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Abstract We propose a light weight layered architecture to support the computation of leader in

mobile ad hoc networks. In distributed applications, the leader has to perform a number of syn-

chronization activities among participating nodes and numerous applications; hence, it is a stressed

node and consequently prone to failure. Thus, fast and fault tolerant leader election is a major con-

cern and popular area of research in distributed computing networks, in general, and wireless ad

hoc networks, in particular. In the present article, we have proposed a fault tolerant leader election

approach. More importantly, the nodes elect the leader quickly on the basis of local information

only. The illustration includes suitable examples. The correctness proof and performance evaluation

has also been presented.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Background

A mobile ad hoc network (MANET) is easily installable and
thus, a very economical and popular computing environment;
however, it is highly constrained and challenging too. A porta-
ble node possesses limited computing power processors, small
stable storage, thin battery for energy backup, and a short
communication range. They can communicate only via mes-

sage passing over wireless links. Nodes that are not in the
transmission range of each other can communicate via message
relay. The nondeterministic mobility pattern incurs concurrent

and arbitrary topological changes. The topological changes
become more frequent because of the dynamism in wireless
links and limited availability of bandwidth. A highly perfor-

mance retarding offshoot of this phenomena is the variable
message delay. Hence, the distributed algorithms developed
for static domain are not directly implementable in MANETs.

Nowadays, there are many popular distributed applications
that are executed in MANETs, e.g. agreement problem, inter-
node communication, data exchange, service request, data
aggregation, key distribution, group communication, and priv-

ilege grant. In the execution of any such applications, especially
inMANET-like fault prone environment, the leader is a critical
component that is responsible to coordinate such activities.
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Figure 1 The layered architecture.

Fault tolerant approach to handle leader election in mobile ad hoc networks 379
Thus, it is very useful to have a leader to make critical decisions
in an easyway. Therefore, finding a leader (a.k.a. coordinator) is
a popular research challenge in distributed systems community.

1.2. The problem statement

The leader election is a very simple form of symmetry breaking

and it is a classic synchronization problem of distributed com-
puting. An algorithm for choosing a unique process to deliver
a particular service is called an election algorithm and the

elected process is called leader. For example, in a central-
server architecture based mutual exclusion algorithm, the ‘ser-
ver’ is chosen from among the processes. It is necessary that all

the processes agree on the choice. Afterward, if the process
that delivers the service of the server fails or wishes to stop pro-
viding the service then another election process instance is exe-
cuted to choose a substitute leader. We say that a process

initiates the election if it takes an action that begins the execu-
tion of a particular instance of the election algorithm. An indi-
vidual process does not initiate more than one election process

instance at a time; however, in principle, several processes
could initiate concurrent election process instances. At any
point in time, a process pi is either a participant – meaning that

it is involved in some execution of the election algorithm – or a
non-participant – meaning that it is not currently involved in
any election. An important requirement for the choice of the
elected process is to be unique, even if multiple processes call

elections concurrently. For example, more than one process
could notice independently that a leader process has failed,
and they initiate elections. In short, computing a leader is to

eventually elect a distinguished node from a given set of nodes.

1.3. Related work and motivation

A detailed discussion on leader election problem and protocols
can be found in many popular books (Ghosh, 2010; Attiya and
Welch, 2004; Garg, 2004; Raynal, 2013). In order to solve the

problem, several distributed algorithms have been proposed in
the literature that include a few classic protocols (Chang and
Roberts, 1979; Hirschberg and Sinclair, 1980; Garcia-Molina,
1982) and an interesting array of recently published protocols

(Boukerche and Abrougui, 2007; Derhab and Badache, 2008;
Haddar et al., 2008; Dagdeviren and Erciyes, 2008; Ingram
et al., 2009; Raychoudhury et al., 2014; Raz et al., 2004;

Sharma and Singh, 2011; Shirmohammadi et al., 2009; Singh
and Sharma, 2011a,b; Vasudevan et al., 2003, 2004; Malpani
et al., 2000; Jain and Sharma, 2012; Subathra et al., 2012). In

general, the protocols developed for the conventional dis-
tributed systems fail to work efficiently when implemented in
cellular and ad hoc network based modern computing systems.

For instance, the leader election protocol forMANETs needs to
be message efficient because the nodes possess limited energy.
The message overhead can be controlled by imposing a cost-
effective logical structure on the physical network. However,

most of the above listed protocols don’t exploit this idea.
Furthermore, the energy of the leader node dissipates faster
than ordinary nodes, due to the coordination overheads that

the leader handles. It makes the leader node susceptible to
crash. Secondly, the absence of a leader leads to reduced utiliza-
tion of nodes’ resources, application discontinuity, performance

degradation, or aborts. We intend to prevent these problems
and thus our motivation is not to develop yet another leader
election protocol, rather to design an election protocol that
can choose the leader in a faster way. In this paper, we propose

a logical structure based lightweight protocol to support the lea-
der election in MANETs. Also, our protocol quickly finds a
replacement in the event of leader failure.

2. The protocol concept

2.1. The system settings

We make the following assumptions about the system architec-

ture. In our illustration, the network is assumed to have a finite
number of nodes distributed in a geographic region. A node
has a universal identifier UID (called ID, for short) repre-

sented by a binary sequence that is unique and constant
throughout the network lifetime. A node’s ID may be, for
example, its MAC/IP address or CPU ID (Zeng et al., 2010).
The unique ID assignment is a non-trivial problem and beyond

the scope of this paper. Also, the nodes are assigned certain
weights depending on the quality related attributes, like node’s
residual power, computational capability, speed etc. The node

IDs are used as a tie-breaker among equal weight nodes. The
nodes may crash and recover autonomously. The communica-
tion links between nodes are assumed to be bidirectional FIFO

and guarantee a message delivery if the corresponding sender
and receiver remain connected during the message propaga-
tion. The message propagation delay is nondeterministic how-

ever bounded. Each node has a sufficiently large receive buffer;
hence, it never suffers buffer overflow.

We propose a layered architecture, as shown in the follow-
ing Fig. 1, to support leader election in MANETs.

� At the lowest layer, a clustering algorithm divides theMANET
intobalancedclusters, usingamodifiedversionof thepreviously

designed merging clustering algorithm (MCA) (Dagdeviren
et al., 2005) and it constructs a heap of cluster nodes.

� The second layer implements the ring formation (RF) algo-

rithm which constructs the virtual ring of cluster heads. Fur-
ther, the ring members are represented in the form of a heap.

