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Abstract The most recent approach for measuring the image quality is the structural similarity

index (SSI). This paper presents a novel algorithm based on the multi-scale structural similarity

index for motion detection (MS-SSIM) in videos. The MS-SSIM approach is based on modeling

of image luminance, contrast and structure at multiple scales. The MS-SSIM has resulted in much

better performance than the single scale SSI approach but at the cost of relatively lower processing

speed. The major advantages of the presented algorithm are both: the higher detection accuracy and

the quasi real-time processing speed.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Fighting terrorism is becoming imperative and is driving
researchers toward designing robust video surveillance

systems. Event detection and analysis is one of the major
applications of video surveillance. A first step in video event
analysis is motion detection. A motion detection algorithm

should avoid releasing false alarms by considering image
luminance, contrast and structure at multiple scales. Accurate
motion detection algorithms are the key components of
video surveillance systems. It can be applied as well in some
interesting applications such as the automatic light control
and automatic door opening in smart homes and work areas

resulting in efficient energy use.
Intrusion detection in secure areas is a common application

of motion detection. A very important application of motion

detection is to limit video recording storage requirements to
times of important events by starting the recording only at
the start of an important event. This on demand recording

helps avoiding continuous video recording of static scenes
and speeds up video event analysis. Motion detection helps
focusing on processing and storage of relevant events.

In this study, a new algorithm is presented which showed
promising results compared with MSE (Winkler, 2005;
Susstrunk and Winkler, 2004; Wang and Bovik, 2002) and
Dynamic Template Matching DTM (Martinez-Martin and

del Pobil, 2012a, b; Widyawan et al., 2012) based algorithms.
The algorithm captures the video of a scene and detects motion
by comparing successive frames in the video sequence based on

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2016.02.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mohtrue.net@gmail.com
mailto:mrahmawy@mans.edu.eg
mailto:ast@astolba.com
http://dx.doi.org/10.1016/j.jksuci.2016.02.004
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2016.02.004
http://creativecommons.org/licenses/by-nc-nd/4.0/


400 M. Abdel-Salam Nasr et al.
the modeling of image luminance, contrast and structure at
multiple scales.

The paper is organized as follows, in Section 2 some of the

related work is presented; then, an overview of the basic and
the proposed structural similarity index mechanisms for
motion detection is presented. In Section 4, the performance

of the proposed mechanism is evaluated using a set of experi-
ments on both offline and online videos. Then, in Section 5, the
efficiency of the proposed mechanism is proved by comparing

it with the well-known GMM method of motion detection
both analytically, by analyzing their memory requirements
complexity and execution complexity, and experimentally by
comparing their efficiency through a set of performance

metrics.
Luminance metric l(`x, y) 

Contrast metric c(x, y) 

Structure metric s(x, y) 

SCombination Image Y 

Image X

Figure 1 Structure similarity measurement system (Tolba and

Raafat, 2015).
2. Related work

Motion detection starts from a given frame as a reference and
subsequent frame is compared with it; then the subsequent
frame becomes a reference frame and the process is repeated

with next frames. Mishra et al. (2011) discussed three com-
monly used methods to detect a motion: background subtrac-
tion, optical flow and temporal differences. Background

subtraction was used by Spagnolo et al. (2006), Tang and
Miao (2008), Li and Cao (2010) and it depends on a compar-
ison of an image with a static reference image. The optical flow

method specifies how much each pixel of the image moves
between adjacent frames, this method may require additional
hardware to support the performance and monitoring of sys-
tems (Allili et al., 2002; Jung et al., 2007). The temporal differ-

ence method relies on comparing consecutive frames by
analyzing all frame pixels (Yu and Chen, 2009), e.g. by apply-
ing the concept of Sum of Absolute Difference (SAD), where

SAD is used to determine whether there is a movement within
an image pair (Kenchannavar et al., 2010).

There is a lot of research work based on the above methods

and combinations of them. Kenchannavar et al. (2010)
described an algorithm combining background subtraction
and frame differences for motion detection. Zheng et al.

(2009), Murali and Girisha (2009), Fang et al. (2009), used
frame differences coupled with an adaptive threshold setting
and statistical correlation to analyze the temporal differences
in some of the image frames.

