
Journal of King Saud University – Computer and Information Sciences (2017) 29, 410–425
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
A high level implementation and performance

evaluation of level-I asynchronous cache on FPGA
* Corresponding author.

E-mail addresses: mansi.jhamb@gmail.com (M. Jhamb),

mail2drrks@gmail.com (R.K. Sharma), anilg699@rediffmail.com

(A.K. Gupta).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2015.06.003
1319-1578 � 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Mansi Jhamb a,*, R.K. Sharma b, A.K. Gupta b
aUniversity School of Information and Communication Technology, Guru Gobind Singh Indraprastha University, Dwarka Sector
16C, New Delhi 110078, India
bDepartment of Electronics and Communication Engineering, NIT Kurukshetra, India
Received 19 February 2015; revised 9 June 2015; accepted 27 June 2015
Available online 31 October 2015
KEYWORDS

Asynchronous;

Handshaking;

Cache
Abstract To bridge the ever-increasing performance gap between the processor and the main

memory in a cost-effective manner, novel cache designs and implementations are indispensable.

Cache is responsible for a major part of energy consumption (approx. 50%) of processors. This

paper presents a high level implementation of a micropipelined asynchronous architecture of L1

cache. Due to the fact that each cache memory implementation is time consuming and error-

prone process, a synthesizable and a configurable model proves out to be of immense help as it aids

in generating a range of caches in a reproducible and quick fashion. The micropipelined cache,

implemented using C-Elements acts as a distributed message-passing system. The RTL cache model

implemented in this paper, comprising of data and instruction caches has a wide array of config-

urable parameters. In addition to timing robustness our implementation has high average cache

throughput and low latency. The implemented architecture comprises of two direct-mapped,

write-through caches for data and instruction. The architecture is implemented in a Field Pro-

grammable Gate Array (FPGA) chip using Very High Speed Integrated Circuit Hardware Descrip-

tion Language (VHSIC HDL) along with advanced synthesis and place-and-route tools.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In technical market the majority of processors are embedded
systems (Tennenhouse, 2000). The microcontrollers, DSPs,

FPGAs and their combinations as SoCs provide solution for
embedded system (George et al., 1999). Since FPGAs have
shown significant advances in the terms of speed, density and

storage capacity, they have become most commonly used
embedded general purpose computing environment. Owing
to the diverse functionality of FPGAs, complexity level
increases thereby increasing the number of logic gates in the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2015.06.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mansi.jhamb@gmail.com
mailto:mail2drrks@gmail.com
mailto:anilg699@rediffmail.com
http://dx.doi.org/10.1016/j.jksuci.2015.06.003
http://dx.doi.org/10.1016/j.jksuci.2015.06.003
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2015.06.003
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1 Cache architectures in embedded microprocessors.

Processor Instruction cache Data cache

Size As. Line Size As. Line

AMD-K6-IIIE 32 K 2 32 32 K 2 32

IBM PPC 750CX 32 K 8 32 32 K 8 32

IBM PPC 7603 16 K 4 32 16 K 4 32

IBM 750 FX 32 K 8 32 32 K 8 32

IBM 403GCX 16 K 2 16 8 K 2 16

IBM Power PC 405CR 16 K 2 32 8 K 2 32

Intel 960IT 16 K 2 N/A 4 K 2 N/A

Motorola MPC8240 16 K 4 32 16 K 4 32

Motorola MPC823E 16 K 4 16 8 K 4 16

Motorola MPC8540 32 K 4 32/64 32 K 4 32/64

Motorola MPC7455 32 K 8 32 32 K 8 32

Xilinx Virtex IIPro 16 K 2 32 8 K 2 32

Evaluation of level-I asynchronous cache on FPGA 411
circuit. This results in increased energy dissipation in the sys-
tem (Anderson and Najm, 2004; Shang et al., 2002). Another
concern is the increasing difference in the speed of the proces-

sor and main memory which creates a bottleneck while access-
ing the data from the memory. While the programers want
unlimited fast memory, it is too expensive to be achieved.

