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Abstract The software maintenance activities performed without following the original design

decisions about the package structure usually deteriorate the quality of software modularization,

leading to decay of the quality of the system. One of the main reasons for such structural deterio-

ration is inappropriate grouping of source code classes in software packages. To improve such

grouping/modular-structure, previous researchers formulated the software remodularization prob-

lem as an optimization problem and solved it using search-based meta-heuristic techniques. These

optimization approaches aimed at improving the quality metrics values of the structure without

considering the original package design decisions, often resulting into a totally new software mod-

ularization. The entirely changed software modularization becomes costly to realize as well as dif-

ficult to understand for the developers/maintainers. To alleviate this issue, we propose a multi-

objective optimization approach to improve the modularization quality of an object-oriented sys-

tem with minimum possible movement of classes between existing packages of original software

modularization. The optimization is performed using NSGA-II, a widely-accepted multi-

objective evolutionary algorithm. In order to ensure minimum modification of original package

structure, a new approach of computing class relations using weighted strengths has been proposed

here. The weights of relations among different classes are computed on the basis of the original

package structure. A new objective function has been formulated using these weighted class rela-

tions. This objective function drives the optimization process toward better modularization quality

simultaneously ensuring preservation of original structure. To evaluate the results of the proposed

approach, a series of experiments are conducted over four real-worlds and two random software

applications. The experimental results clearly indicate the effectiveness of our approach in
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improving the modularization quality of existing package structure by doing very small movement

of classes between packages of original software modularization.

� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The quality of the software modularization has a major impact

on many software system quality parameters such as under-
standability and maintainability (Tonella, 2001; Praditwong
et al., 2011). For Object-oriented software systems, the modu-
larization is largely dependent on classes. Classes are nothing

but collection of data and associated methods. Generally for
small software system, the classes are considered as modules,
however for large and complex systems, it has been reported

that a set of collaborating classes (i.e. packages) can be a better
module of system organization than a class (Gupta and
Chhabra, 2009) and bigger software systems are generally

designed and developed by using these modularization criteria.
As the software system evolves over the time, addition,

removal and modification of classes influence the original soft-
ware modularization in an adverse manner. It has been

observed that due to short deadlines, developers often do not
follow the original package design rules during maintenance
for early completion of the work leading to modular structure

deterioration (Marcio et al., 2014). As a result, the original
modularization structure gets modified to the extent that it
looses its structural quality due to sub-optimal placement of

classes in different packages (Gui and Scott, 2006). Software
maintenance is a continuous ongoing phenomenon but the
deteriorated structure quality makes the maintenance difficult

and negatively affects the software evolution (Mitchell and
Mancoridis, 2006). Hence, the re-modularization of a software
system becomes essential whenever the system quality gets
degraded to a point from where the further evolution is not

feasible within permissible time and cost. The software remod-
ularization problem has been solved by many researchers in
the past by formulating it as a search-based optimization prob-

lem and solved it using meta-heuristic techniques (Mitchell,
2002; Mahadavi et al., 2003; Patel et al., 2009; Abdeen et al.,
2009, 2013; Cui and Chae, 2011; Praditwong et al., 2011;

Barros, 2012).
Most of the search-based remodularization approaches

improve the software structure by optimizing coupling and

cohesion criteria (Mahadavi et al., 2003; Praditwong et al.,
2011; Barros, 2012). These approaches improved the coupling
and cohesion in absolute terms, but the newly suggested pack-
age modularization solution usually became so complex and

different from the original one, that it would be hardly accept-
able to the software maintainer (Marcio et al., 2014). Such
methods can be useful when system requires complete over-

hauling. Such a situation comes once in a while, but not during
initial/regular maintenance. At initial/regular maintenance,
system needs to be re-modularized with an improved modular

structure with less restructuring cost. Hence, the quality crite-
ria need to be modeled in such a way, so that it can drive opti-
mization process with preservation of the original package
modularization. In literature, some researchers (Abdeen

et al., 2009, 2013; Bavota et al., 2014) have tried to address
these problems by controlling the optimization process using
some constraints. The authors (Abdeen et al., 2009, 2013)
improved the package structure by improving the package

coupling, package cohesion and package cyclic dependencies
as a single and multi-objective optimization problem. They
controlled the optimization process by applying the constraints

on movement of the classes among packages. However, defin-
ing such constraints is not easy and maintainers must have a
deep insight of the original design decisions of software mod-

ularization. In most of the cases the maintainers are not the
developers of the original modularization (Bavota et al.,
2014). In such situations finding the constraints that can drive
the optimization process toward design decision of original

modularization becomes very difficult. Instead of optimizing
through constraints, another approach has been proposed
recently by Bavota et al. (2014) where the involvement of

end-user becomes compulsory. Their approach is based on
structural and semantic dependencies. They controlled the
remodularization process by putting the software end-users

in the every iteration for requesting the feedback. In this
method an end-user must have thorough understanding of
design decision of original software modularization, which is
again not feasible practically most of the times. Hence it can

be stated that importance of original structure of the software
plays an important role in the process of remodularization, but
existing methods of its inclusion in the optimization process

are highly person-specific, and availability of such persons is
always a limitation of such approaches. So there is an immense
need to incorporate the characteristics of original modular-

structure, preferably without necessity of individuals having
clear insight of original design. This paper attempts to solve
this issue and the proposed approach is able to include the

original structure characteristics from the source code, without
any need of well-aware end-user/original developer.

This paper presents a multi-objective optimization
approach for improving the existing package structure of an

object-oriented system aiming at preserving the original design
decision of software modularization. To this contribution, the
optimization process is controlled by objective functions which

are formulated in terms of newly proposed weighted relations
that reflect the nature of original design decision. The weights
of each type of existing relations are calculated in terms of

locality (intra and inter relations) of that relation in original
software modularization. Further, these weighted relations
are used to calculate overall connection strength among pair

of classes. This connection strength helps in keeping the opti-
mization process around original software modularization.

The multi-objective formulation includes package cohesive-

ness index, package connectedness index, intra-package con-

nection density and package size index as the objective
functions. To solve the multi-objective optimization, we used
Non-Dominated Sorting Genetic Algorithm (NSGA II) (Deb

et al., 2002) a widely-accepted multi-objective evolutionary
algorithm. We considered this algorithm, in particular, because

http://creativecommons.org/licenses/by-nc-nd/4.0/
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it has been applied successfully previously to solve the similar
software remodularization problem domain (Barros, 2012;
Abdeen et al., 2013). In order to evaluate the proposed opti-

mization approach, we perform a comparative study with
two single-objective optimization algorithms i.e., Simulated
Annealing (SA) (Kirkpatrick et al., 1983) and Hill-Climbing

(HC) of Bunch API (Mancoridis et al., 1999). A series of
experiments were conducted for four real-world and two ran-
dom software applications. The experimentation results indi-

cate the effectiveness of our approach and we found that our
planned multi-objective optimization approach improves the
existing package modularization with partially preserving the
original package modularization decision.