Other methods for motion detection exist in the literature.
For example, Yong et al. (2011) studied four methods for
motion detection: frame differences, background subtraction,

pixelate filter, and blob counter. Li and Cao (2010) used Sup-
port Vector Machines (SVM) for motion detection and seg-
mentation of moving objects. Yokoyama et al. (2009)

applied the concept of vectors to movement detection by com-
paring multiple frames and marking the points of difference
among the frames. An advantage of this method is that it
yields information about the direction of object movement.

Kameda and Minoh (1996) used the double difference tech-
nique for motion detection. Double differences are conducted
by comparing two successive frames at times t and t � 1 and

then performing a second comparison between the frames at
times t � 1 and t � 2. In contrast, Collins and et al. (2000)
reported a video surveillance and monitoring system which

depends on comparisons between the image t with the image
of t � 1, and the image t with the image of t � 2.
From the above, we can see that there are many research
works done on the motion detection which uses different meth-
ods and have achieved different results.

3. Structural similarity index mechanisms for motion detection

The SSI measurement system (Wang and Bovik, 2002) is based

on modeling of image luminance, contrast and structure. The
MS-SSIM is an extension of the SSI system that achieves bet-
ter accuracy than the single scale SSI approach but at the cost

of relatively lower processing speed. However, the computa-
tions required for the MS-SSIM does not require such large
computational time required by other efficient Statistical

Learning Algorithms (Avcıbas et al., 2002) since it requires
complex calculations. Our system applies the MS-SSIM for
motion detection in videos; either on online videos directly

captured from camera, or on recorded video stored in a file.
Any video is sequenced into frames and successive frames
are compared with each other and if a difference is detected,
an alarm is released.

The proposed approach relies on a new algorithm which
helps local adaptation of the multi-scale structural similarity
measure for motion detection in videos. In the next sections

we present the basic SSI measurement system as it is the base
of the used algorithm, the MS-SSIM; next we present MS-
SSIM itself. Then, we present our proposed algorithm for

motion detection using the MS-SSIM.

3.1. SSI measurement systems

The Structural Similarity Index (SSI) measurement, shown in

Fig. 1, is based on modeling image luminance, contrast and
structure.

Mathematically, the SSI is defined by Wang and Bovik

(2006) as:

SSIðx; yÞ ¼ ð2lxly þ C1Þð2rxy þ C2Þ
ðl2

x þ l2
y þ C1Þðr2

x þ r2
y þ C2Þ ð1Þ

where lx, ly, rx and ry are the means and standard deviations
of both the original and reference images respectively, C1 and
C2 are constants. The three models considered in building the

similarity index between the two images x and y are given by
Lavielle (1999), Wang et al. (2003), and Wang et al. (2004):

Luminance : Lðx; yÞ ¼ 2lxly þ C1

l2
x þ l2

y þ C1

ð2Þ

Contrast : Cðx; yÞ ¼ 2rxry þ C2

r2
x þ r2

y þ C2

ð3Þ

Structure : Sðx; yÞ ¼ rxy þ C3

rxry þ C3

ð4Þ
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where lx, r
2
x and rxy are the mean of x, the variance of x, and

the covariance of x and y respectively, while C1, C2 and C3 are
constants given by C1 = (K1L)

2, C2 = (K2L)
2 and C3 = C2/2.

L is the dynamic range for the sample date, where, L = 255

for 8 bit gray-level image andK1 � 1 andK2 � 1 are two scalar
constants (Winkler, 2005; Susstrunk andWinkler, 2004). Given
the abovemeasures the structural similarity index of two images
x and y can be computed as (Winkler, 2005; Susstrunk and

Winkler, 2004; Lavielle, 1999; Wang et al., 2003, 2004):

ssiðx; yÞ ¼ ½lðx; yÞ�a½cðx; yÞ�b½sðx; yÞ�c ð5Þ
where a, b, c define the weight given to each model. Fig. 2
shows the architecture of a motion detection system that is

based on the SSI.