Hence, the optimal solution is to provide a memory hierarchy
in which each level is faster and more expensive per byte than
the immediate higher level (Patterson and Hennessey, 2003).

The cache is the first level in this memory hierarchy. Modern
multi-core processors support multiple levels of cache to
improve performance. In most such systems, caches (last level
caches) are often shared by the processors for concurrent

applications (Warrier et al., 2013). According to the principle
of locality of references the data and the instructions exhibit
temporal and spatial locality. This principle forms the basis

of cache memory hierarchy, leading to the fact the processor
performance depends on the speed of cache rather than slow
main memory. 45% of energy consumption of a processor is

contributed by cache hierarchy (Segars, 2001).
Research reveals that the adjustment of the cache memory

parameters can contribute to reduction in energy consumption

to 62% (Ross et al., 2005), leading to the performance enhance-
ment by 30% (Ross et al., 2004). The complex task of determin-
ing an appropriate cache configuration for a dedicated
application, simulation and analysis takes considerable compu-

tational time. For reduction in the area and energy dissipation
without compromising the performance, designers need to
develop strategies for design space exploration. There are a

number of ways to implement the L1 cache and the selected
design strategy impacts the complete behavior of processor sys-
tem (Bahar et al., 1998; Milenkovic et al., 2003). For the imple-

mentation parameters to be freely selected, an RTL model is
desired. In the logic simulation, the desired cache configuration
can be employed after the cache model parameters are set. This

work presents a high level implementation of a micropipelined
asynchronous architecture of an L-1 cache using FPGAs.

2. Related work

In embedded-system design one has to compromise between
energy-dissipation, performance and cost. The critical task of
choosing the best cache architecture involves the selection of

total cache size, amount of associativity, cache line size and
several other architectural options. These characteristics
greatly influence the hit rate and the energy consumption in

cache access. The power consumption occurs when (i) the
cache is accessed. (ii) The data are transferred from/to the next
memory level during a cache miss and also by the idle proces-

sor when miss occurs.
Associativity segregates a cache into a number of ways,

each of which is looked up concurrently during a cache access.
For some programs, the cache hit rate is improved on increas-

ing the number of ways to two or four (Patterson and
Hennessey, 2003), beyond four the improvement is not signif-
icant. More ways imply more concurrent look-ups per access

leading to more energy per access: a direct mapped cache uses
only 30% of the energy per access as a four way set associated
cache (Reinman and Jouppi, 1999). Highest possible associa-

tivity is desired in performance-oriented applications. Table 1
summarizes the features of several cache architectures in
embedded microprocessors.
A novel configurable cache architecture (Zhang et al., 2005)
incorporates three configurable cache parameters, these are

configured on setting a few bits in the configuration register.
The cache can be configured in software as either direct
mapped, two-way or four-way set associated while utilizing

the full capacity of cache. Such configuration is attained by
employing a technique called way concatenation (Zhang
et al., 2003a). The technique called line concatenation

(Zhang et al., 2003b) is employed to configure the cache line
size. Several architectures for reducing the energy consumption
in the cache are reported in the literature. One of them is the
partitioning of cache into several smaller caches (Racunas

and Patt, 2003). This results in the reduction of access time
and the power cost per access. Another approach, filter cache
(Kin et al., 1997) trades performance for power consumption

by the filtration of cache references through an unusually small
L1 cache. An L2 cache similar in structure and size to a L1
cache is placed after the filter cache for minimizing the perfor-

mance loss. A distinct alternative, selective cache ways
(Albonesi, 2000) renders the ability to disable a subset of ways
in a set associative cache during the intervals of modest cache
activity whereas the complete cache is operational for cache-

intensive periods. In another approach the conventional uni-
fied data cache can be replaced with multi specialized caches.
Each one handles different type of memory references as per

their specific locality characteristics (Lee et al., 2001). These
options make it possible to improve in terms of performance
and power efficiency. Lastly Jin and Cho, 2006 achieves power

saving in L1 cache by exploiting spacial locality. A useful state
of the art design of a pipelined asynchronous cache system is as
reported (Nyström et al., 2003). In their work a pipelined

cache system is designed for use in an asynchronous MIPS
R3000-compatible processor. This design (Nyström et al.,
2003) being the first of its kind, represented a QDI (Quasi-
delay insensitive) message passing implementation of L1 cache

for high speed asynchronous CPU; many assumptions were
made for design compatibility with now-obsolete R3000 cache
architecture.