The remainder of this paper is organized as follows: Sec-
tion 2 provides related research works. Section 3 presents the
multi-objective concepts of software remodularization prob-

lem. Section 4 presents the summary of proposed methodol-
ogy. Section 5 describes the experimental setup. Section 6
presents results and analysis. Section 7 discusses main contri-

bution and limitation of proposed approach and finally Sec-
tion 8 concludes with future works.
2. Related work

In the previous three decades, a lot of works have been devoted
to the automatic remodularization of software systems aiming

at improving the quality of system by restructuring the soft-
ware architecture. Most of the software remodularization
approaches are based on the clustering techniques (Anquetil
and Lethbridge, 2002; Wu et al., 2005; Bittencourt and

Guerrero, 2009). The approaches have been adapted for the
various purposes such as for the software module regrouping
(Praditwong et al., 2011), module extraction (Mitchell and

Mancoridis, 2006), logical component extraction (Erdemir
and Buzluca, 2014), etc. These approaches are characterized
on the basis of used techniques (e.g., search based,

consensus-based, hierarchical and partitioned based), type of
entities (e.g., variable, method, class, source file), types of fea-
tures between entities (e.g., conceptual, semantic, static,

dynamic) and type of user interaction (e.g., automatic or
semi-automatic) (Erdemir and Buzluca, 2014).

Wiggerts (1997) first presented the theoretical background
of clustering based software remodularization algorithms to

improve the modularity of system. They also classified the
modularization approaches into graph theoretical approach,
construction approach, optimization approach, and hierarchi-

cal approach. They did not provide any evaluation and just
gave the concepts of similarity measurement criteria and the
remodularization algorithms. Later Anquetil and Lethbridge

(1999) conducted an empirical study to test some of the remod-
ularization algorithms proposed by Wiggerts and performed
an empirical study to compare their weakness and strength.
Subsequently, Tzerpos and Holt (1999) proposed MOJO met-

ric for the evaluation and comparison of modularizations
obtained from different approaches. The MOJO metric is used
to measure the distances between two modularizations and

also helpful for testing the stability of remodularization algo-
rithm. The MOJO metric is also being used widely in the liter-
ature to compare the modularizations (Tzerpos and Holt,

2000). Wu et al. (2005) conducted an empirical study for com-
parative study of clustering based remodularization algorithms
in the context of software evolution. Their results showed that
the clustering algorithms based on analytical analysis cannot
be adapted for large and complex software systems.

Maqbool and Babri (2007) performed a study on the applica-
bility of various hierarchical clustering algorithms in the
domain of software architecture recovery. They investigated

various similarity and distance measures used in remodulariza-
tion domain. The remodularization of software systems was
also addressed using the pattern clustering (Tzerpos and

Holt, 2000), Lexical feature clustering (Bittencourt
and Guerrero, 2009), semantic clustering (Kuhn et al., 2007),
and consensus- techniques (Forestier et al., 2000; Kashef and
Kamel, 2000).

Even after the development of many clustering based soft-
ware remodularizations, they all show inefficiency for large
and complex problems, because of their deterministic nature.

To make the software remodularization efficiently solvable,
application of search-based meta-heuristic techniques can play
a significant role (Harman and Jones, 2001). The software

remodularization problems exhibit various features that can
be used to formulate it as a search based optimization prob-
lem. Mancoridis et al. (1999) were the first who formulated

and solved the software remodularization problem using
search based optimization technique. The author formulated
the remodularization problem as a single-objective optimiza-
tion problem and solved it by using Hill-Climbing algorithm.

Similar to the above approach, Doval et al., 1999 also formu-
lated the software clustering problem as a single-objective opti-
mization problem and proposed a new genetic algorithm to

solve the problem. The bad representations of software engi-
neering problem as search problem directly affect the size of
search space and thus execution time. To address this issue

Harman et al., 2002 proposed a normalized representation
for search-based software clustering problem, which reduced
the size of the search space and helped to improve the outcome

of Genetic Algorithms. The simple Hill Climbing algorithm
(Mancoridis et al., 1999) has shown the local minima and effi-
ciency problem. To compare the robustness of various soft-
ware clustering algorithms Harman et al. (2005) performed

an empirical study. They examined the robustness of module
clustering fitness function MQ with clustering function EVM
(Tucker et al., 2001). Instead of genetic algorithms, the use

of the evolution strategy also gained attention in software clus-
tering. Khan et al. (2008) proposed a new software clustering
approach based on evolution strategy and their approach pro-

duced better results in most of the cases.
Most of the search-based software remodularization has

been formulated as a single-objective optimization problem
(Mancoridis et al., 1999; Doval et al., 1999). Recently, multi-

objective optimization based software remodularization
approaches have gained more attention. Praditwong et al.
(2011) first formulated the software modularization problem

as a multi-objective optimization problem and also proposed
a multi-objective evolutionary algorithm (i.e., two-archive
genetic algorithm). They concluded that multi-objective formu-

lation of software modularization problem is more useful com-
pared to single-objective formulation. The authors have
proposed two multi-objective formulations, i.e., Equal

Cluster-size Approach (ECA) and Maximizing Cluster
Approach (MCA) and compared with Hill-climbing algorithm.
Subsequently, Barros et al. (2012) evaluated the effectiveness of
ECA and MCA formulation by deleting and incorporating a
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new objective. Their empirical study showed that it could be
possible to achieve similar results as of MCA and ECA with
reduced objective. Abdeen et al. (2009) proposed single-

objective software remodularization to improve the package
structure by improving the package coupling, package cohesion
and package cyclic dependencies. Later, same authors (Abdeen

et al. (2013)) formulated the same work as the multi-objective
optimization problem and solved using NSGA-II algorithm.
Recently, Barros et al. (2014) performed a case study that

addressed the applicability of search-based remodularization
technique in the context of software recovery of large and open
source software systems. Their study showed that the software
remodularization based on search-based optimization tech-

niques requires better model to drive the optimization process
instead of current coupling and cohesion measurement.
Bavota et al. (2014) proposed a remodularization approach

based on structural and semantic dependencies. Their approach
is based on the Relational TopicModels (RTM), a probabilistic
modeling techniques. The approach succeeded in coupling

reduction from 10% to 30% among software modules.
Most of the current approaches on software remodulariza-

tion focused on improving some quality metrics (e.g., coupling

and cohesion), resulting into a totally new modularization to
the developer, irrespective of existing module organization
(Harman et al., 2002; Mancoridis et al., 1999; Praditwong
et al., 2011; Wu et al., 2005). These approaches proposed bet-

ter modularization in terms of quality metrics, but its structure
is totally new from the original package organization.
Consequently, modularization solution proposed by such

approaches can be difficult to understand and/or to validate.
This paper targets to improve the package structure by mov-

ing less number of classes between the packages of the existing

software modularization. To accomplish the task, we have pro-
posed weighting scheme for the class relations on the basis of
their position in original software modularization and using

this concept a new mechanism of software remodularization
for package restructuring has been proposed. To the best of
our knowledge, such approach has been proposed for the first
time in the literature. As different types of relations with differ-

ent weight are being considered for the first time, instead of just
binary values, the proposed approach is bound to provide bet-
ter results than the former methods. Our experimentation

results have supported our belief, and thus an effective and
optimal software remodularization approach of existing pack-
age organization has been formulated in this paper.