� Finally, our leader election (LE) algorithm finds the leader
out of the cluster heads.
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2.2. Clustering using modified merging cluster algorithm

Consider a MANET represented by an undirected graph G=
(V, E), where V is the set of vertices and E is the set of

connecting edges. The merging clustering algorithm (MCA)
(Dagdeviren et al., 2005) finds clusters in a MANET, by merg-
ing the clusters to form higher level clusters, using the tech-
nique mentioned in GHS (Gallager et al., 1983), the seminal

minimum spanning tree (MST) algorithm. Such construction
is a highly non local activity that needs coordination, and thus
message exchanges, among far away nodes in the system

(Basagni et al., 2004; Han and Jia, 2007). However, our algo-
rithm performs the clustering operation without using MST
like construction. Hence, our approach requires less coordina-

tion and has low message overhead. Secondly, we maintain an
upper as well as a lower bound on the cluster size during the
clustering operation, which leads to the balanced cluster for-
mation. Third, we have modified the message structure of

MCA (Dagdeviren et al., 2005) in such a way that the
exchange of information about all the nodes in a cluster is in
the form of a max heap. This results in selecting a new cluster

head in constant time in the event of cluster head failure.
Therefore, we named our algorithm as modified merging clus-
ter (MMC) algorithm.

2.3. Ring formation and merging algorithm

The objective is to construct a single ring of all the cluster heads.

Each cluster head arranges itself in a ring. Thus, during the ring
formation process, multiple rings may be formed simultane-
ously; however, at any time, each node can participate only in
a single ring formation process. Hence, in case, multiple rings

are formed, the rings contain a mutually exclusive set of nodes.
Subsequently, these rings are merged together to form a com-
posite ring. Our ring formation method is inspired from Yen

and Chi (2004), Dagdeviren and Erciyes (2006). When a node
belonging to any ring sends a merge request to another node
belonging to a different ring, it considers the predecessor, suc-

cessor and successor’s successor of that node. Therefore, any
two rings can be merged by modifying the values of the above
three variables. Once a unique single ring of all the cluster heads

is formed, we construct a max heap of all the members of the
ring. This ring is used in our leader election protocol for electing
a new leader and the heap of ring members helps in electing a
new leader in constant time in the event of leader crash.

2.4. The leader election algorithm

We propose an asynchronous leader election algorithm for uni-

directional ring networks. Any node can initiate the election by
sending its node ID to its neighbor node. The neighbor node
forwards the request further, by appending its node ID to the

request, using max heap. Finally, the initiator receives the
request back in the form of a max heap with root as leader. Sub-
sequently, the initiator notifies the information about the cre-

ated max heap and the elected leader to all the nodes in the
ring. Now, each node in the ring possesses a max heap structure
representing the ring. Therefore, in the case of leader failure,
the node in its neighborhood detects the failure, removes the

entry of the failed leader and modifies its local max heap
accordingly. The node at the root of the modified heap is the
new leader and this information is notified all through the ring.

3. The algorithm

In order to implement the heap structure in our algorithm we
need some basic functions operating over the heap. The detailed

discussion and pseudo code of such functions can be found in
Cormen et al. (2001). Someof themhavebeen reproduced below.

Our algorithm uses the following functions, detailed in

Fig. 2 below, to perform various operations over heap.

3.1. The clustering algorithm

3.1.1. Data structures

The following data structures are maintained at each node.

(i) Cluster_leader_id (integer): It is ID of the node which is

leader of the cluster. Each node, including the leader,
maintains this variable.

(ii) Node_id: Every node in the network is provided a
unique integer ID.

(iii) Heap_array (array): It is an array of the whole cluster in
the form of max heap. Each entry contains Node_id and
some performance metric on the basis of which max

heap is constructed.
(iv) Heap_size (integer): It represents the number of elements

in the Heap_array.

(v) Cluster_size (integer): It represents the number of nodes
in the cluster. It is used when the number of nodes
exceeds the maximum permitted value for the size of a
cluster.

(vi) pm: It represents the performance metric (a.k.a. node
weight) that may be computed based on parameters like
computation power, mobility speed, residual battery

power, fault tolerance etc.
(vii) Target_size (integer): It is the maximum permitted size

of a cluster. Each node maintains this variable and while

merging two clusters, the size of the composite cluster
should not exceed Target_size.

(viii) T_out: It is a timer.

3.1.2. Messages

(i) Req_msg hNode_id, Cluster_sizei: A cluster leader node
initiates the clustering operation by sending Req_msg

message to a destination node.
(ii) Ldr_req_msg hNode_id, Cluster_sizei: On receiving

Req_msg message from a node outside its cluster, a clus-

ter member node sends Ldr_Req_msg message to its
cluster leader.

(iii) Become_mbr hNode_id, Heap_array, Heap_sizei: A clus-
ter leader node sends Become_mbr message on receiving

Ldr_req_msg from another leader that has a smaller
node ID.

(iv) Become_ldr hNode_id, Heap_array, Heap_sizei: A clus-

ter leader node will send Become_ldr message on receiv-
ing Ldr_req_msg from another leader that has a greater
node ID.
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(v) Ldr_ACK hNode_id, Cluster_size, Heap_array, Heap_
sizei: A node sends Ldr_ACK message on receiving

Become_mbr message and the successful completion of
all operations.

(vi) Mbr_ACK hHeap_array, Heap_sizei: A node sends
Mbr_ACK message on receiving Become_ldr message

and the successful completion of all operations. The
receiver of Mbr_ACK message becomes a member of
the cluster.

(vii) Reorganise_cluster hNode_id, Cluster_size, Heap_array,
Heap_sizei: A node will multicast a Reorganise_cluster
message on receiving Ldr_ACK message. The leader of

a cluster computes a new level and multicasts the
Reorganise_cluster message to its cluster members to
update their cluster level information along with the
complete heap information.
(viii) Reorganise_cluster_ACK: A node sends Reorganise_
cluster_ACK message in response to Reorganise_cluster

message.
(ix) Reject_msg: A node sends this message to the sender of

Req_msg if the merging operation is not possible
because the sum of sizes of both clusters is greater than

Target_size.
3.1.3. The modified merging cluster algorithm

Initially, each node is assumed to be the head of its own cluster
that contains a single member. Each node in a cluster

maintains heap array of the max heap structure of its cluster
nodes. The sender node appends the heap array of its own clus-
ter with each Become_mbr, Become_ldr, Ldr_ACK and

Mbr_ACK message. After sending Become_ldr, Become_mbr,
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Ldr_ACK or Mbr_ACK, the message Reorganize_cluster that
contains the heap array of the latest merged cluster, is sent
to every member node in the earlier cluster. If a cluster-head

receives a heap array appended with any of the above mes-
sages, except Reorganize_cluster, it merges its own heap array
with the received one. Similarly, if an internal node receives a

Reorganize_cluster message, it merges its own heap array with
the received one and modifies its heap size accordingly.

3.1.4. Procedures

The various procedures used in the clustering algorithm are
detailed below in Fig. 3.

3.1.5. The pseudo code

The following Fig. 4 contains the pseudo code of the clustering
algorithm.

3.2. Ring formation and merging

We have the following assumptions:

(a) The channel is FIFO.
(b) No node in the ring crashes during merge operation.
(c) The network is reliable.

3.2.1. Data structures

(i) rc: It is an integer representing the ring count, i.e. the
number of nodes present in the ring. It is equal to 1

for a cluster head that is not part of any ring. In our
illustration, we refer the local ring count as l_rc and for-
eign ring count as f_rc.