3.2. MS-SSIM measurement systems

The Multi Scale Structural Similarity Index for Motion Detec-

tion (MS-SSIM) quality metric is an extension of the SSI
which computes these measures at various scales and combines
them using an equation of the form (Lavielle, 1999; Wang

et al., 2003, 2004):

MS� SSIMðx; yÞ ¼ ½lmðx; yÞ�aM :
YM
j¼1

½Cjðx; yÞ�bj :½Sjðx; yÞ�yj ð6Þ

where,M corresponds to the lowest resolution (i.e. the times of

down samplings performed to reduce the image resolution),
while j= 1 corresponds to the original resolution of the image.
The resolution of the analyzed image has a significant impact

on motion detection results. The interaction between motion
size and image resolution also is an important factor. There-
fore, using the MS-SSIM metric renders itself a good adaptive
measure for motion detection. Fig. 3 presents the architecture

of a novel system for Motion detection based on the multi-
scale structural similarity index.

3.3. Proposed MS-SSIM based motion detection algorithm

The main steps of the proposed algorithm to detect motion in a
video sequence using the MS-SSI, are shown in Fig. 4 and are

summarized as follows:

1- The algorithm starts by loading the video file in case of a
recorded video, or initializing video capturing through

the camera in case of real time motion detection.
2- Then, the following steps are applied repeatedly on the

successive frames of the captured video starting from

time t= 0, i.e. first captured/loaded frame; until, in case
of a recorded video, all video frames have been pro-
cessed; or, in case of real time video, the camera stops

capturing the scene:
St
simil

Image 

Reference image 

Release an Alarm Es�

Figure 2 Architecture of the SSI based motion detectio
a. Capture/load one frame ft at the time instant t.

b. Capture/load the next frame ft+1 at time instant t+ 1.
c. Convert the two frames to gray level format.
d. Compute the MS-SSIM (ft, ft+1) index of the two suc-

cessive frames.
e. If the similarity between the two successive frames lies

below a predetermined threshold h a motion activity is
detected and an alarm is released.

In the above algorithm, the estimation of the appropriate
threshold level for the MS-SSIM test is very critical to the suc-

cess of the presented detection system.

4. Performance evaluation

In the following subsections, we present the results of applying
the proposed algorithm in different cases on different video
samples.

4.1. Test results of recorded video with predetermined number of

motions

In the following test, the performance of the developed algo-
rithm is evaluated using recorded videos. The changes between
frames have been identified to detect the occurrence of a
motion. To measure the performance for the proposed motion

detection approach, we have adapted some performance mea-
sures discussed by Altman and Bland (1994), Lu and et al.
(2004), Eisner and et al. (2005), and Sokolova et al. (2006),

Gonzàlez et al. (2007). These measures are defined in our work
as:

True Still Stand (TSS): Number of two successive frames

where no motion is detected based on the agreement of both
the system result and the ground truth.

False Still Stand (FSS): Number of two successive frames
where no motion is detected while there is disagreement

between the system result and the ground truth.
True Motion Detection (TMD): Number of two successive

frames where motion is detected based on the agreement of

both the system result and the ground truth.
False Motion Detection (FMD): Number of two successive

Frames where motion is detected while there is disagreement

between the system result and the ground truth.
F-Score: A measurement of the accuracy that considers

both precision and sensitivity of the test to compute the score.

Matthews’ Correlation Coefficient (MCC): A balanced mea-
surement of the quality of binary classifications i.e. it is a cor-
relation coefficient between the observed and the predicted
binary classifications, where positive 1 value indicates perfect

prediction, 0 indicates random average prediction and �1
value indicates inverse prediction.
ructural 
arity Index 
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n system [adapted from (Tolba and Raafat, 2015)].
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Figure 3 Architecture of the MS-SSIM based motion detection system.
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Figure 4 MS-SSIM based motion detection system.
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From these measures, we used the following performance
indicators of the motion detection system:

precision ¼ TMD

TMDþ FMD
ð7Þ

Sensitivity ¼ TMD

TMDþ FSS
ð8Þ

Specificity ¼ TSS

TSSþ FMD
ð9Þ

Accuracy ¼ TMDþ TSS

TMDþ TSSþ FMDþ FSS
ð10Þ

Positive Prediction ¼ TMD

TMDþ FMD
ð11Þ
Negative Prediction ¼ TSS

TSSþ FSS
ð12Þ

False Negative Rate ¼ FSS

FSSþ TMD
ð13Þ

False Positive Rate ¼ FMD

FMDþ TSS
ð14Þ

F� score ¼ ð2� Precision� SensitivityÞ
ðPrecisionþ SensitivityÞ ð15Þ

MCC ¼ ðTMD � FMDÞ � ðTSS � FSSÞpððTMDþ FSSÞ � ðTMDþ TSSÞ � ðFSSþ TMDÞ � ðFSSþ FMDÞÞ
ð16Þ