3. Multi-objective software remodularization

To solve the software remodularization problem, the software

system is abstracted away as a graph where nodes are modeled
with classes and edges with their connections. The software
remodularization problem is formulated as a graph partition-
ing problem where different partitions represent different mod-

ularizations. A graph with a set of N nodes can be partitioned
into a collection of disjoint subset of N whose union is N. For
example, a graph with set of node N = {a, b, c} is partitioned

into five alternatives {{a}, {b}, {c}}, {{c}, {a, b}}, {{a}, {b, c}},
{{b}, {a, c}}, {{a, b, c}}. The number of ways to partition a set
of n elements into k nonempty subsets is computed by the Stir-

ling numbers of the second kind, S(n, k) (Harris et al., 2000).
The S(n, k) is defined as follows:
Sðn; kÞ ¼ k� ðSðn� 1; kÞ þ Sðn� 1; k� 1Þ; n P 1

The total number of disjoint subset of a set of n element can
be counted by the nth Bell number which is defined as follows:

Bn ¼
Xn
k¼1

Sðn; kÞ

where, Bn is the total number of partitions of a software system

with n number of classes. The size of Bn grows exponentially
with n. For example, B1 = 1, B3 = 5, B5 = 52, B7 = 877,
B15 = 1,382,958,545. The searching for a feasible alternative
partition from a graph for the software system becomes prob-

lematic as n (i.e. the number of classes) grows. Hence, the
graph partitioning problem is categorized into NP-hard prob-
lem (Farrugia, 2004). The deterministic or exhaustive search

approach cannot solve these problems in reasonable comput-
ing time. Hence, formulation of software modularization prob-
lem as a search-based optimization problem is the best

alternative to find a near optimal solution. The search-based
optimization can be single-objective or multi-objective accord-
ing to the number of objective functions to be optimized. The
brief description of single-objective and multi-objective opti-

mization formulation for software remodularization problem
is given in the following sub-sections.

3.1. Single objective formulation

In single objective software optimization problem, only the
single objective is optimized. It determines a modularization

M* for which

FðM�Þ ¼ min=maxFðMÞjM 2 W

where W is the set of all feasible modularizations. M is the
software modularization such as F: W? R is an objective

function. Here function F can be minimization function or
maximization function. Most of the software modularization
problems are based on the single-objective optimization

problem. Different single objective optimization approaches
vary with optimization function F and optimization method.
Even though single objective optimization methods have been
widely applied, still they have some weakness. (1) These single

objective methods attempt to optimize just one objective
function and this may restrict the modularization solution to
a particular software structure property. (2) A single fixed

modularization solution returned by single objective approach
may not be suitable for the software modularization with
multiple potential structures.

3.2. Multi-objective formulation

In multi-objective software optimization, more than one
objective is optimized. It determines modularization solutions

M* for which

FðM�Þ ¼ minðF1ðMÞ;F2ðMÞ; . . . ;FmðMÞÞjM 2 W

where m is the number of objective functions and Fi represents
the ith objective function. In multi-objective software

optimization, there is usually no single best solution, but there
can be more than one non-dominated solution. For two
modularization solutions M1, M2 2 W, solution M1 is said to

dominate solution M2 (denoted as M1 6M2) if and only if
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8i 2 ð1; . . . ;mÞ FiðM1Þ 6 FiðM2Þ
^9i 2 ð1; . . . ;mÞ FiðM1Þ < FiðM2Þ
Otherwise M1 and M2 are said to be non-dominated solutions.
The set of all non-dominated solutions in objective space is

called Pareto front. The multi-objective modularization tech-
niques provide flexible modularization solutions where devel-
oper has more options for selection of best solution based on

their requirements.
To deal with software engineering problems with multiple

and conflicting design quality criteria, the multi-objective opti-

mization (MOO) technique can be a more suitable mechanism
to solve the problem. As mentioned in Section 2 above the
remodularization of software system (with minimum changes

in original package structure) can be treated as a multi-
objective optimization problem and has been attempted by
the researchers; but an in-depth knowledge of the original
structure related decisions was necessary for all such proposed

solutions. As original developers are rarely available for main-
tenance, we need an approach of remodularization without the
need of persons having knowledge of original structure.
4. Proposed approach

The aim of the proposed approach is to improve the quality of

the software through remodularization such that original
structure is kept into consideration during the process. This
can be ensured by lesser movement of classes among packages

and non creation/deletion of new packages. To achieve this,
Figure 1 Proposed methodology
the problem is formulated as a multi-objective optimization
problem and solved using multi-objective evolutionary algo-
rithm. The general structure of the proposed work is shown

in Fig. 1. The different steps of the proposed multi-objective
optimization approach are as follows. In the first step, the
classes and various types of class relations based on structural

aspects are extracted from the software system. In the second
step, all extracted relations are assigned a weight according
to defined weighting scheme. In the third step, based on the

weights of relations the connection strength between the
classes is calculated. In the fourth step, a weighted class con-
nection graph (WCCG) is generated and then the representa-
tion and multi-objective formulation of WCCG are done.

Finally, the multi-objective evolutionary algorithm is applied
using multi-objective objective functions.

4.1. Extraction of classes and relation

In object-oriented software system, the classes are considered
as an essential unit of organization, and it encapsulates attri-

butes and methods as its elements. The classes in the software
system are correlated with each other by various mechanisms.
These mechanisms can be determined from different aspects

(e.g., structural, dynamic, semantic and conceptual)
(Mancoridis et al., 1999; Praditwong et al., 2011; Kuhn
et al., 2007; Maqbool and Babri, 2007). But this paper consid-
ers only those mechanisms that are based on the structural

aspect. Different mechanisms constitute the various types of
relations, and hence different kinds of coupling between the
for software remodularization.



Table 1 Mechanisms that constitute relations between classes.

# Mechanism Eder et al.

(1994)

Briand et al.

(1997)

Hitz and

Montazeri (2005)

Erdemir and

Buzluca (2014)

Maffort et al.

(2015)

1 Method share data (public attribute etc.) Yes No No Yes Yes

2 Method references attribute No No Yes Yes Yes

3 Method invoke method Yes Yes Yes Yes Yes

4 Method receive pointer to method No Yes No Yes Yes

5 Class is type of class attribute Yes Yes Yes Yes Yes

6 Class is type of method’s parameter or return type Yes No Yes Yes Yes

7 Class is type of method’s local variable Yes No Yes Yes Yes

8 Class is type of parameter of a method invoked

from within another method

Yes No No Yes Yes

9 Class is ancestor of another class Yes No Yes Yes Yes

10 A class is an exception thrown in a method of other

class

No No No No Yes
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classes. Table 1 shows the different mechanisms that form var-
ious relations and that have been used by the previous

researchers to design the coupling metrics.
Based on the mechanisms presented in Table 1, various

relation types can be derived. For example a relation type ‘‘ex-

tends” can be derived from ‘‘class is ancestor of another class”
mechanism. In software package restructuring, where the
classes are moved into a suitable packages, based on various

coupling relations; it is necessary to collect all possible relation
types from the source code that can be helpful to investigate a
software quality indicator. According to different mechanisms,
there can be many types of structural relations between classes,

but for the sake of simplicity, we consider only eight main
types of relevant relations. These eight types of structural rela-
tions are the most commonly used relations used by various

researchers (Erdemir and Buzluca, 2014; Maffort et al., 2015)
as well as tools (Structure 101, stan4j). The authors have stud-
ied other kinds of relations also such as contains, declared

exception, create instance, public method utilization, but their
contribution toward coupling/cohesion gets covered through
these eight types, as we have computed these eight types
accordingly by widening the scope of their definitions. The

brief description of these relations is given as follows:

� Extends (EX) – An extend relations (also called an inheri-

tance) implies that one specialized class extends other gen-
eral class. For example, if class A inherits the methods
and attributes of class B, then class A is said to have

‘‘Extends” relation with class B.
� Has Parameter (HP) – In this type of relation, an object
reference of one class is passed to another class as a method

parameter. Further using this reference the method and
variable related to that object can be accessed. For example,
let Ma be a method of class A, there is a ‘‘Has Parameter”
relation between class A and class B, if class B is type of a

parameter of method Ma.
� Reference (RE) – In reference class relation one class con-
tains the objects as reference of other class, and by using

these objects class makes reference to the attribute of that
class. The containing class is responsible for creation and
deletion of the contained class reference. For example, there

is a reference relation between class A and class B, if a
method Ma of class A has an object of class B, and using
this object, method Ma references an attribute of class B
� Calls (CA) – In this type of relation the method in one
class, calls the method in other class by using the reference
of that class. For example, there is a ‘‘calls” relation
between class A and class B, if a method Ma of class A

has an object of class B, and using this object, method
Ma invokes a method Mb of class B.