Asynchronous paradigm has potential advantages of low
power, low noise, modularity, composability and ease of inte-
gration to an existing system, proving them to be an interesting

alternative in the several applications. The clock distribution
and alignment consume a sufficient amount of resources like
wiring, power and area (Elrabaa, 2012). The asynchronous



Figure 1 Basic organization of cache memory.

412 M. Jhamb et al.
design techniques impart modularity, composability, lower
power consumption and low noise (Peeters, 1996; Liljeberg
et al., 2004). Hence, they can provide a potential alternative.

For asynchronous operation in the disk buffer cache memory,
performance and reliability can be improved significantly using
the algorithms (Hac, 1993). These algorithms permit the files

to be written into the buffer cache by the processors, consider-
ing the number of active processes in the system and queue
length to the disk buffer cache. The lack of CAD tools sup-

porting the design flow of the self-timed circuits turn out to
be the biggest disadvantage. Till date their design process is
performed using existing tools, meant for synchronous design.
This includes a lot of full-custom work which is very time con-

suming and hence expensive. In this implementation we ana-
lyze the functionality of the design flow for self-timed
circuits provided by pipelining. The design entry is VHDL, a

programing language targeted for the front-end design flow.
This paper presents a high level implementation of micropipe-
lined asynchronous architecture of L1 cache memory. Our

paper presents an extension to the basic design as reported
(Nyström et al., 2003) to treat the high level implementation
of micropipelined architecture of asynchronous L1 cache

memory. The design has been coded in hardware description
language and targeted Xilinx-FPGA. The purpose is to com-
pare the performance of pipeline implementation with the cor-
responding synchronous implementation. The performance of

the self-timed implementation is analyzed and compared with
its synchronous counterparts.

This work contributes an RTL model of asynchronous L-1

cache which unlike a specialized cache generator (Putnam
et al., 2009), is not customized to a specific processor core
(CPU). We have applied two cache constructs: instruction

cache (I-Cache) and data cache (D-Cache). In this RTL model,
the complicated task of reading and writing from/to L-1 cache
is handled by state machines. In this model the option of arbi-

tration between the I-Cache and D-Cache is available for sup-
porting the single bus testing of the processor accommodating
L-1 cache. To the best of our information, generic RTL models
of cache do not exist in the public domain in the present sce-

nario. The shortcomings of this model: being interface agnos-
tic, this model cannot support deeper pipelining. Once the
CPU is selected, the performance co-optimization of cache

and CPU must be done.

3. Cache

For the description of the structure and parameters of the
model, a brief introduction to cache along with its functions
and terminologies is presented.

3.1. Basic terminologies and functions

An example of cache organization is demonstrated in Fig. 1. In

our implementation, there is one dedicated cache for instruc-
tions and one for data. The data and tag bits constitute each
cache line and these cache lines constitute the cache. Tag bits
indicate the main memory address associated with the corre-

sponding cache line. The program counter is used for address-
ing the instruction cache and the data cache takes address from
store and load instruction. The address is divided into 3 fields:

tag (first field), index (second field), line offset (third field). The
first field indicates MSB of the requested main memory
address, the second identifies the cache line, and the third
selects the appropriate word in the cache line. This applies to

both instruction cache and data cache.
Whenever the processor wants to read data or instruction

from the cache or write data into the cache, a basic sequence
of steps is followed in any cache memory.

During the completion of the transfer from or to the next
level of hierarchy, the CPU is stalled. On the start of the pro-
gram when the first set of data and instruction is sent to the

cache, CPU is being stalled. The main memory addresses are
mapped to the cache entries by dividing the address space into
the block similar to the size of a cache line. The blocks are

combined together in a page. The page size is equal to the size
of the cache memory array so that the complete page can be
loaded into the cache in one go. When the CPU accesses the
cache, the tag from the memory address is compared with

the tag field stored in the cache line along with the word. It
is said to be a cache hit when the tags match and valid bit is
set. Else, a cache miss is reported pointing that the required

data are not present in the cache.