Furthermore, we checked the quality of the proposed algo-
rithm at different threshold values to measure the effect of the

chosen threshold on the correctness of the algorithm.
In the experiments, we used three videos with pre-

determined motion actions (ground truth), where each of these
videos shows a clock with pointer(s) moving at a constant rate.

The choice of such videos simplifies the visual detection of the
motion occurrence and limits it to pre-determined values that
can be easily compared with the motion detected by the pro-

posed algorithm to measure the accuracy and efficiency of
the proposed algorithm at different threshold values. The
snapshot of the first video shown in Fig. 5, has a clock with

a single second pointer, i.e. moving at a rate of 60 move-
ments/minute. The video specifications are,

Length of video: 60 s. Number of frames: 615 frames.
Frame size: 640 * 360 size: 44.9 MB (Uncompressed).
Frame rate 10 f/s.

From the above details, we can easily conclude that the
video has 60 movements. By applying the proposed algorithm

on this video at different threshold values we obtained the
results shown in Table 1. From the results shown in the table,



Table 1 Results of applying the proposed algorithm on the

first video.

h

0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995

TMD 1 1 29 45 60 60 60 60

TSS 552 552 553 553 553 553 552 537

FMD 2 2 2 2 2 2 3 18

FSS 60 60 31 15 0 0 0 0
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we see that the detection rate of the algorithm increases with
increasing value of the threshold as expected. The results in
Table 2 show the calculated performance measurements

defined earlier, these measurements show that a threshold
value of less than 0.975 can be considered non-practical due
to the very low values of sensitivity and the relatively low val-

ues of precision. Also, we note that the number of false
detected movements (FMD) increased by increasing the
threshold value above 0.985. This is expected, in this video,

as the movement of the seconds’ pointer from a position to
another at some moments, in the video, causes the seconds’
pointer to be drawn twice at two different positions at the same
time for a short period (less than a second), which causes the

proposed algorithm to detect the same movement more than
once at very high threshold values. The increase in the number
of the false detected movements results in a decrease in the

specificity, the accuracy and the precision of the proposed
algorithm for threshold values above 0.985.

The algorithm in case of the first video was applied on a

video with a high quality. To test the effect of the quality of
the video on choosing the value of the threshold, the algorithm
has been applied on a second video that has a clock with three

pointers and it has a low quality, see Fig. 6. The video has the
following specifications:

Duration of video: 00:01:00

Number of frames: 602 frames.
Frame size: 360 * 640.
Frame rate 10 f/s.

From the characteristics of the second video, we can see
that the video should have 61 movements; one movement for

the minutes’ pointer and 60 movements for the seconds’ pointer.
Tables 3 and 4 shows the results of applying the proposed
algorithm on this video. For this video, using threshold values

less than 0.980 is not practical. But the detection of false move-
-a- -b-

Figure 5 Snapshot of a video with known number of motions.

Table 2 Performance measurements of applying MS-SSIM on the

H Sensitivity Specificity Accuracy Precision

0.970 0.08 0.90 0.907 1.00

0.975 0.54 0.95 0.954 1.00

0.980 0.77 1.00 0.977 1.00

0.985 0.93 1.00 0.993 1.00

0.990 0.98 1.00 0.998 1.00

0.995 1.00 1.00 1.000 1.00

Average

[0.980:0995]

0.92 1.00 0.992 1.00
ments, unlike the first video, does not occur until a threshold
value of about 0.995.