(ii) CH_heap: It represents cluster head heap array, i.e. max
heap of the performance metric and node ID of all clus-
ter heads present in the ring. It is an array where each

element contains a doublet of pm and Node_id.
(iii) pred: It is integer pointing to the predecessor of the cur-

rent node in the ring.
Figure 3 Basic
(iv) succ: It is integer pointing to the successor of the current

node in the ring.
(v) s_succ: It is integer pointing to the successor’s successor

of the current node in the ring.

(vi) Node_id: Every node in the network is provided a
unique integer ID.

(vii) pm: It represents the performance metric (a.k.a. node
weight) that may be computed based on parameters like

computation power, mobility speed, residual battery
power and fault tolerance.

(viii) nmop: It is a Boolean flag. It is true if no merging oper-

ation is in progress, else it is false.

3.2.2. Messages

(i) Setf hi.pred, i.succ, i.s_succ, rc, CH_heapi: A node sends

this message to another node belonging to a different
ring during the ring merging operation. First three items
represent the intended value of predecessor, successor

and successor’s successor, respectively, of the destina-
tion node on merging two rings. Also, two more items,
contained in the message, are CH_heap and rc of the

source node. If a non-cluster-head receives this message,
it forwards the same to its cluster head. The symbol ‘_’
in any field, namely i.pred, i.succ, or i.s_succ represents
that the intended value of predecessor, successor or suc-

cessor’s successor of the destination node will remain
unchanged.

(ii) Setl hi.pred, i.succ, i.s_succi: It is a message that is sent

by a node to its predecessor or successor in the same
ring. The items contained represent the same thing as
in Setf message.

(iii) Blk hpm, Node_id, fi: This message is used to block
the destination node from any merging operation.
The flag f signifies that the receiving node needs to

forward it to its predecessor, in case, it is 1; no,
otherwise.
procedures.
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(iv) Blk_ack: On receiving Blk message, a node checks

whether it is also involved in any merged operation. If
not, it sends a Blk_ack message. Otherwise, it checks
whether the node weight received in the message is

greater than it own. If so, it sends Blk_ack message; else,
do nothing.

(v) Rej: A node sends Rej message to the initiator of merge

operation, if the node could not receive all Blk_ack mes-
sages before time out. If the node itself was the initiator,
there is no need to send any message.

(vi) Idn: This token holds the identity of the foreign node

with which the merge operation is taking place. It is ‘?’
if no merging operation is in progress. It is used only
when a node initiates merge operation.

(vii) Time_out: If Time_out expires and no message is
received, the node starts the merge operation, provided,
a foreign node is present in the neighborhood.

(viii) Blk_tm: It is the time duration a node waits for Blk_ack
messages after sending Blk messages.
3.2.3. The working of ring formation and merging algorithm

Our algorithm is inspired from a recently published algorithm

for maintaining a ring structure in MANETs (Yen and Chi,
2004). When a cluster-head sends a request to a destination
node to merge rings it appends its heap-array of cluster-
heads with the request. If an internal node receives a request

to merge rings it forwards the same to its cluster-head. The
requester cluster-head sends a Blk message to its predecessor
and successor to block them from engaging in any other merg-

ing operation. The cluster-head that received the request for
merging rings sends a Blk message to its predecessor which
in turn forwards it to its predecessor leading to blocking of
two predecessor nodes from engaging into any other ring

merging operation. The first reply sent by the cluster-head (if
not a reject), which received the request to merge rings, to
the cluster-head that made the request, contains the heap-
array of the ring of cluster-heads present in its own ring. The

cluster-head A, with ring count equal to 1 signifies that there’s
no other node in its cluster and it has its pred = A, succ =A
and s_succ =A. Likewise, a cluster with ring count equal to 2

has only two nodes ‘A’ and ‘B’ having the entries as follows:

PredA ¼ B; succA ¼ B; s succA ¼ A

PredB ¼ A; succB ¼ A; s succB ¼ B

It is worth noting that the requests received at a cluster-
head to change either of the data structures pred, succ and

s.succ from its ring member and non-ring member are not han-
dled in the same way. The detailed pseudo code is given in
Appendix I.

In order to enable the structural modifications to progress
concurrently, the ring structure is modified in a localized and
mutually exclusive manner. The modified merging clustering

(MMC) and ring formation (RF) modules isolate the upper
layers from the communication link failures. Though, the
architecture is robust in the case of updating the failed links,
the node crashes are not covered. Nevertheless, due to time

out mechanism, if a node crashes before the exchange of all
messages related to current instance of ring formation process,
the participant neighbors of the crashed node abort the ‘in pro-

gress’ instance and initiate a new one involving the remaining
neighbors that are ready to participate in the ring formation
process further. The crashes in the ordinary nodes are easy



384 B. Sharma et al.
to handle. However, the crashes of dominator nodes may
amend the network topology greatly. In the course of topology
changes, a participant node may leave the computation due to

forced termination or power off. This might result in an incor-
rect ring structure. To deal with, an additional mechanism
needs to be introduced. By the addition of a fault tolerance

module, orthogonal to this architecture, it is possible to
recover from the node crashes. This practical issue is beyond
scope of the paper and intended for future study.

4. The complexity analysis

The proposed protocol consists of the following three layers.

1. Modified merging cluster (MMC) algorithm

2. Ring formation (RF) algorithm
3. Leader election (LE) algorithm
Theorem 1. The message complexity of the protocol is O(n)
where n is the number of nodes.

Proof. The message complexity for the protocol is the sum of
the message complexities of the above three algorithms and the

complexity of termination detection of the first two algorithms.

Assume, there are n nodes in the network. For each merge
operation of two clusters, three messages (one Req_msg, one
Become_ldr or Become_mbr, and one Ldr_ACK orMbr_ACK),
K number of Reorganise_cluster messages, and K number of

Reorganise_cluster_ACK messages are required, where K is the
maximum permissible size of a cluster. Thus, total number of
required messages would be (3 + 2K).

The average number of clusters formed at the end of MMC
execution will be n/K, where n is the total number of nodes in

the network. Now, let us choose K such that K2 = n and hence
the number of clusters would also be K. The merging of two
clusters needs a single iteration of the MMC algorithm.

Similarly, the merging of three clusters needs two iterations of
the MMC algorithm. Thus, merging of K clusters would
require (K � 1) iterations of the MMC algorithm. Therefore,

the total number of messages sent would be the product of the
number of messages sent in single iteration and the number of
iterations, i.e. (3 + 2K) * (K � 1) � 2n. Hence, the message
complexity would be O(n).

According to above assumption the number of cluster

heads (or clusters) will be K. Also, the number of iterations of
ring merge operation will be (K � 1). The number of messages
sent in single iteration of ring merge operation will be 10 (two
Setf messages + four Setl messages + 6 Blk messages). In

addition, 2K heap multicast messages will also be needed.
Hence, in a single iteration, total (10 + 2K) messages are
exchanged. Therefore, the total number of messages exchanged

in ring formation algorithm will be (10 + 2K) * (K � 1). Thus,
the message complexity will be O(K2), i.e. O(n).