3.2. Cache parameters

For the implementation of highly optimized cache memories,
several issues have to be resolved. Several techniques are avail-
able to enable the cache to have a good cache hit ratio and at

the same time, be accessed quickly (Peir et al., 1998). Various
parameters associated with caches have to be decided during
the design of the cache. These parameters are listed in the
remaining part of the section.

o Address for Cache – Cache can work with physical address
or with virtual address (Peir et al., 1998).

o Size of cache and the size of page.
o Address mapping schemes – This is the mechanism used to
assign the cache line to each higher level memory entry

where it is to be stored. The three common mapping
schemes are direct, fully associative and set-associative
mapping.



Figure 3 State transition diagram for data cache.

Evaluation of level-I asynchronous cache on FPGA 413
o Jouppi (1993) has shown write policy – In order to store

data, the cache can use write-through mechanism or
write-back mechanism. Moreover, in the case of a cache
miss, the cache can follow a write-allocate or a no-write-

allocate mechanism.

3.3. Cache operation

The Fig. 2 shows the operations of the I-Cache in the form of
state transitions consisting of only the essential signals. The
I-Cache is a Mealy FSM composed of three states. It has to

perform only read operations as the processor will only request
for instructions to be executed from the memory and will not
store instructions into the memory.

� When the cache powers up, it enters the Flush state where it
is brought to a known initial state. In order to avoid fake
hits, all the valid bits are made zero.

� On the reception of request for instruction, cache switches
to tag_compare state which involves the comparison of tags
and checking of the valid bits to ensure whether the

requested instruction is present in the cache or not.
� In case a cache hit is reported (valid bit is set and the tags
match), the CPU is supplied with instruction while the

cache sustains in the present state.
� If there is a cache miss, the state changes to Memory_Read
in which the requested instruction is loaded from the main

memory. Once the cache line is updated and the
corresponding valid bit is set, the cache returns to
the Tag_Compare state and supplies the instruction to the
processor.

The state transition diagram for Data cache is given in
Fig. 3. It is represents a Mealy Finite State Machine.

D-Cache is not as frequently accessed as I-Cache.

� After the initial Flush state (similar to the I-Cache), the

cache enters the Idle state where it waits for the request
from the CPU.

� When a request from CPU arrives, the cache enters the

Tag_Compare state where it compares the tags and checks
the valid bit to determine if there is a cache hit or miss.

� If the instruction received is ‘‘read” and there is a cache hit,
the cache goes to

� Supply_Data state where it sends the required data to the
CPU. Then, it returns to the Idle state.

� If the instruction received is ‘‘read” and there is a cache

miss, the cache goes to
� Memory_Read state. The data are transferred from the
higher level memory into the cache. Once the cache line is

updated and the corresponding valid bit is set, the cache
enters the Supply_Data state.
Figure 2 State transition diagram for instruction cache.
� If the instruction received is ‘‘write” and there is a cache hit,

the cache goes to
� Store_Data state. The data provided by the CPU are stored
in the specific location and the cache enters Idle state once

again after storing the data.

If the instruction received is ‘‘write” and there is a cache

miss, the cache directly goes to Idle state.

4. Design

4.1. Design of asynchronous interface

The asynchronous interface facilitates the data movement

from one module to another module using the concept of
handshaking as shown in Fig. 4.

The process of Handshaking is explained as following steps:

Step 1. Initially all four handshake signals are low.
Step 2. The block A sends out data and in the meantime pulls

req_A high.
Step 3. Since req_B is low, ack_A will go high. This positive

edge of ack_A is also the clock signal for data regis-

ter. Thus, data_A is loaded to the stage register.
Step 4. The ack_A signal is also the input of the next

C-Element. When ack_A is asserted high, it pulls
req_B high.