For this video, the accuracy was about 0.05 only at
h= 0.985 and increased to 0.67 at h= .990 and reached
.934 at h = 0.995. However, unlike the case of the previous

video, the algorithm has scored only 5 false motion detections
at h= 1 (not shown in the table) and not detected any false
movements up to h= 0.995. This accounts for the constant

values for both the false positive rate and the positive prediction
in Table 4. This is because the movement of both the minutes’
pointer and the seconds’ pointer in this video was sharp, i.e.
there is no clearly observed repeated drawing of the same poin-

ter in a single movement as it happens in the previous video.
From the above experiments, it can be seen clearly that the

right choice of the value of h can be affected by the quality of

the video, where for good quality videos a value between 0.985
and 0.990 gives the best performance measurements, whereas
for less quality videos this value should increase up to 0.995

to achieve the best results. Also, the sensitivity of the algorithm
to detect false movements (or detect the same movement more
than once) increases when the threshold value is 0.995 or
above.

4.2. Test results of recorded video with continuous motion

The aim of this experiment is to test the efficiency of the algo-

rithm in detecting the motions in a recorded video at different
threshold and frame rate values.

Due to the continuous motion, in the video, it is difficult to

calculate an exact number of frames that have motions. So, we
adopted a manual approach to measure the performance by
observing the scenes of the video to detect the time interval

(s) that included a motion, i.e. the region of interest (ROI).
Then, we manually can deduce an estimated number of frames
that has a motion; nef, by multiplying the summation of these
time intervals and multiply the results by the frame rate to get
first video.

Positive

prediction

Negative

prediction

False negative

rate

False positive

rate

0.935 0.950 0.517 0.004

0.957 0.974 0.250 0.004

0.968 1.000 0.000 0.004

0.968 1.000 0.000 0.004

0.952 1.000 0.000 0.005

0.770 1.000 0.000 0.032

0.915 1.000 0.000 0.011
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an estimated number of the number of frames that has a
motion. Then, at different values of the threshold and frame
rate, we compare the actual number of frames detected by

the proposed system; ndf, to the numbers of estimated frames
(nef). Also, another number of frames; nof, is counted by
observing the same video and this value is compared as well

to the values detected by the MS-SSI at different threshold
and frame rate values.

Fig. 7 shows snapshots of a video captured in a restaurant

using a static camera to monitor persons in the restaurant. The
experiment is performed on a test video taken from the Image
Sequence Evaluation (ISE) Lab (Gonzàlez et al., 2007), see a
sequence of it in Fig. 7. The original video specifications are

as follows:

Duration of video: 00:02:13

Number of frames: 3321 frames.
Frame size: 1392 px, Height 1040 px,
File format: AVI.

Frame rate: 25 fps.

To get the frames’ ROI in this video, it is found that there

was no motion in the first 24 s; then, the persons started to
appear and move in the scene from the moment at 00:24:00
up to the moment 01:36:00. In addition to that, there was a
short moment of motion in other part of the video for less than

one second. So, a total of around 73.5 s was assumed as the
length of the ROI of the frames. This value was used to get
the estimated number of frames in the ROI at three different

fame rate values, 25, 18, 10 f/s, as shown in Table 5. The same
table also shows the counted number of frames, nof,

Table 6 shows the number of the detected frames (ndf)

detected by the proposed MS-SSI approach at several values
of the threshold obtained manually by observing the video.
Table 3 Measurements of the detected frames in the second

video.

H

0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995

TMD 0 0 5 33 47 57 60 61

TSS 544 544 544 544 544 544 544 544

FMD 0 0 0 0 0 0 0 0

FSS 61 61 56 28 14 4 1 0

Table 4 Performance metrics obtained by applying MS-SSIM on t

H Sensitivity Specificity Accuracy Precision

0.960 0.016 0.901 0.899 0.333

0.965 0.016 0.901 0.900 0.333

0.970 0.483 0.946 0.946 0.935

0.975 0.750 0.996 0.972 0.957

0.980 1.000 0.996 0.997 0.970

0.985 1.000 0.996 0.996 0.970

0.990 1.000 0.995 0.995 0.952

0.995 1.000 0.968 0.970 0.770

Average

[0.975:0.985]

