiplied by
a constant 8 by 8 bit matrix M and then added to 8 bit vector
C. Both constant matrices M and C are given below.

M ¼

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

2
66666666666664

3
77777777777775

; C ¼

1

1

0

0

0

1

1

0

2
66666666666664

3
77777777777775

The ShiftRow function performs byte wise circular shifts on

last three rows of the state. In this function, first row is not
Plain text MasterKey

Add Round Key

Ciphered Text

Round 1 to 
Nr – 1 
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Round

SubByte ShiftRow

MixColumnAddRoundKey
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RoundConst
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Module
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Figure 1 Standard overview of AES algorithm.
rotated, but second, third, and fourth rows are rotated by

one, two, three bytes respectively. This rotation provides diffu-
sion property of the AES algorithm.

MixColumn function separately operates on each of the

four columns of states treating each column as a four-term
polynomial. The columns are considered as polynomials over

GF(28) and multiplied modulo x4 þ 1 with a fixed polynomial

aðxÞ given by

aðxÞ ¼ f03gx3 þ f01gx2 þ f01gxþ f02g ð1Þ
Above function can also be written as matrix multiplication as

s0ðxÞ ¼ aðxÞxsðxÞ or in matrix form

S0
0;c

S0
1;c

S0
2;c

S0
3;c

2
6664

3
7775 ¼

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

2
6664

3
7775

S0;c

S1;c

S2;c

S3;c

2
6664

3
7775

AddRoundKey is the final cipher function and is used to mix
key information with the data that are being operated upon.
Inputs of this function are 16 byte state and 16 byte key which

is obtained from key expansion algorithm. Its output is a sim-
ple bit wise XOR operation between current round state and
current round expanded key.

2.2. Key expansion module

Main purpose of this function is to calculate round key for
each round of the cipher based on original key. As shown in

Fig. 1, this module comprises of three simple sub-modules
SubWord, RotWord, and RoundConst. SubWord is a func-
tion that takes a four byte input word and applies S-box to

each of four bytes to produce output word. RotWord takes
a word, performs cyclic permutation, and returns the word.
RoundConst function contains a round constant array that

performs a bitwise XOR function. Round constant array con-
tains values given by ½xi�1; f00g; f00g; f00g� with xi�1 being
powers of x (x is denoted as {02}) in the field GF(28).

KeyExpansion is an important function and depending upon
the target architecture its implementation can be performed
either by using computing resources or by using on-chip mem-
ory resources that eventually leads to different results.

3. Proposed AES algorithm implementation

Optimizations performed in the AES algorithm and different

resource mapping options are discussed in this section. Differ-
ent combinations of these optimizations and resource mapping
options then lead to five exploration techniques.

3.1. Optimized implementation

Based on the explanation of AES design given in Section 2, it

can be seen that its implementation can be mainly divided into
two separate but dependant parts: one is key expansion mod-
ule while the other a cipher module. Cipher module is an essen-

tially iterative looping structure and classic loop optimization
technique like ‘loop unrolling’ are applied to optimize its
implementation in terms of speed. Loop unrolling is a tech-
nique that replaces a looping structure with N copies of that

looping body, hence reducing the total loop iterations by N
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times (i.e. inter-round optimization). Loop unrolling in the
cipher module can be combined with key expansion routine
to achieve fully parallel implementation of AES algorithm.

Key expansion routine can be intuitively splitted into smaller
key expansion modules that would be placed along unrolled
round operations of cipher module (termed as online key

expansion). Loop unrolling of cipher module combined with
splitted key expansion modules (i.e. intra-round optimization),
result in fully parallel implementation of AES algorithm on

FPGA. This parallel implementation should result in an
improved throughput of AES algorithm. This performance
advantage, however, comes with a price as unrolling and split-
ting will increase the required FPGA resources.

3.2. FPGA resource mapping

It is well known that implementation decisions have significant

impact on the area and performance of target architectures. In
this work, we chose Spartan-6 family of Xilinx. Like many Xil-
inx FPGAs, Spartan-6 device is a two dimensional mesh-based

FPGA. It contains a mesh of Look-Up Tables (LUTs)/Config-
urable Logic Blocks (CLBs)2. LUTs are mainly used for imple-
mentation of combinational and sequential logic. They can

also be configured as memory elements. These LUTs are con-
nected to each other through programmable routing fabric and
connections to the external world are made through pro-
grammable I/O pads. Apart from LUTs, Spartan-6 device also

contains a dedicated amount of Block RAMS (BRAMS) that
we use for different implementation techniques in this work.