Step 5. When req_A goes low, ack_A will also become low.
Step 6. The second C-Element waits for the ack_B signal

from next stage to go high. When ack_B is asserted

high, it conveys that next stage has read the output
data of the register. This causes the req_B to go low.

Step 7. Finally, corresponding to req_B going low, the block

B pulls the ack_B signal low.

4.2. Cache architecture

Each cache is decomposed into two modules: control and core.
The operations of the cache are monitored by the control
section and it is a component of the main data path of the



Figure 4 Muller pipeline using C-Elements (a) structure, (b) 4-Phase bundled data handshaking protocol.

414 M. Jhamb et al.
processor shown in Fig. 5. It is responsible for decoding

addresses, scheduling refills and giving instructions to the core.
The core contains a 256 line memory array where the data
(D-Cache) or instructions (I-Cache) along with the tag bits
are stored. Four bits of tag are associated with each cache line.

Core also contains the necessary circuitry to perform the
operations directed by the control.

The control part in each cache is further segregated into

L-Control and R-Control as shown in Fig. 6 which shows
the detailed architecture of the D-Cache. Most parts of the
cache use single-rail (1-wire for 1-bit of information) 4-phase

bundled data protocol, the feedback from R-control to L-
control uses 4-phase dual rail (2 wires for a bit of information)
protocol for easier communication.

The core is controlled from only one place, i.e., L-control.
This allows the flow of control to be linear and implementation
to be more systematic. Also, the R-control is entirely responsi-
ble for sending requests to the higher level memory as well as

for sending results to the processor since it knows the result of
tag comparison before L-control.

The design does not support partial word operations, i.e.,

data smaller than one word cannot be accessed. The caches
use physical addresses and are direct-mapped. The write policy
chosen for D-cache is write-through. No refills are made in

case of a cache miss for write operations. Data transfer occurs
in both caches only after cache hit/miss is determined. Further-
more, the refills are made in groups of four (page size is four),
i.e., each refill operation loads four words of data (the desired

data and the data from the nearby locations) from the higher
level memory into the cache. This is because a refill is a costly
operation in terms of time taken and so it is beneficial to

reduce the number of refill operations.
In the following sections, the design of each module of the

D-Cache has been explained in detail. While the modules of

I-Cache are similar to that of the D-Cache, the difference is
that the mechanism of write is not present in I-Cache. So there
is no input instruction or data from processor to I-Cache.

4.2.1. Design of L-control

This is the first part of the cache which receives the request and
message from the CPU and is responsible for directing the

operations of the core. Its name is derived from Left-control
as it is located to the left of the core in the design. For
I-Cache instructions are received from the instruction fetch
unit whereas for D-Cache instructions are received from

instruction decode. In the design of D-Cache, it has been
assumed that the processor issues instructions through a single
read/write signal with read given by logic ‘‘0” while write is
given by logic ‘‘1”.

L-control decodes the received 16 bit address to generate the
8 bit index using the lower eight bits of the address (bits 0–7) and
a 4 bit tag using the next four bits of the address (bits 8–11).

It then sends the index to the core and the tag to
R-control. This tag is the expected tag that should be present
in the data line selected in the core. L-control issues ‘‘read”

instruction to the core in case of a read operation and a ‘‘check”
instruction in case of a write operation. The ‘‘check” instruction
results in a comparison of the tags. The cache will only write the

data if the referencedmemory location is currently present in the
cache and so ‘‘check” instruction is necessary to avoid
unnecessary writes. Depending on the feedback received from
R-control, L-control decides the next course of action. The fol-

lowing four cases can occur after receiving feedback:

� Cache hit in a read operation: L-control takes no action.

� Cache miss in a read operation: L-control issues a ‘‘refill”
instruction to the core. While R-control schedules the refill
operation by sending request to the main memory,

L-control instructs the core to store the data from the
higher level memory when it arrives and then provide the
results to the processor.

� Cache hit on a write operation: L-control gives the ‘‘write”

instruction to the core to actually store the data from pro-
cessor in the cache location.

� Cache miss on write operation: L-control takes no action.

The L-Control can issue four instructions to the core. These
are summarized in Table 2.