0.917 99.61 0.988 0.966
The results of the two Tables 5 and 6 are used to draw the
charts shown in Fig. 8 in order to analyze the efficiency of
the MS-SSI with the change of the threshold value used in

the algorithm and the frame rate of the analyzed video.
Fig. 8(a) shows clearly that the detection rate increases with

the increase in the value of the threshold as expected from the

previous experiments. Fig. 8(b) shows an interesting anomaly,
where the detected number of frames, at any value of the
threshold, for the 18 f/s is more than the detection rate of

the 10 f/s but it is less than the 25 f/s. This is due to the fact
that increasing the frame rate from 10 f/s to 18 f/s results in
an increase in the number of frames of the video; and hence
the number of frames in the frames of the period of the

motion, which makes the MS-SSI able to detect higher number
of frames. However, continuous increase in the value of the
frame rate makes the differences between each two consecutive

frames less noticeable by the algorithm and requires the use of
a higher threshold value of the algorithm to be detected; hence,
resulting in a decrease in the number of the detected frames of

motion. Fig. 8(c and f) gives a better comparison by avoiding
variation of the numbers of frames in the three versions of the
video, by normalizing the number of detected frames to the

number of estimated and observed frames, i.e. ndf/nef and
ndf/nof respectively in the period of interest.

Fig. 8(c) shows clearly that the detection efficiency increases
with the increase in the threshold, where the detection reaches

high values for 10 f/s than the cases of 18 f/s and 25 f/s, i.e.
increasing the frame rate requires the use of higher threshold
values to get higher detection efficiency. The same Fig-

ure shows that a threshold value of 0.99 results in the detection
of a ratio around 100% for the 10 f/s, but using this value in
case of the 18 f/s results in 69% and only 50% in case of

25 f/s. Fig. 8(d), shows this clearly, as the chart lines are mono-
tonically decreasing with a sharp slope, i.e. the increase in the
frame rate results in lower detection efficiency of the MS-SSI.

The low detection ratios of Fig. 8(c and d) may indicate inef-
ficiency of the proposed MS-SSI at high frame rates, but look-
ing at Fig. 8(e) gives a better indication as it shows the ratio of
the detected motion by the MS-SSI to the number of motion

frames observed by humans, which is more sensible.
Fig. 8(e) shows that the MS-SSI resulting motion detection

for both 10 f/s and 18 f/s are very close to each other for all

values of the threshold, while for the 25 f/s it was a bit less
for low threshold values until the threshold value of 0.985,
where its tarts to be very close to the 10 f/s and the 18 f/s

and at a threshold value of 0.99 it has made a 0.98% detection
success. This is again due to the fact that using high frame rate
he second video at different threshold values.

Positive

prediction

Negative

prediction

False negative

rate

False positive

rate

– 0.899 1.00 0.000

– 0.899 1.00 0.000

1.00 0.907 0.918 0.000

1.00 0.951 0.460 0.000

1.00 0.975 0.230 0.000

1.00 0.993 0.066 0.000

1.00 0.998 0.016 0.000

1.00 1.000 0.000 0.000

1.000 0.973 0.450 0.000



Figure 6 Snapshot of the second video with known number of

motions.
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results in consecutive frames with very similar structure that

requires high threshold values to be detected by the MS-SSI.
The same result is deduced from Fig. 8(f); at low threshold val-
ues, the chart lines decrease with the increase in the frame rate,

while at high threshold values the lines look constant; i.e. the
ratio ndf/nof is constant versus the frame rate change. From
the above, it is seen that the value of the threshold should be
taken between 0.985 and 0.995, with a recommendation of

using values closer to 0.995 for the videos with a high frame
rate.

4.3. Results of motion detection in real time video

Real time videos captured using a webcam has been used to
test the algorithm. The frames of the video sequence were cap-

tured at a resolution of 192 � 256 and converted to gray level.
The sequence included 1236 frames. The MS-SSIM algorithm
has succeeded in motion detection with a true positive rate of
Figure 7 Snapshot of the vide
99.1% at a threshold value of 93%. The DTM algorithm
resulted in only 89.9% correct detection rate. This clearly
shows the efficiency of the proposed method relative to the

classical methods of motion detection.