CLBs are main source for implementation of AES compu-

tation operations. Majority of AES algorithm operations (e.g.
AddRoundKey, MixColulmn, ShiftRow etc) can be imple-
mented using CLBs. But the operations like SubByte that

involve S-box can be implemented using one of following
options.

� Block RAM (BRAM): For SubByte operation (used both
in cipher module and key expansion module), S-box is nor-
mally required that replaces original values with values
from S-box. The values in the S-box are predefined and

these values can be stored in BRAMS. BRAMS in
Spartan-6 device are dedicated memories and S-box values
can be loaded into them at the time of configuration.

� Logic Blocks: CLBs in Spartan-6 device can be used both as
computation resource as well as storage resource. S-box val-
ues for SubByte operations can be directed to be stored in

CLBs through different coding techniques in VHDL. Main
advantage of using CLBs as memory is that synthesis tool
can better optimize area and delay constraints during syn-
thesis procedure.

3.3. Exploration techniques

Based on the discussion presented in Section 3.1 and 3.2, we
have implemented AES algorithm in five different ways. These
five exploration techniques give the results ranging from small-

est area to fastest implementation. A brief description of these
techniques is as follows:
2 Terms LUT, CLBs are used interchangeably in this paper
3.3.1. CB-KB-S

In this technique, cipher module’s S-box is implemented in

BRAM and key expansion module’s S-box is also implemented
in BRAM. Two modules are executed in a serial way: first key
expansion is performed and then cipher module is executed.

This is the simplest implementation technique. This technique
gives us the best area results but at the same time it gives the
worst delay results. Implementation results obtained from this

technique suggest that this technique is useful for embedded
applications requiring area critical results.

3.3.2. CB-KB-P

In this technique, cipher module’s S-box is implemented in
BRAM and key expansion module’s S-box is also implemented
in BRAM. Contrary to the first implementation technique, in

this technique loop unrolling is performed in cipher module
and key expansion is performed online. Online key expansion
improves performance in a great way, i-e instead of waiting for
the complete key expansion,we have enabled this module to

provide the cipher key for each stage of cipher module. This
will eventually minimize the critical path of whole design.
Because of the parallel operation, this technique gives better

delay results but poor area results as compared to ‘CB-KB-
S’ exploration technique.

3.3.3. CB-KC-S

In this technique, cipher module’s S-box is implemented in
BRAM and key expansion module’s S-box is implemented
using CLBs. Further, two modules are executed in a serial

way: first key expansion is performed and then cipher module
is executed. In this implementation, since KeyExpansion S-box
is implemented using CLBs, number of BRAMs are less but

more number of CLBs would be required compared to CB-
KB-S technique. Further, S-box implementation in CLBs
would lead to better delay results.

3.3.4. CB-KC-P

In this technique, cipher module’s S-box is implemented in
BRAM and key expansion module’s S-box is implemented

using CLBs. Moreover, in this technique loop unrolling is per-
formed in cipher module and key expansion is performed
online. Because of the parallel operation, this technique gives
good delay results but poor area results as compared to

‘CB-KB-S’ exploration technique.

3.3.5. CC-KC-S

In this technique, both cipher and key expansion modules’
S-box are implemented using CLBs. Implementation of S-
box using CLBs leads to best possible delay results with no
BRAMs at all. But this technique requires much more CLBs

than all other exploration techniques. Further discussion on
the exploration results of these exploration techniques is
presented in Section 4.

4. Results and analysis

4.1. Experimental setup

In this work, we have implemented 128 bit key length AES

algorithm using five different exploration techniques
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(described in Section 3.3). Implementation of AES algorithm is
performed on xc6s1x150-3-fgg900 device which is a member of
Xilinx Spartan-6 family. The VHDL core of the design is syn-

thesized, placed and routed using Xilinx ISE 13.2 release where
explicit directives were used to determine the mapping of S-box
and loop unrolling was achieved through parallel processes for

cipher and key expansion module. The Xilinx tool was used to
measure number of slice registers, number of slice LUTs, max-
imum frequency, and critical path delay for each exploration

technique. From these values, we also calculated theoretical
throughput and efficiency of each design using Eqs. (2) and
(3) respectively. As a final measure of quality of design, we also
compare total resource usage and delay of each implementa-

tion scheme that gives an idea about the area-delay tradeoff.
As discussed in Section 1, most of existing work uses Virtex-
5 as target device. So, we also implement our best technique

on this device to have a fair comparison between our work
and existing work.