If the leader crashes, the absence of the leader is detected by
a node i in its neighborhood if node i doesn’t receive the next
heartbeat message in the stipulated time. Subsequently, in

order to find a new leader, node i reorganizes its heap
structure, which does not involve any message exchange
because it is a local computation. Subsequently, to propagate
the reorganized heap among K cluster heads, total K messages

are required. Thus, the message complexity would be O(K).

Now, assuming termination detection requires negligible

number of messages, the composite message complexity of the
leader election protocol (LEP) can be computed as follows.

OðLEPÞ ¼ OðMMCÞ þOðRFÞ þOðLEÞ
¼ OðnÞ þOðnÞ þOðKÞ ¼ OðnÞ

h

5. The correctness proof

5.1. Modified merging cluster algorithm

Theorem. There can be only one cluster head in any cluster at

any time.

Proof. Assume the contrary. Let P and Q be two distinct
nodes belonging to the same cluster, say Ci and they have dif-
ferent Node_id as their cluster head. For this to happen, the

nodes P and Q must have different max heap structures with
one of them having a smaller node ID than the other. As each
node ID is assumed unique, both the nodes must have different

roots in their respective max heap structure. Hence, one of the
two heaps must have a larger ID set as child than its parent
node, violating the max heap property. Therefore, it is infeasi-
ble to have two different cluster heads of the same cluster at

any point of time. h
5.2. Ring formation algorithm

Theorem. No two consecutive nodes in the ring can make

topological changes concurrently.

Proof. Let, P and Q are two distinct nodes in a ring requesting
topological change concurrently. Our protocol ensures that the
one with a higher priority can proceed.

By our protocol, P will send a block message Blk to Q with
its Node_idP and performance metric pmP. Similarly, Q will

also send a block message Blk to P with its Node_idQ and
performance metric pmQ. Now, there are two possibilities:

1. pmp > pmQ or (pmp = pmQ and Node_idp > Node_idQ): In
this case, node Q will send an acknowledgement message
Blk_ack to node P after receiving Blk message from node

P. Thus, only node P will be able to proceed.
2. (pmQ > pmP) or (pmp = pmQ and Node_idQ > Node_idP):

In this case, node P will send Blk_ack message to node Q
after receiving Blk message from node Q. Thus, only node

Q will be able to proceed.

h

Theorem. Any iteration of ring formation algorithm termi-
nates within a finite time.

Proof. In our system model, the message propagation delay
has been assumed as finite. Also, the number of sequential
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message propagations, involved in any iteration of ring forma-

tion, is finite, as shown above in the complexity analysis.
Hence, the time taken for the completion of any iteration of
the ring formation algorithm would also be finite. h

Theorem. There is unique leader in a ring.

Proof. The proof is similar to the proof of the MMC algo-
rithm. h
B[A, A, B, 2]

Figure 6.a Ring and isolated node.

Setf (C, C, _, 1)

[C, C, C, 1][B, B, A, 2] A C
6. Illustrating examples

6.1. Ring formation between two isolated nodes

If the value of Target_size is 1, there can be only one node in a

cluster. Similarly, if the value of Target_size is 2, there can be
two nodes in a cluster. Assume, there are two isolated nodes A
and B and node A detects node B in its neighborhood (Fig. 5.

a). Node A sends Setf message to node B (Fig. 5.b).
Subsequently, node B replies with a Setf message to node A.
Node B sets its predecessor pred = A, successor succ = A,
and ring count rc= 2 (Fig. 5.c). Finally, both nodes A and

B merge into a single ring and node A sets its predecessor
pred =B, successor succ= B, and ring count rc = 2
(Fig. 5.d).
[B, B, B, 1][A, A, A, 1]

A B

SetlSetf

Figure 5.a Isolated nodes.

[B, B, B, 1][A, A, A, 1]
Setf (A, A, _, 1)

A B

Figure 5.b Ring formation begins.

[A, A, B, 2][A, A, A, 1]

Setf (B, B, _, 1)

BA

Figure 5.c Ring formation ends.

[A, A, B, 2][B, B, A, 2]

A B

Figure 5.d Ring of two nodes.
6.2. Ring formation when one ring has rc = 1 and the other ring
has rc = 2

Assume, there is a ring containing two nodes A and B and an
isolated node C in the neighborhood (Fig. 6.a). Initially, node
B[A, A, B, 2]

Figure 6.b New ring formation begins.

[C, C, C, 1][C, B, C, 3] A

B

C

[A, A, B, 2]

Setf (_, A, B, 2)

Setl (_, C, A)

Figure 6.c New ring formation continued.

[B, A, B, 3][C, B, C, 3] A

B

C

[A, C, A, 2]

Figure 6.d New ring formation ends.



[B, A, B, 3][C, B, C, 3] A

B

C

[A, C, A, 3]

Figure 6.e Ring of three nodes.

Setf (C, C, _, 1)

[A, B, A, 3]A

B

C

Figure 7.c New ring formation continued.

[A, B, A, 3][B, C, B, 3] A

B

C

Setl (C, _, C)

Figure 7.d Intra-ring update.

[A, B, A, 3][B, C, B, 3] A C
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C sends Setf message to node A (Fig. 6.b). Subsequently, node
A replies with a Setf message to node C and Setl message to
node B (Fig. 6.c). Node A sets its predecessor pred =C,

successor succ =B, and ring count rc = 3. Now, node A
multicasts the foreign heap array, which it received from node
C previously, along with the new ring count. Subsequently,

node C updates its max heap (Fig. 6.d). Finally, nodes A, B
and C merge into a single ring and node B sets its predecessor
pred =A, successor succ =C, and ring count rc= 3

(Fig. 6.e).

6.3. Ring formation when one ring has rc = 1 and the other ring
has rc = 2

This case (see Fig. 7.a) is similar to the situation explained in
the above Section 6.2. However, initially, node A sends Setf
message to node C (Fig. 7.b). Subsequently, node C replies

with a Setf message to node A (Fig. 7.c). Node A sends Setl
message to node B (Fig. 7.d). Node A sets its predecessor
[C, C, C, 1][B, B, A, 2] A

B

C

[A, A, B, 2]

Figure 7.a Ring and isolated node.

A

B

C

Setf (A, B, _, 2)

Figure 7.b New ring formation begins.

B
[C, A, C, 2]

Figure 7.e New ring formation ends.