5. Efficiency evaluation

As stated earlier, existing techniques for motion detection

include methods based on optical flow, frame difference, tem-
plate matching and background subtraction methods. Among
those, Background subtraction methods have been proven to

be the most efficient as indicated by Sun and et al. (2004),
Xie, 2013, and Benezeth et al. (2010). Hence, in this section,
we evaluate the efficiency of our proposed MS-SSI based

motion detection algorithm by comparing it with one of the
most efficient background subtraction methods (Benezeth
et al., 2010); the Gaussian Mixture Model (GMM). The main

idea of the GMM method is to use multimodal probability
density functions, where every pixel within a frame is modeled
with a mixture of KGaussians; hence, the probability of occur-

rence of a color pðIs;tÞ at a given pixel s in frame t is given by:

pðIs;tÞ ¼
XK
i¼1

wi;s;tN li;s;t;
X
i;s;t

 !
ð17Þ

where Nðli;s;t;
P

i;s;tÞ is the ith Gaussian model, wi;s;t is its

weight, li;s;t is the ith Gaussian mean and
P

i;s;t is the covari-

ance matrix. The weight wi;s;t of each distribution is updated

for each frame according to the equations in Benezeth et al.
(2010).
o with continuous motion.



Table 5 Average system performance indicators for MS-

SSIM when applied on the video shown in Fig. 7.

Observed movements at frame rate

10 f/s 18 f/s 25 f/s

Total number of frames

in the video

1331 frames 2394 frames 3321 frame

Estimated frames in the

ROI (nef)

738 frames 1324 frame 1833 frame

Observed frames of

motion (nof)

738 frames 888 frames 918 frames

Table 6 Measurements of the detected frames in the video

shown in Fig. 7.

Threshold value Total detected frames (ndf) of movements at

10 f/s 18 f/s 25 f/s

0.930 348 382 316

0.940 381 433 360

0.950 434 502 404

0.960 510 572 474

0.965 510 572 474

0.970 571 655 581

0.975 571 655 581

0.980 626 763 715

0.985 626 763 715

0.990 760 910 908

0.995 760 910 908
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In the following, we compare the proposed method with the
GMM method in three main aspects: the memory require-

ments, computation time complexity and the accuracy.

5.1. Memory requirements analysis

For the basic GMM model, the memory storage space
required is 5K floats per pixel (Benezeth et al., 2010), where

K is the number of distributions built per pixel and K is prac-
tically taken between 3 and 5, this relatively big storage area is
due to the need for representing every pixel with K probability

density function. On the contrary, our proposed method,
which is based on the MS-SSIM, computes at various scales
from 1 down to M, the contrast and the structure terms; in

addition to the luminance at the lowest scale only. Hence,
the main storage Sframe required for storing and processing
the pixels in a single video frame processed using this method
can be calculated by summing up the sizes required for pro-

cessing all the pixels in this frame at all the scales from 1 to
M as follows:

Sframe ¼ Npixels½1...M�:Scs�pixel þNðMÞ:Sl ð18Þ
where, Npixels[1. . .M] is the total number of pixels processed at

all scales from 1 to M, Scs-pixel is the storage size required for
processing one pixel to get both its structure and contrast val-
ues at a certain scale, NM is the number of pixels at scale M

and Sl is the storage required for luminance.
Npixels[1. . .M] can be calculated as follows:

Npixels½1...M� ¼ SScaleFð1Þ þ SScaleFð2Þ þ � � �SScaleFðMÞ ð19Þ
where SScaleF(i) is the number of pixels in frame i; hence,
Npixels[1. . .M] = (1 + (1/(2.2))+ � � �+ (1/(M.M))). SScaleF(1)

It is easily to conclude that,

Npixels½1...M� < 2:SScaleFð1Þ; ð20Þ
where SScaleF(1) is frame size at scale 1. Hence, from the above

and as NM = SScaleF(M) < SScaleF(1)

Sframe < 2:SScaleFð1Þ:Scs�pixel þ SScaleFð1Þ:Sl ð21Þ
Hence, we can conclude that the storage required to calcu-

late the MS-SSI of a single pixel SMS-SSI-pixel can be given by
SMS-SSI-pixel < (2.SScaleF(1). Scs-pixel + SScaleF(1). Sl)/SScaleF(1);

hence,

SMS�SSI�pixel < 2:Scs�pixel þ Sl ð22Þ
In MS-SSI, to calculate both Scs-pixel and Sl for each

pixel, a 11 � 11 window is typically used at each pixel, to
get both the contrast and the structure values as indicated

in equations (Susstrunk and Winkler, 2004; Wang and
Bovik, 2002; Martinez-Martin and del Pobil, 2012a, b) then
the same window moves to the next pixel. Hence, only 2
floats are required to save both the structure and the

contrast at each pixel, i.e. Scs-pixel = 2, and only one float
is required for the luminance value, i.e. Sl = 1. Hence, by
substituting in the above equation, SMS-SSI-pixel < 5, i.e.

the proposed method which is based on the MS-SSIM
requires less than 5 floating point operations for processing
each pixel in a video frame, which is K times less storage

than the GMM-based method.