Tput ¼ Number of processed bits

Critical path delay
ð2Þ

Efficiency ¼ Tput

Total resources
ð3Þ
4.2. Experimental results

Experimental results of five exploration techniques are shown

in Figs. 2–4b. As it can be seen from these figures that explo-
ration techniques are expressed as ‘CX-KY-Z’ where X, Y
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indicate the implementation of cipher module and key
expansion module’s S-box either in BRAM (B) or in CLB
(C) respectively. As far as ‘Z’ is concerned, it indicates whether

AES is implemented in serial (S) or parallel (P) manner. For
example, an exploration technique with name ‘CB-KC-P’
indicates that cipher module S-box is implemented in BRAM,

key expansion S-box is implemented in CLBs and loop unrol-
ling is applied to have a parallel execution.

Fig. 2a gives the number of slice registers used by different

exploration techniques. It can be seen from this figure that
techniques employing parallelism, require more slice registers
as compared to techniques employing serial implementation.
This is because of the fact that at each stage of cipher module,

registers are required to synchronize the cipher key expansion
with cipher module to ensure safe operation. Without registers
it can provide invalid/wrong key to cipher module during

online operation. Similarly, Fig. 2b gives the number of slice
LUTs used by each technique under consideration. As
expected, techniques using BRAMs for their S-box implemen-

tation require less number of LUTs as compared to techniques
using combinational blocks for the S-box implementation.
Furthermore, it can be seen from the figure that CC-KC-S

technique requires the most number of LUTs as it is imple-
menting both its cipher module, key expansion module’s
S-box using combinational blocks.

In order to perform the performance analysis of different

exploration techniques, we have also measured the frequency
and critical path delay results and these results are presented
in Fig. 3a. In this figure, solid line indicates the frequency

results while dashed line gives the delay results for different
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3788 3557 3557 3557

9276 9375

0

2000

4000

6000

8000

10000

[14]
Virtex-6

[15]4-stage
Virtex-5

[15]6-stage
Virtex-5

[15] 2-slow
Virtex-5

Thiswork
Virtex-5

Thiswork
Spartan-6

N
um

be
r o

f S
lic

e 
LU

Ts

Method and Device

Figure 5 Slice LUTs comparison between existing and proposed

work.

3788

748
985

1838

161 146
0

800

1600

2400

3200

4000

[14]
Virtex-6

[15]4-stage
Virtex-5

[15]6-stage
Virtex-5

[15] 2-slow
Virtex-5

Thiswork
Virtex-5

Thiswork
Spartan-6

N
um

be
r o

f L
U

T-
FF

 P
ai

rs

Method and Device

Figure 6 LUT-FF comparison between existing and proposed

work.

300 U. Farooq, M.F. Aslam
exploration techniques under consideration. Furthermore, we
have also computed the throughput (ref Eq. (2)) of each imple-

mentation and relevant results are shown in Fig. 3b. It can be
seen from both figures that in general when designs are imple-
mented using parallelism, they lead to higher frequency which
eventually results in better throughput - see the comparison

between CB-KB-S and CB-KB-P, CB-KC-S and CB-KC-P.
There is one exception however, in CC-KC-S technique, there
is no parallelism. But implementation of both S-box in CLBs

results in better frequency and throughput results although it
requires more number of slice LUTs as compared to other
exploration techniques. Better frequency results are obtained

in this case because of the fact that here communication delay
between CLBs and BRAMs is removed that has resulted in
smaller critical path delay eventually leading toward higher
throughput compared to other techniques under

consideration.
Based on our experimentation, we have also computed the

efficiency (ref Eq. (3)) of each exploration technique and it can

be seen from Fig. 4a that CC-KC-S technique gives us the best
efficiency results. This is because of the fact that compared to
other designs, this technique uses least amount of registers,

only twice as many slices and no BRAMs at all. Further, this
technique gives best frequency results that eventually gives best
efficiency results. As a final measure of the quality of design,

we have also performed area-delay tradeoff analysis of all
the techniques and relevant results are shown in Fig. 4b. In this
figure, area is the sum of number of all used resources (shown
as solid line) and delay is calculated using frequency results of

implemented techniques (shown as dashed line). Results in
Fig. 4b show that again, in our case, CC-KC-S gives the best
area-delay trade-off. This is because of the fact that compared

to CB-KC-P, this design consumes only twice as many slices
with smallest number of registers and no BRAMs at all. Fur-
ther, this design gives best frequency results, leading to small-

est critical path delay and eventually resulting in lowest area-
delay product.