� Implement (IM) – An implement relation exists between

two classes, when one of them must implement, or realize,
the behavior specified by the other. For example, if class
A implements the methods Mb declared in class B.

� Is of Type (IT) – In Is-of Type relation (also called an
aggregation relation) a class stores the references to other
class for later use. For example, there is an ‘‘Is of Type”

relation between class A and class B, if class B is the type
of an attribute of class A.

� Return (RT) – A return relation between classes is estab-
lished, if a class has a method which returns an object of

another class. For example let Ma is a method of class A,
there is a ‘‘return” relation between class A and class B, if
class B is the return type of method Ma.

� Throws (TH) – A throws relation between classes is estab-
lished, whenever a method in one class, throws an exception
object to an exception handler method, and the method

exists in another class. For example class A throws an
exception to class B.

All above mentioned relations are directional in nature, i.e.
if classA is related to class B, then it is not necessary that class B
is also related to class A. A class may be dependent on another

class, but the reverse may not be true. For example, if we
assume that a class A depends on class B, then it means that
any changes in implementation of class B is likely to initiate

some changes in the implementation of the class A. But any
implementation of class A will not necessarily demand changes
in the implementation of the class B. Thus relation between a

pair of classes must be considered as a directional entity.

4.2. Assigning weights to relations

The modularization quality of a software system is defined in
terms of various quality characteristics and most of these
quality characteristics are evaluated in terms of how the classes
of the system are connected with each other. Coupling and

cohesion are two most important quality characteristics of
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Figure 2 Explanation of class connection and relations.
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the software system and a good software modularization exhi-
bits low coupling (inter-module connection strength) and high
cohesion (intra-module connection strength). In object-

oriented software system, each class is connected with other
classes with zero or more relations. Hence, the connection
strength between the classes varies according to underlying

relation instances and their weights exist between those classes.
Fig. 2 depicts the connection and relations between two classes
C1 and C2.

The optimization based software remodularization
approaches improve the package structure by optimizing var-
ious quality criteria. Hence, the quality criteria defined in
terms of connection strength have a major influence on the

optimization process as well as produced solution. To improve
the meaningfulness of modularization solution produced by
our proposed optimization approach, we assign weights to

the relations depending on their locality of being external or
internal with respect to the original software modularization.
The relation weights are calculated as follows:

� Let C denote the set of classes C= {c1, c2, . . ., cn}, of the
original package organization of software system S; The |
C| = n is the number of classes in S.

� Let the set of relation categories R= {r1, r2, . . ., rm},
between classes Ci and Cj.

� Let Nk (Ci, Cj) is the number of instances of relation rk,

between classes Ci and Cj.
� Let Ni is the set of classes that are in the same package as
class i.

� Let relation weight wk of class category rk is calculated as
follows:

wk ¼ 1þ
Pn

i¼1

P
j2Ni

NkðCi; ;CjÞPn
i¼1

P
j2Ni

NkðCi;CjÞ þ
Pn

i¼1

P
jRNi

NkðCi;CjÞ ð1Þ

The weight wk is varying in the range of [1, 2]. The assign-

ment of weights to relations in such way drives the optimiza-
tion algorithms toward the original package organization.
This weighting scheme technique for relations helps to improve

the software package structure as well as partially preserves the
original package organization instead of producing totally new
software modularization.

4.3. Calculating connection strength

A connection from class A to class B exists if there is/are some
relation/s from class A pointing to class B. Like the relations,

the connection is also a directed entity. The connection
strength from a class to another class is computed by consid-
ering the following three aspects:
� The different types of relations between classes that collec-

tively constitute connection.
� The number of instances of relations of a particular type.
� The weights of each type of relations.

The first aspect, the different type of relation between
classes, has to be defined when defining the measurement goal.
In a class connection there can be more than one type of

relations as well as more than one instances of that type of
relation, so relation type and number of instances of that type
need to be considered. Different types of relations contributed

different weights for computing the connection strength. The
following notations are used to describe the methods to
compute the connection strength (CS) between the classes:

� Let Nk(Ci, Cj) denote the total number of instance of
k-relation types, between classes Ci and Cj.

� To compute the connection strength CS (Ci, Cj) from

classes Ci to Cj we use the following formula;

CSðCi;CjÞ ¼
Udefined if ði ¼ jÞXTH
k¼EX

wkNkðCi;CjÞ otherwise

8><
>: ð2Þ

With the help of the formula 2, the strength of connections
existing among the classes of software system can be com-

puted. The idea behind the calculation of connection strengths
is to palace highly connected classes in the same package and
loosely connected classes in a different package.

4.4. Representation of software system

After computing the connection strength among classes, we

generate a weighted class connectivity graph (WCCG) for
the object oriented software system. The WCCG G< V,
E>, where V is the set of vertices {vi} corresponding to classes

and E is the set of edges {ei} corresponding to connection
between the classes. Module (i.e., package) Mi in class connec-
tivity graph is a group of correlated classes or interfaces con-
nected with each other and that can also be connected with

other module in the system. The definition of module is as
follows:

� Mi is the group of classes and subset of graph G; Mi #G
such that Mi =<Vi, E(Vi)>, where Vi is the set of classes
in Mi; V i # V and E(Vi) is the set of all connections between

classes in Vi.
� Module set M = {M1, M2, . . ., Mk}, and |M| = k is the
number of module.

� Mi is the non empty set of classes: V i–;/, and EðV iÞ–;/,
i= 1,2, . . . ,k.

� Modules are disjoint set. Two different modules Mi and Mj

cannot have common classes and connections Mi \Mj ¼
/; 8ð1 6 i; j 6 k ^ ði–jÞÞ. This property follows that

V i \ V j ¼ / ^ EðV iÞ \ EðV jÞ ¼ /8ð1 6 i; j 6 k ^ ði–jÞÞ.)

An example of class connectivity graph of a hypothetical
object-oriented software system with eight classes is illustrated
in Fig. 2, where,
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V= {C0, C1, C2, C3, C4, C5, C6, C7}.

E = {e0, e1, e2, e3, e4, e5, e6, e7, e8}, where e0 = {CA,
CA, RE}, e1 = {EX}, e2 = {RE, CA}, e3 = {IM}, e4 =
{CA}, e5 = {HP,TH, CA, RE}, e6 = {CA, CA}, e7 =

{HP}, e8 = {CA, RE, RE}.
M = {M1, M2, M3}, where M1 = Package-1,
M2 = Package-2 and M3 = Package-3.
M1 = {C0, C3, C4}, M2 = {C5, C6, C7}, M3 = {C1, C2}

To apply the evolutionary algorithm on software modular-
ization problem, the representation of software system needs

to be defined (Praditwong et al., 2011). In case of software
remodularization, we model the software system as the
WCCG. To represent the WCCG, a simple array is used,

where classes map to array index and packages to array ele-
ments. The array representation of the WCCG for hypotheti-
cal software system given in Fig. 3 is represented as {1, 3, 3,
1, 1, 2, 2, 2}. For example classes C0, C3 and C4 are in same

module (i.e. Package-1).