5.2. Time complexity analysis

For the computation time, the GMM is much more
complicated and consumes more time as it involves several
stages including:

- Calculate K Gaussian distributions for each pixel in each
frame.

- Update the weights of the distributions from a frame to

another.
- Order the distributions and extract the best background
model for each frame.

- Segment the foreground and detect the motion by subtract-
ing it from the foreground of the previous frame.

All these operations make GMM much more time consum-

ing when compared to the proposed MS-SSIM. MS-SSIM
requires processing a number of pixels Npixels[1. . .M] < 2.
SScaleF(1), where it requires for each pixel only one distribution

to use it with the distribution of the pixel at the same location
in the following frame to calculate both the structure and the
contrast; then, the luminance is calculated only once on the last

scaled down image. Hence; the time complexity to process the
pixels in one video frame using our MS-SSIM based method is
given by:

Tsingle�frame ¼ Npixels½1...M�:Tsc þNM:Tl ð23Þ
However, Both Tsc and Tl are constants as they use a fixed

11 � 11 window. Hence,

Tsingle�frame ¼ c1:Npixels½1...M� þ c2:NM

¼ OðNpixels½1...M�Þas NM is much less thanNpixels½1...M�



Figure 8 Effect of threshold and the frame rate on the MS-SSSI.

Table 7 Comparison between GMM and the proposed

method.

Performance Indicators MSSI-MD GMM

Sensitivity 92% 93%

Specificity 100% 99.8%

Accuracy 99.2% 99.1%

Precision 100% 98.3%

F-score 0.9583 0.9558

MCC 0.17 �0.09

Positive-prediction 91.5% 98.3%

Negative-prediction 100% 99.6%

False-negative-rate 0 3.3%

False-positive-rate 1.1% 0.18%
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As Npixels[1. . .M] < 2.SScaleF(1), hence, the MS-SSIM requires

a number of iterations less than twice the video frame size to
detect the motion. In contrast to GMM, to run the first stage,
i.e. to get the K distributions of each pixel requires a number of

times equals K times the frame size. This means the whole
processing of the proposed MS-SSIM is faster than the first
stage of the GMM-based method, which clearly emphasizes

the efficiency of the proposed method.

5.3. Performance of detection

To compare their performance, both the GMM method and
the proposed method have been tested on the videos shown
earlier in Figs. 5–7. Table 7 explores the average performance



408 M. Abdel-Salam Nasr et al.
measurements of both methods on both videos. It is clear that
the proposed method provides very high specificity, accuracy
and precision in the detection with very high sensitivity, F-

Score, a positive MCC and very low false rates in comparison
with the GMM.

6. Conclusions

This work presents an efficient novel approach for detection of

motion occurrence within videos. It measures the similarity of
successive frames of a video using the Multi Scale Structural
Similarity Index. The proposed approach has achieved very

high motion detection accuracy in most of the conducted
experiments; its efficiency depends on the used threshold,
where it gives the best results for values between 0.985 and

0.995 in most experiments. The experimental results show that
the proposed MS-SSIM-based method has resulted in better
performance than the single scale SSI approach but at the cost
of relatively lower processing speed, this reduction in speed is

expected as it applies the SSI on several scales. In comparison,
with existing high efficient methods, the proposed method has
shown to provide high efficiency with high speed and relatively

low storage requirements which make it a great candidate for
use in embedded devices with limited resources. The major
advantages of the presented approach are: the higher detection

accuracy and the quasi real-time processing speed. The resili-
ence of the proposed approach to luminance, contrast and
structural changes makes it very suitable for motion detection

applications. The proposed approach at the moment detects
the motion occurrence not the moving objects; in the future,
we plan to integrate it with other existing approaches for
detecting the moving objects. Also, further research will focus

on the area of integrating the developed MS-SSIM into
embedded systems with other non-camera based motion detec-
tion approaches to build multi-sensing modalities for motion

detection.
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