4.3. Comparison results

For the sake of completeness, we have also compared results of
our best technique (i.e. CC-KC-S) with recent state-of-the-art
results. For that purpose, we implemented our design on Xil-

inx Virtex-5 FPGA, since most of the recent work uses this
FPGA as target device. We have compared the results of our
technique and recent work against a number of area and per-
formance parameters. For example, Fig. 5 shows the compar-

ison for number of slice LUTs used by different techniques. In
this figure, x-axis gives reference number and device used by
each technique while y-axis gives total number of slices used
by each technique. It can be seen from the figure that

(Farashahi et al., 2014) uses least number of slice LUTs and
when compared to our implementation, we consume 61.6%,
62% more resources on Virtex-5, Spartan-6 devices respec-

tively. However, the comparison of LUT-FF pair usage in
Fig. 6 shows that among existing work, 4-stage technique of
Farashahi et al. (2014) uses least number of LUT-FF pairs

and compared to this technique, our proposed technique uses
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78.5%, 80.5% less number of LUT-FF pairs on Virtex-5,
Spartan-6 devices respectively.

For a complete picture of resource usage, we also perform a

comparison between number of slice registers used by different
techniques. These comparison results are shown in Fig. 7. It
can be seen from the figure that 4-stage technique of

Farashahi et al. (2014) uses least number of registers among
the state-of-art techniques and when compared to this tech-
nique, our proposed technique uses 68.44%, 68.31% less slice

registers on Virtex-5, Spartan-6 devices respectively. Results
presented in Figs. 5–7 suggest that although, our proposed
technique consumes more slice LUTs but it consumes much
less LUT-FF pairs, slice registers when compared to best

results of recent state-of-art techniques.
Since frequency of an implementation scheme gives insight

of the critical path delay of the implementation, we also per-

form a frequency comparison between different implementa-
tion techniques. Frequency comparison of different
techniques is shown in Fig. 8. It can be seen from the figure
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Figure 9 Throughput comparison between
that 2-slow technique of Farashahi et al. (2014) gives the best
frequency results among existing techniques. When compared
to the proposed technique, our implementation on Virtex-5

is only 4% slower while our implementation on Spartan-6 is
32% faster than 2-slow technique of Farashahi et al. (2014)
while using fewer number of available FPGA resources (ref

Figs. 5–7). Finally, we also perform a throughput comparison
between existing techniques and the proposed technique. This
comparison is presented in Fig. 9. It can be seen from the fig-

ure that 2-slow technique of Farashahi et al. (2014) gives the
best throughput results among existing techniques. When com-
pared to the proposed technique, our implementation on
Virtex-5 gives only 4% less throughput while our implementa-

tion on Spartan-6 gives 32% more throughput than 2-slow
technique of Farashahi et al. (2014).

Detailed comparison results are presented in Figs. 5–9. It

can be seen from these figures that 4-stage technique of
Farashahi et al. (2014) gives best overall resource usage results
among the existing techniques. However, when compared, our
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technique gives better resource usage results (except number of
slice LUTs) while giving much better frequency and through-
put results (4-stage technique of Farashahi et al. (2014) is

51% slower than our implementation on Spartan-6). Similarly,
when we compare the best frequency results of existing tech-
nique (i.e. 2-slow of Farashahi et al., 2014), our technique gives

comparable (in case of Virtex-5 implementation) or better
results (in case of Spartan-6 implementation) while consuming
much less device resources.

5. Conclusion

This paper presents a study that explored five different imple-

mentation techniques for AES algorithm. In these techniques,
we have made use of optimizations like loop unrolling that
introduced parallelism in our design. Further, different FPGA

resource mappings have lead to different results. Based on
experimentation, it is seen that generally sequential implemen-
tations lead to better area results but poor performance results.
Also, it was observed that parallelism leads to better delay

results but poor area results as more registers are required.
Moreover, it was observed that efficient usage of computing
resources (i.e. CLBs) of FPGAs leads to better performance

results and frequency as high as 886.64 MHz can be achieved
in certain scenario. Finally the comparison of five techniques
has shown that the one with efficient CLB usage (i.e. CC-

KC-S) requires least BRAMs, registers and gives best results
in terms of frequency and throughput eventually leading to
best area-delay trade-off. Furthermore, comparison between
the best proposed technique and existing work shows that

the proposed techniques makes good use of available resources
and gives better tradeoff as far as the resource usage and
throughput of the design is concerned.

In future, it can be interesting to explore the effect of more
device features of Spartan-6 device. Furthermore, it will be
interesting to integrate some dynamic reconfiguration mecha-

nism so that AES algorithm implementation may be more
optimized.
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