4.2.2. Design of R-control

This is the third part of the D-cache which compares tags,
sends data and acknowledgement to the processor and sched-

ules the refill operations. It derives its name from Right-
control as it is located to the right of the core. It contains a
‘‘compare” unit, ‘‘send” unit and a ‘‘refill” unit. The ‘‘com-

pare” unit compares the tags received from the L-Control
and core. It sends the result to the other two units of
R-Control and also to L-Control. The ‘‘send” unit exists to



Figure 5 Architectural composition of the implemented cache. (Memory here refers to the next memory level.)

Figure 6 Architectural structure of the D-Cache.

Table 2 Instructions issued to core by L-Control.

CODE Instruction Function

00 READ Send data and Tag to R-Control from the

location specified

01 REFILL Store the data from main memory in the cell

specified and then send the data from

required line to R-Control

10 CHECK Send the Tag from line specified to

R-control

11 WRITE Store the data provided in the line specified

Evaluation of level-I asynchronous cache on FPGA 415
send the correct data and also acknowledgement to the proces-

sor. During a read operation, the ‘‘send” unit checks the result
from ‘‘compare” unit.

If there is a tag match (cache hit), then it forwards the data

from the core to the processor along with an acknowledge-
ment. If there is a tag mismatch (cache miss), then it waits
for the data from a refill operation. Once it receives it, it will

send that data along with an acknowledgement to the proces-
sor. In case of a write operation, the ‘‘send” unit simply sends
an acknowledgement to the processor once the operation is

completed. The ‘‘refill” unit is responsible for issuing a refill
request to the memory interface during a cache miss in a read
operation. Once the data are retrieved from the higher memory
level, the ‘‘refill” unit sends it to the ‘‘send” unit.

When R-control receives a request from L-control, it stores
the tag received from it and then acknowledges the request. On
receiving a request from core, R-control compares the tag from

L-control (stored earlier) with that from core. If they match,
then a cache hit is said to occur. Otherwise, it is a cache miss.
The result of the comparison is given to the L-control as feed-

back. The core specifies the operation being performed (read
or write) to R-Control using an additional control signal,
Data_Enable, which is set to ‘‘1”for a read operation and is
‘‘0”for a write operation. For the case of a cache hit, if the

Data_Enable is high, then the R-Control reads the data from
the core. An acknowledgement is sent to the core after tag
comparison and reading of data (if Data_Enable is high and

there is a cache hit). In case the data are to be sent,
R-control sends the data from the core to the CPU along with
an acknowledgement. In case data are not to be sent (meaning
write operation), R-control waits for the Core to store the

data. Once the core has stored the data, it informs the
R-control which then sends the acknowledgement to the pro-
cessor. For a cache miss as well, R-control checks the

Data_Enable signal. If the Data_Enable is low indicating a
write operation, R-control sends an acknowledgement to the
processor as the desired memory element is not in the cache

and so no write operation is needed. But if it is high, indicating
a read operation, R-control sends a request to the next
memory level which is received by the memory interface. The
memory interface forwards the request to the next memory

level and then acknowledges the request from R-control. When
the cache receives the data from the higher level memory,
L-control and core complete the refill operation. Then,

R-control is informed by the core. R-control gives the data
from the core to the CPU along with an acknowledgement.

4.2.3. Design of core

This is the middle part of the cache memory. It contains a 256-
line array of memory. Each line is capable of holding 8 bits
(One word is assumed to be 1 Byte) of data and 4 bits of tag.

Thus each line is of 12 bits which results in a cache size of
3 kbits. The 256 lines are divided into four groups having
sixty-four lines each. Each group is further divided into sixteen

cells with each cell having four lines. This organization of the
memory array as a hierarchy helps in faster access of the mem-
ory. There is a 3-stage process to access these lines. One of the
four groups is identified in the first stage, cell within a group is

accessed in second stage and the desired line in that cell is
selected in the third stage. The various bits of the index are
used for selection in each access stage.