[A, B, A, 3][B, C, B, 3] A

B

C

[C, A, C, 3]

Figure 7.f Ring of three nodes.
pred= B, successor succ =C, and ring count rc = 3. Now,
node A multicasts the foreign heap array, which it received

from node C previously, along with the new ring count.
Subsequently, node C updates its max heap (Fig. 7.e). Finally,
nodes A, B and C merge into a single ring and node B sets its

predecessor pred =C, successor succ= A, and ring count
rc= 3 (Fig. 7.f).
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6.4. Formation of clusters by merging of two isolated nodes

Assume, an isolated node A, having performance metric 100,
detects another isolated node B, having performance metric
56, in its neighborhood. In order to initiate the cluster merge

operation, node A sends the message Req_msg (hA, 100i, 1)
to node B (Fig. 8.a). Now, node B compares the entries in
the received Req_msg message with its own and finds that its
performance metric value is smaller than the one contained

in the message. Thus, it sends its heap and heap size along with
message Become_ldr (hB, 56i, 1) to node A (Fig. 8.b). On
receiving Become_ldr message, node A sends Mbr_ACK mes-

sage to node B (Fig. 8.c). Node A merges its local heap with
the foreign heap received. Now, both nodes A and B have
become members of the same cluster with node A as cluster

head and have heap array as [hA, 100i, hB, 56i] and heap size
2.

6.5. Representing heap as an array

A heap can be represented by an array starting with index 1
and the left child of node at index i is at index 2i, right child
at index 2i+ 1 and the parent at index i/2 (discard fractional

part). The heap shown in the following Fig. 9 can be repre-
sented as the following array.

½h16; 1i; h14; 4i; h10; 2i; h8; 7i; h7; 8i; h9; 12i; h3; 6i�
Req_msg (<A, 100>, 1)

A B

Figure 8.a Cluster merge begins.

Become_ldr (<B, 56>, 1)

A B

Figure 8.b Leader request.

Mbr_ACK (<A, 100>, 1)

A B

Figure 8.c Member request.

16

10

9 3

14 

78

Figure 9 Heap.
Each element is shown as tuple hi, ji where the performance
metric pm of the node is depicted as i and j is the unique
Node_id that is not shown in the tree structure, for the sake

of clarity.

6.6. Merging of two large clusters

Assume, a cluster head node A, having performance metric 16
and heap size 10, detects another cluster head node U, having
performance metric 32 and heap size 6, in its neighborhood. In

order to initiate cluster merge operation, say, node A sends the
message Req_msg (hA, 16i, 10) to node U. Now, node U com-
pares the entries in the received Req_msg message with its own

and finds that its performance metric value is larger than the
one contained in the message. Thus, it sends its heap HU

and heap size along with message Become_mbr (hU, 32i, 6) to
node A. On receiving Become_mbr message, node A sends its

heap HA and heap size along with message Ldr_ACK to node
U. Node A multicasts HU to all its cluster members and node
U multicasts HA to all its cluster members. Thus, each cluster

member gets a complete heap array. Now, the merged cluster
has cluster head U and heap size 16.

6.7. Merging of two rings with heap

We identify each ring with its heap and leader, e.g. HD repre-
sents the heap with node D as its ring leader. Assume, a ring
node B having heap HD and ring count 4 detects in its neigh-

borhood another node F, from a different ring, having heap
HE and ring count 4 (Fig. 10.a). In order to initiate the ring
merge operation, say, node B sends the message Setf (B, C,

D, 4, HD) to node F. Now, node F sends the message Setf
(G, F, E, 4, HE) to node B and sends the message Setl (_, C,
D) to node G. Subsequently, node B sends the message Setl

(_, _, F) to node A and Setl (G, _, _) to node C. Also, node
G sends the message Setl (_, _, C) to node H. Now, node B
multicasts foreign heap HE to all its local ring members and

similarly, node F multicasts foreign heap HD to all its local
ring members. Finally, the nodes merge their respective local
heap with the foreign heap just received. Now, the merged ring
has leader node E and ring count 8.

The sequence of messages that are exchanged during above
merge operation is as follows:

Node B detects F in its neighborhood (Fig. 10.a). Node B

sends a message Setf (B, C, D, 4) to F with its own heap array
SetlSetf

A

C

BD

E

G

HF

HD = [<D, 100>, <A, 43>, 
<C, 29>, <B, 12>, 4] 

HE = [<E, 102>, <F, 49>, 
<G, 47>, <H, 23>, 4] 

Figure 10.a Two isolated rings.



A

C

B

Setf (B, C, D, 4, HD)

D

E

G

HF

Figure 10.b Ring merge begins.

Setl (_, C, D)

A

C

B

Setf (G, F, E, 4, HE)
D

E

G

HF

Figure 10.c Ring merge continued.

Setl (_, _, F)
A

C

BD

E

G

HF

Setl (G, _, _) Setl (_, _, C)

Figure 10.d Ring merge ends.

A

C

BD

E

G

HF

HE = [<E, 102>, <D, 100>, <F, 49>, <G, 47>, 
<A, 43>, <C, 29>, <H, 23>, <B, 12>, 8] 

Figure 10.e Composite ring.

[C, B, C, 3] A

B[A, C, A, 3]

[B, A, B, 3]C

D
[E, E, D, 2]

E [D, D, E, 2]

Figure 11.a Two unequal rings.

[C, B, C, 3] A

B[A, C, A, 3]

[B, A, B, 3]C

D
[E, E, D, 2]

E
[D, D, E, 2]

Setf (A, B, C, 3)

Figure 11.b Ring merge begins.

Setl (_, B, C)

A

B

C

D
[A, E, B, 5]

E

Setf (_, D, E, 2)

Figure 11.c Ring merge continued.
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(Fig. 10.b). Node F upon receiving Setf (B, C, D, 4) sends Setl

(_, C, D) to G and Setf (G, F, E, 4) to B (with its own heap
array) and sets its pred = B (Fig. 10.c). Node G on receiving
Setl (_, C, D), sends Setl (_, _, C) to H and sets its succ =C

and s_succ = D (Fig. 10.d). Node H on receiving Setl (_, _,
C) sets its s_succ = C. Node B on receiving Setl (G, F, E, 4)
sends message Setl (_, _, F) to A and message Setl (G, _, _)

to C and sets its succ = F and s.succ =E (Fig. 10.d). Node
A on receiving Setl (_, _, F) sets its s_succ = F. Node C on
receiving Setl (G, _, _) sets its pred= G. Finally, both B and

F multicast the new ring count and the heap-arrays that they
received while merging the rings to the members of their
respective former rings (Fig. 10.e). It marks the end of current
ring merge operation.
6.8. Ring formation process when one ring has rc = 3 and the
other ring has rc = 2

We have explained the ring formation process in Sections 6.1–
6.3 when an isolated node joins another isolated node or

another ring. For the benefit of reader, we illustrate the ring
formation process with the help of a more general example
where two rings merge to form a bigger composite ring.
Assume, node A that is part of a ring detects node D, in its

neighborhood, which is part of another ring (Fig. 11.a).
Now, node A sends Setf message to node D (Fig. 11.b). Sub-
sequently, node D replies with a Setf message to node A and

also sends Setl message to node E in its ring (Fig. 11.c).
Now, node A sends Setl message to both nodes B and C in
its ring (Fig. 11.d). Now, node A sets node D as its successor,

updates ring count and multicast its modified heap array to its
former ring members B and C (Fig. 11.e). Node D updates ring
count and sends its modified heap array to its former ring



Setl (_, _, D)
A

B

C

D
[A, E, B, 5]

E

Setl (E, _, _)

[C, D, E, 5]

Figure 11.d Intra-ring update.