4.5. Remodularization objectives

After defining the suitable representation of software system,
next we have to formulate the quality characteristics that can
be used as an objective function to guide the optimization pro-

cess toward a better package structure. The inter-module and
intra-module connections are widely used criteria for the vari-
ous measurement goals (i.e., maintainability, understandability

and reusability) of the package structure optimization. In soft-
ware package re-structuring, beyond these quality characteris-
tics, use of some other quality criteria can also be helpful for
driving solution space toward the better quality package struc-

ture. That is the reason of incorporation of multi-objective
optimization approach to improve the quality of package
structure. The detailed descriptions of these objective functions

are given as follows:

4.5.1. Package cohesiveness index (PCIcoh)

The package cohesiveness index (PCIcoh) is used to measure

the extent to which the classes within each package are con-
nected to other classes of the same package. The package cohe-
siveness PCcoh(M) measures the total intra-package connection
Figure 3 WCCG of a hypothetical
strength of a modularization M for the software system. For a
given modularization M, with total n number of classes, it can
be calculated by:

PCcohðMÞ ¼
Xn
i¼1

X
j2Ni

CSðCi;CjÞ ð3Þ

where Ni is the set of classes that are in the same package as

class i, CS(Ci, Cj) is the connection strength between classes
Ci and Cj. The PCcoh (M) value ranges between zero, when
all classes are in separate packages, and the sum of all connec-

tion strength, when all classes are in a single, fully-connected
package. For many software applications, high-quality soft-
ware package will have high connection strengths within pack-

ages (and thus high intra-package cohesiveness). The package
cohesiveness index is as follows:

PCIcoh ¼ PCcohðMÞ
PCmaxðMÞ ¼

Pn
i¼1

P
j2Ni

CSðCi;CjÞPn
i¼1

Pn
j¼1^i–jCSðCi;CjÞ ð4Þ

The value of the PCI evaluates to zero when all classes are
in separate packages (i.e., number of package equal to number
of classes), because every class is ‘‘perfectly” connected to

every other class in each package. Conversely, it becomes
one when all classes are in one package. Hence, the PCI value
needs to be maximized for better software package structure.

4.5.2. Package connectedness index (PCIcon)

The package cohesiveness index, incorporates the within-
package connection strengths, but does not consider across

package boundaries. If a package boundary cuts through
low- connection strength, the effect of package to remaining
other packages would be insignificant. To measure the connec-

tion strength between packages we define the package connect-
edness PCcon(M), which can be calculated as follows:

PCconðMÞ ¼
Xn
i¼1

X
jRNi

CSðCi;CjÞ ð5Þ

The package connectedness index (PCIcon) measures the
extent to which classes in different packages are connected to

one other. The PCIcon for a given modularization is evaluated
as follows:
object-oriented software system.
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PCIcon ¼ PCconðMÞ
PCmaxðMÞ ¼

Pn
i¼1

P
jRNi

CSðCi;CjÞPn
i¼1

Pn
j¼1^i–jCSðCi;CjÞ ð6Þ

Unlike PCIcoh, the PCIcon value for any modularization M,
is evaluated to zero when all classes are in the same package,
because there are no connections to other packages. For a
modularization where all classes are in different packages,

the PCIcon is evaluated as one. Hence, for better software
package structure, PCIcon value needs to be minimized for bet-
ter software package structure.

4.5.3. Intra-package connection density (ICD)

The package modularization solution, where all classes are
packaged into a single module, exhibits a best package con-

nectedness, however it is not the best possible package cohe-
siveness. Hence, the goal of ICD is to limit the excessive
package connectedness, but not to eliminate package connect-

edness altogether. The ICD is trade-off between coupling and
cohesion. For each package k, ICDk is calculated as the ratio
between internal and external relation weights, which has to

be maximized. Finally, the ICD of the overall package modu-
lar structure is calculated as the average of every ICDk.
ICDk ¼ CIink
CIink þ CIoutk

¼
Pn

i¼1^i2Nk

P
j2Nk

CSðCi;CjÞPn
i¼1^i2Nk

P
j2Nk

CSðCi;CjÞ þ ðPn
i¼1^i2Nk

Pn
jRNk

CSðCi;CjÞ þ
Pn

i¼1^Nk

Pn
jRNk

CSðCj;CiÞÞ ð7Þ
ICD ¼
Xp
k¼1

ICDk

p
ð8Þ

where CIink is the connection strength between classes allo-

cated in the same package? CIoutk represents the connection

strengths between package k and others. For better modular-
ization solution, ICD needs to be maximized.

4.5.4. Package size index (PCI)

The PCIcoh, PCIcoup and ICD quality criteria may not lead to
the best package structure since its definition does not take

into account the class distribution in the package. This objec-
tive function is used to avoid the extremely skewed distribution
of classes in packages (e.g., n � 1 packages with just one class

and all remaining classes in an nth package). To handle such
situation we use the PCI which is defined as follows:

PCI ¼ Pmin

Pmax

ð9Þ

where Pmin and Pmax represent the minimum and maximum
number of classes in the packages respectively. If the size of

large package increases and small one decreases, then the value
of PCI becomes smaller. Hence, the optimization process must
avoid reduction in PCI.

4.5.5. Fitness function

To evaluate the aggregate quality (or fitness F) of a software
modularization solution, we use the additive aggregate fitness

function, calculated as the weighted sum of the four modular-
ization quality measure above.

F ¼ w1 � PCIcoh � w2 � PCIcon þ w3 � ICDþ w4 � PCI ð10Þ
where {w1, w2, w3, w4} are scalar values that define the relative

importance of PCIcoh, PCIcoup, ICD and PCI respectively. But
in this paper we use the value of w1 = w2 = w3 = w4 = 1.

5. Experimental setup

We have conducted a series of experiments on different real
world and random software systems with our proposed

multi-objective optimization approach. The goal of the exper-
iment is to investigate the quality of produced software modu-
larization of our weighted relation approach and compare it to
the quality of modularization of un-weighted relation. The

multi-objective formulation of our approach is also compared
with single-objective optimization approaches.

5.1. Algorithms and parameters

To solve our proposed multi-objective optimization approach,
we use the Non-dominated Sorting Genetic Algorithms

(NSGA-II) (Deb et al., 2002). It is a meta-heuristic genetic
algorithm based on the non-domination sorting concepts of
multi-objective optimization technique. It generates a set of
non-dominated solutions that is known as the Pareto set. The

primary reason for choosing NSGA-II is that it has been
reported in the recent literature that it performs well in similar
problems (Barros, 2012; Abdeen et al., 2013). Moreover,

NSGA-II’s performance has been compared with two other
applicable algorithms Simulated Annealing (SA) algorithm
(Kirkpatrick et al., 1983) & Hill-Climbing (HC) algorithms of

BunchAPI (Mancoridis et al., 1999) and our results clearly indi-
cate that NSGA-II outperforms other two algorithms in the sit-
uations for which our approach has been proposed. This paper
uses the same operator configuration for NSGA-II algorithms

as given in literatures (Barros, 2012; Abdeen et al., 2013). There
are three main operators in NSGA-II i.e., crossover, mutation
and selection operator. They used the single point crossover

operator with 80% crossover probability for problem that has
less than 100 classes and 100% for problem having classes
greater than 100. For mutation operator, the uniform mutation

operator with 0.04 * log2 (N) mutation probability, where N is
the number of classes has been used. The population size is
set to 10 times the number of classes and the number of gener-
ation is set as 200 times the square of the number of classes. For

SA algorithm the parameter setting is same as Abdeen et al.
(2009) and for HC algorithm the parameter setting is same as
given in Bunch API (Mancoridis et al., 1999).