416 M. Jhamb et al.
When the core receives a request from the L-control, it finds
the correct cache location using the received address. It then
checks the instruction received. In case of a ‘‘read” or ‘‘check”

instruction, core sends the tag from the location to the
R-control. Furthermore, it sends the data from the location
as well in case of a ‘‘read” instruction. Finally, it sets the value

of Data_Enable signal and then, it sends a request to the
R-control and an acknowledgement to L-control. In case of
a ‘‘write” instruction, the core will store the data provided

by L-control in the selected cache location. When the core
receives a ‘‘refill” instruction, it takes the data from the
memory (provided by the memory interface) and stores it
sequentially in the entire cell selected in the second stage of

access. Once the refill is made, it provides the desired data to
R-control. In both these cases, core informs the R-control after
performing the operation (storing the data in case of write or

loading the required data into the data bus of R-Control in
case of a refill). Then it sends an acknowledgement to
L-control.
Figure 7 Flow of the rea
4.3. Flow of operations

While each individual module has been discussed in the above
section, the detailed operation of the cache as it executes a read
or write instruction is described in this section. The flow chart

in Fig. 7 describes the flow of the operations.

4.3.1. Read operation

The read operation takes place in both the I-Cache and the

D-Cache. It involves three main asynchronous handshaking
communications in case of a cache hit and five in case of a
cache miss.

When the L-Control receives the request from the CPU, it
reads the values in the address bus and the instruction signal
from the CPU. It checks the instruction to determine if it is
a read or write operation. Once it decides that it is a read oper-

ation, it decodes the address to generate the tag and index val-
ues. It sends the tag to the R-Control and the index along with
the instruction to read to the core. This involves handshaking
d and write operations.



Figure 8 (a) Read operation and (b) write operation for ‘‘write-back” strategy.

Evaluation of level-I asynchronous cache on FPGA 417
through the asynchronous interface between the modules. The
R-Control stores the tag for future comparison. Once the core
receives the request from the L-Control, it uses the index

received to select the cache line from its memory array. Then
it sends the tag field from the selected line to R-Control along
with the data from that line. The core set the value of
Data_Enable to ‘‘1”. The second handshaking is performed

as the core sends a request to R-Control. The R-Control com-
pares the tag from the core with the tag received from
L-Control to determine if there is a cache hit or a cache miss.

Then it sends a feedback signal to L-Control to inform the
results of the comparison. The third handshaking is performed
here where the R-Control sends a feedback to the L-Control

and L-Control acknowledges it.
In the case of a cache hit, the L-Control takes no further

action. R-Control checks the value of Data_Enable signal and
since this signal is set high by the core, it reads the data from
the core. Then, it acknowledges the request from the core and
sends the data along with an acknowledgement to the CPU.

When a cache miss occurs, R-Control sends a request to the
memory interface. This is the fourth Handshaking which takes
place in the case of a cache miss. The memory interface then
sends a request to the next memory level along with the

address. On receiving the block of data from the refill opera-
tion, the memory interface gives a signal to L-Control. This
is the fifth handshaking which occurs between the cache and

the memory interface. L-Control then instructs the core to per-
form a refill operation wherein the data from the memory bus
is loaded into the specific block. Then the desired data are

given to R-Control along with appropriate control signals.
The R-Control then forwards the data to the CPU along with
an acknowledgement.



Fig. 8 (continued)

418 M. Jhamb et al.
In both the cases, the entire operation is completed within
one cycle of the Request signal from the CPU. The request sig-
nal is reset to its initial state on receiving the acknowledgement

from the cache. Corresponding to this, the acknowledgement
signal from the cache is also reset to its initial state. The cache
is once again ready for the next operation.

4.3.2. Write operation

The write operation is limited to the D-Cache alone. Our cache
model employs write-through mechanism with no-write-
allocation in case of a cache miss. In this mechanism, the write

operation is carried out in the cache and higher memories
simultaneously and if the entry is not present in the cache at
that instant, it is not loaded from the higher level memory.
A write operation involves four main handshaking communi-
cations for the case of cache hit and three for the case of cache
miss.