A

B

C

D
[A, E, B, 5]

E

[C, D, E, 5]

[D, B, C, 2]

[B, E, D, 3]

[E, C, E, 3]

Figure 11.e Ring merge ends.

A

B

C

D
[A, E, B, 5]

E

[C, D, E, 5]

[D, B, C, 5]

[B, E, D, 5]

[E, C, E, 5]

Figure 11.f Ring of five nodes.
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member E. Node E sets node B as its successor and updates
ring count (Fig. 11.f).

It is clear from the algorithm that no node can participate
simultaneously in more than one ring merge operation and
any two rings participating in a merge operation are directed

ones and thus the virtual edge modification involves at most
four nodes out of which at most two nodes are from each par-
ticipating ring. Therefore, if both participating rings have a

ring count rc > 2, even then the same procedure can accom-
plish the ring merge operation.

7. The failure handling

The most important feature of our approach is its failure han-
dling capability. In our approach, we elect a leader from the
ring of cluster heads and hence, the leader also acts as head
of its cluster. Each cluster head has the heap containing all
cluster heads as elements. If a cluster head detects the leader

failure, we call it the initiator. The initiator waits for time
out so that the cluster, whose head has failed, may find a
new cluster head. If such a cluster head is available before time

out, then the initiator includes ID of the new cluster head in its
heap; otherwise, it removes ID of the failed cluster head from
its heap. Subsequently, it reorganizes its heap to compute a

new leader. Thus, the new leader is computed without any
delay because the mechanism uses only local information
and it does not involve any message propagation in the ring.
Subsequently, the initiator notifies in the ring the information

about the new leader and the reorganized heap.

8. Discussion on the performance

In addition to better failure handling capability, our protocol
promises improved performance over other techniques due to
several other components. First, in our approach, the overlay

network is a ring of cluster heads and enables a non-head node
in a cluster to reach its cluster head in a single hop. It is well
established that the ring is very efficient under heavy load con-

ditions. Furthermore, compared with other logical architec-
tures, a ring allows conflict-free two-way communications,
supports node ordering, and provides cost-free status feed-

backs of operations (Banerjee and King, 2009). However, if
we model the network as a random graph, then the problem
of building a ring architecture for a set of nodes in such a
graph is NP-complete. It is also known as the Hamiltonian

cycle. Thus, we resort to divide a problem instance into small
instances that can be solved in reasonable times. Therefore, we
organize the nodes into bounded-sized clusters and the clusters

are linked with a ring structure. This topology makes it easy
for us to monitor the system, update software, synchronize
clocks, detect abnormal conditions, and reorganize the net-

work (Banerjee and King, 2009). Second, each time the leader
is lost, the highest weight (a.k.a. priority) node among avail-
able ones would become the leader. Thus, we need to imple-

ment a priority queue. The low memory overhead of the
heap makes it an excellent choice for maintaining a priority
queue. It is simple and faster than other implementations
because the worst case times for both ‘insert’ and ‘remove’

operations are logarithmic in the number of values stored in
the priority queue. Hence, heap is the most appealing for this
application and works well in common cases. Third, the cluster

head holds the inter-cluster control information and performs
traffic management. Therefore, it invites frequent topology
updates from its cluster members in order to maintain the

valuable information about their location and contacts. To a
large extent, this information is consistent because its manage-
ment is quasi-centralized. It is collected locally in the cluster
head and then propagated to the other cluster heads using

the virtual links and thereby minimizing the extent of mis-
match (Shah et al., 2012; Abid et al., 2014) between logical
and physical topologies in the event of node mobility/churn/

failure or link losses. In fact, the node clustering is a popular
practice to alleviate the topological dynamics in MANET. It
stabilizes the end-to-end communication links and enhances

the network scalability in order to control the routing over-
head in large scale MANET. In addition, it restricts the node
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count involved in the route establishment process (Gábos and
Varga, 2012).

In our illustration, it is assumed that each node has a unique

ID that is time/system invariant. Secondly, our merging cluster-
ing approach is bottom up in nature. The isolated mobile nodes
self-organize into clusters based on their physical proximity and

then elect a cluster head. Afterward, the cluster heads connect
to each other in a virtual ring and finally the leader is elected.
Therefore, the mismatch problem (Shah et al., 2012; Abid

et al., 2014) is much less severe as compared to DHT-based pro-
tocols (Abid et al., 2014), where each node is assigned a logical
unique ID, called LID that identifies a node in the logical
namespace and describes the relative position of that node in

the logical overlay. The neighborhood is defined on the basis
of logical proximity and hence the neighbor nodes in the logical
overlay may not be so close in the physical network. Therefore,

the DHT-based protocols are more susceptible to the mismatch
problem. Though DHT-based protocols have many other good
features, the discussion is beyond the scope of the present expo-

sition. The readers may refer (Abid et al., 2014) for an excellent
survey and further details on the topic.
9. The simulation analysis

We have simulated our protocol using NS2 simulator for clus-
tered mobile ad hoc networks under different network condi-

tions with varying size and density. We have considered the
wireless channel with two-ray ground radio propagation and
omni-directional unity-gain antenna model. The WLAN is
based on the direct sequence spread spectrum radio technol-

ogy. We have opted IEEE 802.11 MAC protocol and the
AODV protocol for routing. The interface queue gives priority
to the routing protocol packets. The nodes have been assumed
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as randomly distributed in the network area. We assume the
random waypoint mobility model and generate random move-
ments for each simulation. The density l of the network graph

can be calculated as l(r) = nPr2/A, where n is the number of
nodes in the network graph, A is the area of the network graph
and r is the transmission range. Thus, l(r) represents the aver-
age number of nodes within the transmission radius of each
node. This allows us to test our algorithm with varying net-
work density by considering the nodes with different transmis-

sion range, r. Our values range from r = 75, and l(r) = 14
(sparse network) to r= 200, and l(r) = 102 (dense network).
By default, NS2 always uses a random number generator
(RNG), named defaultRNG, with seed ‘‘1” to generate ran-

dom numbers and thus the results obtained from every run
are essentially the same. For the statistical analysis of a system,
it is desirable to generate several distinct sets of results. There-

fore, we introduce the diversity to each run by seeding different
runs with different values hni. The simulation time has been set
200 s and the node pause time has been set 2 s.

The simulation experiments have been performed with our
election algorithm to compute the election message overhead
and the election latency under varying number of nodes, num-

ber of clusters and network area. Each plotted point in the
graph represents the average value of 20 measurements. Thus,
for each x-axis value, we run our simulation against 20 differ-
ent randomly generated node locations and speeds but main-

taining a common density pattern. The mobility rate has
been varied from 20 m/s to 300 m/s.