5.2. Problem instance selection

We used a set of well-known four real-world software systems

including JavaCC5.0, JUnit, Java Servlet API and XML API
DOM and two random object-oriented software system
instances with different size and characteristics. The



Table 2 Characteristics of problem instances.

Problem Instances Version Abbreviation #Connections #Package #Classes

Real-world problem

JavaCC 1.5 JC 722 6 154

JUnit 3.81 JU 276 6 100

Java Servlet API 2.3 JS 131 4 63

XML API DOM 1.0.b2 XA 209 9 119

Random problems

Random50 NA R1 218 7 50

Random100 NA R2 342 12 100
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real-worlds software systems instances are based on the java
programming language and are open-source or free-software

projects. The details about the selected object-oriented
software systems instances are given in the following
Table 2.

To apply the proposed approach, the selected object-
oriented software systems are modeled in terms of weighted
class connectivity graph (WCCG). The software systems are

considered as weighted relation WCCG, if the relation weights
are assigned using the Eq. (1), and un-weighted relation
WCCG, if the relation weights are assigned binary value.
5.3. Collecting results from experiment

As the NSGA-II, SA and HC algorithms produce probabilistic

results in each run, hence to collect the results for analysis, they
are executed 30 times for all problem instances. The SA and
HC algorithms produce a single solution at each running cycle,

and the mean of fitness function F of the solutions produced by
SA and HC algorithms of each 30 runs can be calculated
directly. However the NSGA-II produces a set of solutions

called Pareto set for each running cycle. The each running
cycle for each problem instance contains a set of Pareto front
and Pareto set in objective and solution space. After running
all cycles for a given problem instance, the Pareto front of each

of 30 running cycles is collected. Next to select a representative
solution from each Pareto set, we use the method proposed by
the Abdeen et al. (2013). The method first calculates the arith-

metic mean value of each objective function f (PCIcoh, PCIcoup,
ICD and PCI) for all Pareto set solutions. Then it selects a sin-
gle representative solution from each running cycle using the

following equation.

Schosen ()
jPareto Frontj

min

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
fj2F

ðfjðsiÞ � �fjÞ2
s0@

1
A ð11Þ

where fj (si) represent the jth objective function value of ith

Pareto set solution. The �fi represent the arithmetic mean of

jth objective function values and Schosen represent the selected
solution of a cycle corresponding to that software metric.
MMF ¼
Pn

i¼1

P
j2Ni

PTH
k¼EXNkðCi;CjÞPn

i¼1

P
j2Ni

PTH
k¼EXNkðCi;CjÞ þ

Pn
i¼1

P
jRNi

PTH
k¼EXNkðCi;C

 

5.4. Evaluation metrics

In order to evaluate the modularization solution produced by
our proposed software remodularization approach different
quality measures have been adapted. These include Rate per

Refactoring of Achieved Improvement (RRAI) (Abdeen
et al., 2013), modularization merit factor (MMF) (Abreu and
Goulao, 2001), Modularization Quality (MQ) (Mancoridis

et al., 1999). The detailed explanation of these measures is
given as follows.

5.4.1. Rate per refactoring of achieved improvement (RRAI)

To assess the degree of modification in the produced package
structures with regard to original package structure, we use the
Rate per Refactoring of Achieved Improvement (RRAI)

measurement criteria proposed by Abdeen et al., 2013. The
RRAI is defined as follows:

RRAIðSMÞ ¼ RPMCðSMÞ
RPCðSMÞ : SM

2 fCoupling;Cohesion; MQ; . . .g ð12Þ
Here we calculate RRAI with respect to solution corre-

sponding to MQ value. The RPC (MQ) represents rate per

class of MQ measurement and it is computed as follows:
RPC (MQ) = MQor/|C| where MQ or is the value of MQ of
original software module structure and C is the set of all

classes. The RPMC (MQ) represents the rate-per-moved-
class of MQ measurement and it is defined as follows: RPMC

ðMQÞ ¼ d
MQ=MD, where d

MQ is increased value of MQ in new

modularization and MD is the count of the classes, which

changes their package in new modularization. The larger the
value of RRAI (MQ), the smaller is the modification with
respect to the MQ measurement.

5.4.2. Modularization merit factor (MMF)

The modularization merit factor measures the intra-package
connection density with constant number of packages and

classes. If value ofMMF improves for the new solution, it indi-
cates an increase in the cohesion value and decrease in the cou-
pling value. The detailed description ofMMF is given as follows:
jÞ

!
�Np

Nc

ð13Þ
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The NP and NC represent the total number of packages and
total number of classes of the system. We evaluate the
improvement in the normality of the MMF as follows:

MMFIMPROV ¼ MMFPROP �MMFORIG

MMFORIG

ð14Þ

where MMFPROP indicates MMF for the proposed solution,
MMFORIG shows the MMF for the original solution and
MMFIMPROV represents relative improvement of MMF.

5.5.3. MQ metrics

The modularity quality is measured in terms of class connec-
tion strength between the packages and within the package.

Mancoridis et al. (1999) first time formulated it as the sum
of Modularization Factor (MFl) where the MFl is the ratio
of total connection strength within package k and total con-

nection strength to rest of l. The MFl for package k can be
determined as follows:
MFl ¼
Pm

i¼1

Pm
j¼1^j–i

PTH
k¼EXNkðCi;CjÞPm

i¼1

Pm
j¼1^j–i

PTH
k¼EXNkðCi;CjÞ þ 1

2

Pm
i¼1

Pn
jRl

PTH
k¼EXNkðCi;CjÞ þ

Pm
i¼1

Pn
jRl

PTH
k¼EXNkðCj;CiÞ

� � ð15Þ
where m is the total number of classes within a particular pack-
age l and n is the total number of classes in the software sys-

tem. MQ can be determined in terms of MF as:

MQ ¼
Xp
l¼1

MFk ð16Þ

Eq. (7) evaluates the modularity quality MQ, where p is the
total number of packages. The MQ measure shows a tradeoff

between package connectedness and package cohesiveness.

6. Results and analysis

This section presents the experimentation results obtained from
the proposed weighted relation based software remodulariza-
tion approach. In order to demonstrate that the modularization

solution produced through weighted relations is more useful,
we also obtained the modularization solution from the un-
weighted relation. The results have been computed over six dif-
ferent software for the proposed approach and evaluated

through three evaluation criteria namely RRAI/moved-
classes, MMF and MQ, as explained in Section 5.4 above and
their discussions are mentioned in the following three sub-

sections. The mean and standard deviations of percentage
improvement in each evaluation metrics are collected using
each algorithm for each type of problem instance (weighted

and un-weighted relation) over 30 execution cycles. The mean
differences between algorithms (NSGA-II and SA, NSGA-II
and HC) were obtained with two-tailed Wilcoxon Tests. The
asterisk (*) denotes the statistically significant mean differences

at a = 0.05. The mean differences with bold-face indicate that
the NSGA-II algorithm performs better than others.

6.1. Moved classes

Table 3 presents the percentage of classes that change their
original packages in modularization solution obtained through
NSGA-II, SA and HC algorithms over both weighted and un-
weighted relation of OO systems. The results of un-weighted
relation indicate that a large number of classes change their

packages. For example, in NSGA-II algorithm the maximum
percentage of movement of classes is 89.12% (in case of Ran-
dom 50). It is important to note that even the minimum per-

centage of movement of classes in such situations is very
high i.e., 65.36% (in case of Random 100). If we compare
the NSGA-II with SA and HC for un-weighted relations, the

results show that the NSGA-II performs better in some prob-
lems, while SA/HC algorithm performs better in others. Hence
it is difficult to conclude which algorithm is better for un-
weighted relations. Further, if we see the RRAI (MQ) values

given in Table 4 for un-weighted relations, RRAI (MQ) values
for all problems are strictly lesser than the baseline value
(which is 1), which indicates that there are very large number

of classes changing their original packages. Hence, both results
obtained through un-weighted relations clearly indicate that
large numbers of classes change their packages in final modu-
larization solutions, which is hardly acceptable by the

maintainers.