There are many recent existing approaches of leader elec-

tion, like Dagdeviren and Erciyes (2008), Sharma and Singh
(2011), Shirmohammadi et al. (2009) and Singh and Sharma
(2011a,b). However, the protocols (Sharma and Singh, 2011;

Singh and Sharma, 2011a,b) are flat MANET protocols and
the protocol (Shirmohammadi et al., 2009) is designed for
200 250
)

 of messages for leader election

DE protocol

Our protocol

election messages.
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wireless sensor networks where the nodes are mostly static.
Thus, we select Dagdeviren–Erciyes (Dagdeviren and
Erciyes, 2008) protocol (DE protocol, for short) for compari-

son. Secondly, it is closest to our protocol because it also uses
the multi-level hierarchical approach for leader election in
MANETs. Therefore, we have compared the performance of

our protocol with the DE protocol. In Fig. 12, on increasing
the number of nodes, unlike our protocol, there is steep rise
in the number of messages needed for leader election in the

case of the DE protocol. The overall message requirement is
76% less in our protocol.

In Fig. 13, DE protocol manifests large election latency as
compared to our protocol on varying the network area. In our

protocol, the overall reduction in the leader election time has
been noted as 82%. Also, the graph of our protocol is almost
flat regardless of the network area.
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In Fig. 14, the election latency increases exponentially with
increase in the number of clusters in the case of the DE proto-
col. However, it is almost constant in the case of our protocol.

The time to elect a new leader is 62.6% less in our case.
In Fig. 15, after the crash of the leader, the new leader

information notification time increases faster, in the case of

the DE protocol than the same in the case of our protocol,
on increasing the number of clusters. The new leader informa-
tion notification time has been found to be 44.5% less in our

case.
In Fig. 16, the gradients of the plots for different mobility

rates are very close in our protocol. Thus, we can conclude that
the rate of increase of the election message count against the

node count remains under control in low, medium and high
mobility conditions. In fact, due to high speed node
movement, some existing communication links may fail;
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nevertheless, many new links may also be created. Secondly,
due to clustering, only wide area (inter-cluster) node move-
ment affects our logical structure and thus incurs limited main-

tenance overhead.
10. An alternative application

Our framework can also be used to perform efficient routing
and data distribution. In the literature, there exist many other
proposals also to achieve the routing efficiency through the

core-based and mesh-based protocols. In the core-based proto-
col, a subset of nodes in the network is identified as the ‘‘core”.
The core nodes carry out special functions, such as routing

paths construction, multicast membership management, and
control/data packets propagation. The core is dynamically
selected using a distributed algorithm and the number of core
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nodes is kept small. Every mobile node in the network must be
adjacent to at least one core node and picks this core node as
its dominator. However, in a mesh-based protocol, a set of

interconnected nodes form mesh structures. The mesh struc-
ture is more robust than the tree structure when used in
dynamic networks because a mesh provides alternate paths

when link failure occurs. However, the cost for maintaining
mesh structures is normally higher than tree. In a hybrid
core-mesh protocol, the topology induced by the core nodes

and the mesh connecting them form the virtual backbone that
eases out the frequent route discovery and can be shared by
both unicast and multicast routing. However, in large net-
works, the performance retards because the core-mesh mainte-

nance overhead is significantly high (Biswas et al., 2004).
The implementation of mesh networks is easy provided the

connection is simple as well as regular and the number of links

per node is small. Secondly, the mesh networks render better
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scalability if the node degree is constant. For instance, with a
network size of N nodes, the minimal incremental size is
approximately

p
N for the perfectly balanced network where

the number of links per node is four. These properties are extre-
mely difficult to ensure in the dynamic networks. Moreover, the
large diameter (

p
N for an N-node network) is a major limita-

tion of the mesh network. Furthermore, a relatively small por-
tion of algorithms for scientific and engineering problems
efficiently fits the mesh topology (Louri and Sung, 1994).

The node clustering is a popular practice to alleviate the
topological dynamics in MANET. It stabilizes the end-to-
end communication links and enhances the network scalability
in order to control the routing overhead in large scale

MANET. In addition, it restricts the node count involved in
the route establishment process (Gábos and Varga, 2012).
We propose a cluster-centric methodology to form the
backbone (a.k.a. core) using cluster-heads. It reduces the scope
of the core maintenance and makes it scalable and more stable

against frequent node mobility. Our approach delivers better
performance over the node-centric core-mesh strategies. It is
confirmed by our simulation results that the composite trans-

mission overhead of the proposed hierarchy is lower than that
of recent core-mesh based hierarchical protocols, which claim
better scalability. The EHMRP (Biswas et al., 2004) is a hybrid

of differential destination multicast (DDM) Ji and Corson,
2001 and low overhead local clustering from MCEDAR
(Sinha et al., 1999). In DDM, The header-encoded destination
mechanism does not scale well with group size. Secondly,

DDM requires the existence of a unicast routing protocol,
though it does not limit itself to any particular unicast
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protocol. Furthermore, the MCEDAR performs core extrac-
tion in constant time; however, the core mesh is in fact a con-

nected dominating set and thus the size of the mesh grows with
the node degree in the network (Blum et al., 2004). The node
degree is proportional to the communication range and node

density, and thus the number of nodes in the core mesh may
be large in practice causing the performance to suffer. Note
that CMMR (Younis et al., 2011) is an improved version of
MCEDAR. Hence, we compare the performance of our proto-

col with CMMR. It is clear from Fig. 17 that the number of
control messages exchanged in the architecture formation is
huge in CMMR than our protocol and further it increases

exponentially with the increase in the number of nodes. There-
fore, the initial formation as well as reconstruction would be
economical for our architecture. Also, it can be computed

from Fig. 18 that our protocol has 56.4% lower maintenance
overhead than CMMR.

11. Discussion on scalability

The authors of Chiang and Yang (2004) argue that while char-
acterizing the scalability, maximum size should not be the only

point of concern. Some network architectures may handle a
large number of nodes; however the quality of service (QoS)
may suffer seriously with the increase in the number of nodes.
A scalable architecture should handle a large number of nodes

without sacrificing QoS too much. In general, they quantify
this tradeoff as a size-QoS product, which is the product of
maximum network size and some measure of QoS. Note that,

many QoS metrics, e.g. reliability and latency, are monotonic
functions of the average number of hops H(n) required to
reach one node from another, if there are n nodes in the net-

work. Thus, they use H(n) as the QoS metric in their illustra-
tion. They define a new metric C(n), essentially as the
reciprocal of the size-QoS product:

Definition. C(n) is the product of H(n) and M(n), where M(n) is

the size of the bottleneck network element needed to support n
nodes.
It is obvious from the above definition that a smaller C(n)
implies a more scalable network. The graph shown in Fig. 19

confirms the intuition that the ring network is more scalable
than mesh network. Further, it has been verified that our
architecture is overall 56% more scalable.

In addition, compared with other architectures, a ring
allows conflict-free two-way communications, supports node
ordering, and provides cost-free status feedbacks of operations
(Banerjee and King, 2009). However, if we model the network

as a random graph, then the problem of building ring architec-
ture for a set of nodes in such a graph is NP-complete. It is also
known as the Hamiltonian cycle. Thus, we resort to divide a

problem instance into small instances that can be solved in rea-
sonable times. Therefore, we organize the nodes into bounded-
sized clusters and the clusters are linked with a ring structure.