Weighted relations compared to un-weighted relations

The modularization results obtained through our proposed
approach (i.e., the weighted relations) given in Tables 3 and
4 show that there are very small percentages of classes chang-

ing their original package. For example, the lowest movement
of classes is only 8.86% in case of Java Servlet API for NSGA-
II algorithm; moreover, the highest value of the movement of
classes is 17.51% (for Java CC) which is very low compared to

un-weighted relations. It may be observed that the RRAI (MQ)
values given in Table 4 for all weighted relations are strictly
greater than the baseline value (which is 1) clearly showing that

these results are better and more acceptable. If we compare the
movement of classes obtained by the NSGA-II with SA and
HC, the results show that the NSGA-II algorithm has the sig-

nificantly small number of class movement compared to SA
and HC algorithm. On the basis of these empirical evidences,
it can be stated that the proposed approach performs small

modifications in the original software package structure, as
desired by the maintainers.

6.2. Relative improvement of the MMF

Table 5 presents descriptive statistics of MMFIMPROV

improvement of all weighted and un-weighted problem
instances with NSGA-II, SA and HC algorithms. The results

obtained through un-weighted and weighted relations indicate
that the value of MMFIMPROV improves in all algorithms. For
example, in weighted relation with NSGA-II algorithms the

minimum improvement is observed in XML API DOM
problem instance i.e., 18.6% and maximum improvement is
observed in JUnit problem instance i.e., 58.8%. Table 5 also
shows that the NSGA-II algorithm performs significantly



Table 3 Percentage of Moved classes from their packages.

Systems NSGA-II SA HC Mean differences

Mean STD Mean STD Mean STD NSGA-SA NSGA-HC

Un-weighted relation JavaCC 77.65 10.59 81.32 15.25 78.52 12.04 �3.67 �0.87

JUnit 88.34 9.58 85.65 11.85 89.28 10.68 +2.69 �0.94

Java Servlet API 68.87 13.25 71.29 13.58 76.63 13.84 �2.42 �7.76

XML API DOM 76.34 11.59 78.61 12.45 76.95 11.48 �2.27 �0.61

Random50 89.12 14.12 87.35 13.49 85.16 9.56 +1.77 +3.96

Random100 65.36 11.27 74.12 10.24 79.58 8.87 �8.76* �14.22*

Weighted relation JavaCC 17.51 3.17 28.67 2.66 32.53 3.27 �11.16* �15.02*

JUnit 13.34 2.56 22.54 2.26 29.81 2.52 �9.2* �16.47*

Java Servlet API 8.86 1.45 17.34 1.54 22.41 1.76 �8.48* �13.55*

XML API DOM 14.62 2.39 23.56 2.39 31.54 2.16 �8.94* �16.92*

Random50 6.17 1.43 12.45 2.13 26.31 1.69 �6.28* �20.14*

Random100 11.64 1.87 19.34 1.89 28.48 2.15 �7.70* �16.84*

Table 4 RRAI (MQ) evaluation results.

Systems NSGA-II SA HC Mean differences

Mean STD Mean STD Mean STD NSGA-SA NSGA-HC

Un-weighted relation JavaCC 0.445 0.004 0.328 0.021 0.256 0.005 +0.117* +0.189*

JUnit 0.451 0.012 0.543 0.007 0.412 0.007 �0.092 +0.039*

Java Servlet API 0.365 0.006 0.363 0.003 0.364 0.009 +0.002 +0.001

XML API DOM 0.548 0.008 0.545 0.007 0.546 0.007 +0.003 +0.002

Random50 0.326 0.011 0.418 0.009 0.485 0.004 �0.092 �0.159

Random100 0.542 0.007 0.371 0.005 0.279 0.006 +0.171* +0.263*

Weighted relation JavaCC 2.842 0.012 1.231 0.011 2.125 0.047 +1.611* +0.717*

JUnit 4.690 0.054 2.387 0.032 1.984 0.015 +2.303* +2.706*

Java Servlet API 3.217 0.052 1.177 0.054 2.164 0.053 +2.040* +1.053*

XML API DOM 2.764 0.086 1.652 0.076 1.326 0.044 +1.112* +1.438*

Random50 3.361 0.031 1.760 0.051 1.276 0.065 +1.601* +2.085*

Random100 6.563 0.039 2.435 0.043 2.896 0.038 +4.128* +3.667*

Table 5 Percentage improvement in MMF.

Systems NSGA-II SA HC Mean differences

Mean STD Mean STD Mean STD NSGA-SA NSGA-HC

Un-weighted relation JavaCC 0.431 0.014 0.416 0.025 0.422 0.024 +0.015* +0.009

JUnit 0.588 0.032 0.542 0.021 0.576 0.031 +0.046* +0.012

Java Servlet API 0.214 0.016 0.193 0.018 0.193 0.026 +0.017* +0.021*

XML API DOM 0.186 0.047 0.161 0.016 0.156 0.019 +0.025* +0.030*

Random50 0.778 0.017 0.761 0.012 0.752 0.013 +0.017* +0.026*

Random100 0.614 0.013 0.589 0.015 0.577 0.028 +0.025* +0.033*

Weighted relation JavaCC 0.426 0.012 0.413 0.028 0.419 0.023 +0.013* +0.007

JUnit 0.586 0.071 0.538 0.068 0.563 0.073 +0.048* +0.023*

Java Servlet API 0.213 0.033 0.187 0.035 0.181 0.038 +0.026* +0.032*

XML API DOM 0.184 0.062 0.151 0.058 0.153 0.055 +0.033* +0.031*

Random50 0.773 0.017 0.756 0.023 0.747 0.043 +0.017* +0.026*

Random100 0.611 0.008 0.587 0.013 0.574 0.024 +0.024* +0.037*
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better in comparison with SA and HC algorithms for both
weighted and un-weighted relations.

Weighted relations compared to un-weighted relations

As reported in Table 5 above, values of MMF improve for the

weighted relations also. For example, the minimum improve-
ment is recorded as 18.4% for XML API software system;
however maximum improvement is recorded as 77.3% for ran-

dom50 in NSGA-II algorithm. If we compare MMFIMPROV

values of weighted relations with un-weighted relations,
improvement in MMFIMPROV values is slightly lesser that cor-

responding un-weighted relation based MMFIMPROV values.
For example, in NSGA-II algorithm, the MMFIMPROV values



Figure 4 Percentage of reduction in MMFIMPROV vs. percentage of reduction in moved classes.
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for un-weighted relation JavaCC problem instance are 43.1%,
while the MMFIMPROV values for weighted relation of coun-
terpart of the same problem are 42.6% (i.e., 0.5% reduction).

This fractional reduction happens due to additional con-
straints imposed to keep the solution closer to original struc-
ture. On the other hand, if we compare the NSGA-II with

SA and HC algorithms, the result indicates that the NSGA-
II algorithm performs significantly better than both algorithms
in both un-weighted relation and weighted relations. So it can

be concluded that NSGA-II algorithm is better than other two
algorithms. Further weighed relation based approach is able to
keep the solution much closer to original modular-structure
and yet is able to improve the MMF almost equivalent to

un-weighted relations.