This topology makes it easy for us to monitor the system,
update software, synchronize clocks, detect abnormal condi-
tions, and reorganize the network (Banerjee and King, 2009).

12. Conclusion

The proposed approach guarantees fast and fault tolerant

leader election in mobile ad hoc networks. The simulation
results substantiate the fact that our approach delivers
reduced message count, low election latency as well as short
leader notification time against high node count, wide net-

work area, and a large number of clusters. Thus, our
approach manifests better scalability. Moreover, the perfor-
mance does not degrade heavily under various mobility con-

ditions. Consequently, the pause time during the execution of
leader based mobile computing applications is reduced signif-
icantly. Therefore, as a desirable offshoot, the applications

achieve enhanced throughput. Further, we refrain from devel-
oping a new leader election protocol, but present a frame-
work for hierarchical leader election in MANETs. Based on

the framework, a variety of techniques can be adopted for
effective distributed synchronization and efficient execution
of other distributed applications, e.g. mutual exclusion and
consensus, in MANETs.



Appendix I

We assume a single node has ring count 1 and it can send a message Setf hcurr, curr, _, 1i to initiate the merge operation, where curr is the

identity of the node itself. Similarly, the nodes with ring count 2 can send a message Setf hcurr, succ, _, 2i to initiate the merge operation. The

local ring count is represented as

lrc: local ring count;

frc: foreign ring count;

1. On detecting a foreign node in the neighborhood//initiate ring merge

begin//0 begin (procedure to send Setf message to initiate ring merge)

while (new cluster head is chosen or timeout occurs)

begin//1 begin

send Blk message to its pred and succ, if any;

if Blk_ack are received then

//2 begin

a. if(lrc== 1) send Setf hcurr, curr, _, 1, CH_heapi to foreign neighbor

b. if(lrc = 2) send Setf hcurr, succ, _, 2, CH_heapi to foreign neighbor

c. if (lrc > 2) send Setf hsucc, s_succ, lrc, CH_heapi to foreign neighbor

//2 end

set nmop= 0;

end while //1 end

end main //0 end

2. On receiving Setf hA, B, C, frc, CH_heap) message //frc is foreign ring count and nmop= 1

begin //1 begin

if (nmop== 1 && sender.id== Idn)

begin //2 begin

if (lrc == 1) //5 begin

send Setf hcurr, curr, _, 1i to the sender of Setf message

if (A– ‘_’) set pred= A else skip

if (B – ‘_’) set succ=B else skip

if (C – ‘_’) set s_succ= C else skip

set lrc= lrc + frc

merge local heap with foreign heap

endif //5 end

if (lrc == 2) //6 begin

if (frc== 1) //7 begin

begin

send Setf hcurr, succ, _, 2) to the sender of Setf message

set s_succ= succ

set succ=B

set lrc= lrc + frc

send Setl hB, _, B) to pred

multicast the foreign heap and new ring count to members of local heap and merge foreign heap with local heap

end //7 end

if (frc>= 2) //8 begin

begin

send Setf hcurr, succ, _, 2) to the sender of Setf message

set s_succ=B

set pred= A

set lrc= frc + lrc

send Setl h_, B, Ai to succ

multicast the foreign heap and new ring count to members of local heap and merge foreign heap with local heap

endif //8 end

endif //6 end

else if (lrc> 2)

begin//9 begin

if (frc == 1) //10 begin

begin

send Setl hB, _, _i to succ

set s_succ= succ

set succ=B

send Setl h_, _, Bi to pred

multicast the foreign heap and new ring count to members of local heap and merge foreign heap with local heap

end //10 end

if (frc >= 2) //11 begin

(continued on next page)

Fault tolerant approach to handle leader election in mobile ad hoc networks 395



begin

send Setl hA, _, _i to succ

set s_succ=C, if C == ‘_’ then set succ=A

set succ=B

send Setl h_, _, B) to pred

multicast the foreign heap and new ring count to members of local heap and merge foreign heap with local heap

endif //11 end

endif //9 end

endif //2 end

else //4 begin

send Rej message to the sender

endelse //4 end

end //1 end

3. On receiving Setf hA, B, C, frc, CH_heapi when nmop= 0

begin //1 begin

send Blk hpm, Node_id, 1i to pred

If Blk_tm expired then send Rej message to the sender of Setf message

else if (lrc== 1) //2 begin

begin

if (A– ‘_’) set pred=A else skip

if (B– ‘_’) set succ=B else skip

if (C – ‘_’ && frc – 2) set s_succ= C else if (frc= 2) set s_succ= pred

set lrc = lrc + frc

merge local heap with foreign heap

endif //2 end

if (lrc== 2) //3 begin

begin

if (frc== 1) //4 begin

set succ= A

set s_succ= pred

send Setl hA, _, A) to pred

multicast the foreign heap and new ring count to members of local heap and merge foreign heap with local heap

endif //4 end

if (frc== 2) //5 begin

set succ= A

set s_succ= B

send Setl hB, _, Ai to pred

set lrc = lrc + frc

multicast the foreign heap and new ring count to members of local heap and merge foreign heap with local heap

endif //5 end

else if (frc> 2) //6 begin

begin

set pred=A

send Setl h_, B, C) to succ

set s_succ=B

multicast the foreign heap and new ring count to members of local heap and merge foreign heap with local heap

end //6 end

endif //3 end

if (lrc> 2) //7 begin

begin

if (frc== 1) //8 begin

begin

send Setl h_, A, curr) to pred

set pred=A

multicast the foreign heap and new ring count to members of local heap and merge foreign heap with local heap

end //8 end

if(frc== 2) //9 begin

set pred=A

send Setl h_, B, Ai to pred

multicast the foreign heap and new ring count to members of local heap and merge foreign heap with local heap

endif //9 end

if(frc> 2) //10 begin

set pred=A

send Setl h_, B, C) to pred

multicast the foreign heap and new ring count to members of local heap and merge foreign heap with local heap

endif //10 end
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endif //7 end

end //1 end

4. On receiving Blk hpm, Node_id, fi
a. if (nmop= 0 && f= 0) send Blk_ack to the sender.

else if (nmop= 0 && f = 1) then send Blk message to pred with f = 0 and wait for Blk_ack from pred

b. if Blk_tm times out then do nothing

else if Blk_ack is received then send Blk_ack to the sender of Blk message

5. On receiving Blk_ack message

if all the needed Blk_ack messages have been received within Blk_tm, continue with the merge operation

else if node itself is not the initiator then send Rej message to the initiator

6. On receiving Setl hA, B, Ci message

If (B– ‘_’) send Setl h_, _, Bi to s_succ.//begin 1

begin

if A– ‘_’ set pred=A

if B – ‘_’ set succ= B

if C– ‘_’ set s_succ=C

endif//end 1

7. On receiving Rej message

Reset Time_out timer and wait
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