6.3. MMFIMPROV vs. moved classes

From the Section 6.2, it is clear that the MMFIMPROV values
obtained through weighted relations improve almost equiva-
lent to un-weighted relations. However, Section 6.1 shows that

the movement of classes from their original packages in
Table 6 Percentage improvement in MQ.

Systems NSGA-II SA

Mean STD M

Un-weighted relation JavaCC 23.14 3.18 20

JUnit 61.16 3.78 56

Java Servlet API 28.42 2.68 26

XML API DOM 33.01 2.66 31

Random50 40.78 3.58 34

Random100 65.17 4.18 60

Weighted relation JavaCC 20.34 3.13 15

JUnit 56.31 4.18 52

Java Servlet API 24.62 2.65 22

XML API DOM 30.23 2.51 27

Random50 33.61 3.28 30

Random100 59.23 4.37 56
weighted relation is very small compared to their un-
weighted counterpart. It indicates that we can stop a large
number of class movements by compromising a little with

quality. The results can be better understood through a graph
based representation, as given below in Fig. 4. Instead of look-
ing at absolute values of movement and MMF, Fig. 4 plots the

percentage of movement and change in MMF i.e. difference of
values of un-weighted relations from their weighted counter-
part, for all six software for all three algorithms (NSGA-II,

SA and HC). From the figure, it can be clearly observed that
in all algorithms, the weighted relations are able to reduce
movement of a very large percentage of classes from their orig-
inal packages on the cost of very small compromise in

MMFIMPROV values.

6.4. MQ metrics

Table 6 presents descriptive statistics of MQ improvement of
all weighted and un-weighted problem instances with
NSGA-II, SA and HC algorithms. The results obtained

through un-weighted and weighted relations indicate that the
HC Mean differences

ean STD Mean STD NSGA-SA NSGA-HC

.05 3.28 20.58 3.56 +3.09* +2.56*

.47 3.88 57.14 3.87 +4.69* +4.02*

.56 3.23 24.56 3.18 +1.86* +3.86*

.13 3.02 29.98 3.01 +1.88* +3.03*

.16 2.88 38.47 3.55 +6.62* +2.31*

.87 3.54 60.88 4.42 +4.30* +4.29*

.66 3.45 15.23 3.26 +4.68* +5.11*

.34 4.23 53.65 4.25 +3.97* +2.66*

.21 3.14 21.87 3.14 +2.41* +2.75*

.37 2.76 26.56 2.78 +2.86* +3.67*

.12 3.56 31.76 3.79 +3.49* +1.85*

.45 3.67 54.87 4.65 +2.78* +4.36*
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value of MQ improves in all algorithms clearly meaning that
quality improves after re-modularization. The improvement
in MQ is significant in all cases. It gets verified from the fact

that the minimum improvement is 20.34% (in JavaCC prob-
lem instance for weighted relation with NSGA-II algorithms),
and maximum improvement is 65.17% (in Random100 prob-

lem instance for NSGA-II with un-weighted relation). Table 6
also indicates that the NSGA-II algorithm performs signifi-
cantly better in comparison with SA and HC algorithms for

both weighted and un-weighted relations.

6.4.1. Weighted relation compared to un-weighted relation

As reported in Table 6 above, values of MQ improves for the

weighted relations also. For example, the minimum improve-
ment is recorded as 20.34% for JavaCC software system; how-
ever maximum improvement is recorded as 59.23% for

random100 in NSGA-II algorithm. If we compare MQ values
of weighted relations with un-weighted relations, improvement
in MQ values is slightly lesser than the corresponding un-
weighted relation based MQ values. For example, in NSGA-

II algorithm, the MQ values for un-weighted relation JUnit
problem instance is 61.16%, while the MQ values for weighted
relation of counterpart of the same problem is 56.31% (i.e.,

4.85% reduction). This small drop in the value of MQ is
expected, as we are targeting to keep our solution closer to ini-
tial design-structure. Comparison of results of NSGA-II with

SA and HC algorithms clearly demonstrates the superiority
of NSGA-II algorithm for both un-weighted relation and
weighted relations. Hence we can state that NSGA-II algo-

rithm is better than other two algorithms and the proposed
approach is able to adequately improve the quality of modu-
larization within the specified constraints.

6.5. MQ values vs. moved classes

Similar to Section 6.3 above, in Fig. 5 below, Red bars
show, in percentage form, the difference of movement of

classes for un-weighted relation and weighted relations. Blue
colored bars show in percentage, the difference in MQ val-
ues for un-weighted and weighted relations. The figure
Figure 5 Percentage of reduction in MQ values
shows bar-charts for all six problem instances for all three
algorithms (NSGA-II, SA and HC). The bar-charts clearly
show that in all algorithms, the weighted relations result

into a reduction of movement of a very large percentage
of classes from their original packages, with a very small
dip in MQ values.

From the above results of RRAI/moved-classes, MMF &
MQ, it is clearly evident that weighted relation based approach
is able to adequately improve the different quality parameters

of the software and at the same time reduces significantly the
movement of classes from their original packages. Hence it
can be stated that the proposed approach is very useful for
remodularization whenever maintainers need that, but cannot

afford to have complete overhauling of the modular-structure
and when the design structure of the original software is also to
be kept in consideration.

7. Discussions

In this section, we discuss the main contributions and

limitations of our software remodularization approach and
differentiate it from existing approaches on the software
remodularization problem.

The contribution of this paper with respect to the existing
approaches on software remodularization of existing package
organization (e.g., Abdeen et al., 2009, 2013; Bavota et al.,

2014), is that this paper proposes a new remodularization
approach to improve the quality of existing package organiza-
tion using multi-objective evolutionary algorithm i.e., NSGA-
II. Our approach uses the design rules of original package

structure to control the optimization process instead of penal-
izing the objective function. For this, we assign the weights to
relations on the basis of their intra and inter-package locality

in the original package organization. Further, the connection
strength between the classes is calculated in terms of weighted
relations. The approach improves different package quality

criteria such as coupling, cohesion, modularization quality
and at the same time it minimizes the movement of classes
among existing packages and also partially preserves the orig-

inal package design principle.
vs. percentage of reduction in moved classes.
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The main limitations of our proposed work are: it does not
address the problem of decomposing/modularizing software
systems from scratch (e.g., multi-objective software module

clustering (Praditwong et al., 2011)). Rather, it aims at helping
system maintainers in the task of improving the structure of
existing software package organization by making as less as

possible perturbations in it. Our approach does not consider
the hierarchical software package structure and it does not
claim that remodularization approach automatically improves

existing software package structure with regard to every pack-
age design factor.

8. Conclusion and future work

We have presented a multi-objective optimization approach to
improve the package structure of an object-oriented software

system within existing package organization. The proposed
approach takes into consideration eight different types of rela-
tions existing with appropriate weights between classes. These
relation weights are used to calculate overall connection

strength between classes, which is being attempted for the first
time in the literature. Another contribution of this paper is
that the accurately computed connection strength is used to

drive the optimization process toward better quality package
organization as well as controlling the excessive movement
of classes from originally defined packages. The proposed

multi-objective optimization approach has been experimen-
tally evaluated over four real-world and two random software
applications. Our approach has been found to perform well
and results indicate that the new multi-objective optimization

methodology performs better in terms of the software package
quality parameters such as modularization merit factors
(MMF) and modularization quality (MQ). Future work

includes the use of dynamic and semantic relations for connec-
tion strength calculation and proposing additional objective
functions that can lead the optimization process toward better

quality with preservation of the original design to the maxi-
mum extent possible.
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