The tasks done are the same as that in read operation till
the R-Control sends the feedback to L-Control with only three
differences. The first is that the data from CPU in the
Store_Data bus are also read and passed to the core. The

second is that the L-Control issues the check instruction to core.
The third is that the core sets the Data_Enable signal to ‘‘0”.

In case of a cache hit, the L-Control sends a ‘‘write”

instruction to the core. The core reads the data to be written
sent by the core and stores in the correct line of memory array.
Once the data write is done, the R-Control is informed which

in turn sends an acknowledgement to the processor.



Figure 9 Front-end design flow (Deliparaschos et al., 2008).

Evaluation of level-I asynchronous cache on FPGA 419
In case of a cache miss, the policy followed is no-fetch-on-

miss and no-allocation-on-miss. Thus, no changes are made to
the core. The write is made in the higher memory levels simul-
taneously (write-through policy) and so the cache simply sends

an acknowledgement to the processor through the R-control.
Cache coherency during write: The write is performed in

the cache and higher memory simultaneously. During a cache
hit, the cache does not accept another request until write oper-

ation is completed. The cache and higher memory contain the
same data before and after the write is done. In the case of a
cache miss, the cache does not contain the data and it does

not fetch it. The cache is unaffected while the higher memories
are updated. Thus, when the written data are fetched, the
cache will fetch the recent data. So, cache coherency is main-

tained at all times.
Similar to the read operation, the entire write operation is

carried out within a single request cycle from the CPU. The

write operation requires no communication between the
D-Cache and the other higher level memories.

The operations are also shown using the flowchart
in Fig. 7.
4.3.3. Write-back strategy

To modify our design to write-back with write-allocation tech-

nique, we have to add an extra bit in data bus of our cache
memory. Earlier there was 8 bit data and 4 bit tag in data
bus, but now we have to add one extra bit called dirty bit.

High Dirty bit denotes that data in the cache memory have
been modified, but not modified in main memory. Low Dirty
bit denotes that data are not modified. Overall functionality

of our design will be modified as shown in Fig. 8.

5. Design flow

The top-down design approach followed in our design is pre-
sented in Fig. 9. In this approach, the primary consideration
lies on specification and on the circuit functionality. The design

process starts with the system level modeling of architecture.
The implemented model is then evaluated and RTL and timing
simulations are performed with the test vector values. The
design has been coded in Very High-Speed Integrated-

Circuits Hardware Description Language (VHDL). In order
to construct a fully parameterized code for the design, special
care has been taken to encode the different cache blocks incor-

porated with the handshaking interface. The functionality of
the circuit is ensured using RTL simulation. Subsequently,
the logic synthesis is performed where on the basis of VHDL

code the tool makes a technology-independent schematic.
The circuit is then optimized to the selected FPGA specific
library (SPARTAN-3A, XC3S50A). At this point, it is impor-
tant to define specific design requirements, timing constraints

and area as they are crucial for synthesis. Next, the input net-
list file created by Xilinx ISE (Xilinx 9.1i) synthesis tool is
taken by place and route tools. Thereafter following process

begins: firstly, the design constraints along with the input net-
list file is translated to a Xilinx database file. Subsequently, the
mapping of logical design onto a Xilinx FPGA device takes

place. In the final stage once place and route is performed
on the FPGA, the place and route program produces the out-
put for bitstream generator. On reception of the placed and

routed design this program generates a bitstream (.bit) for
Xilinx device configuration. With the help of a timing simula-
tion it is to be ensured that the circuit meets the required RTL
functionality and timing constraints, before FPGA file is

programed.

6. Implementation

This section demonstrates the results of implemented cache
architecture. Once the design synthesis is performed, design
is translated, mapped, placed and routed onto the FPGA

device by Xilinx ISE as shown in Fig. 10. The FPGA utiliza-
tion given by Xilinx is shown in Table 3. The HDL coding
for the implemented cache architecture is fully parameterized.

This feature enhances the design flexibility and can be easily
used with different specification scenarios.

7. Performance evaluation

In the design implementation, both data cache and instruction
cache are made up of 256 lines of 12-bits each, four of them are

used as tags. Hence, the total amounts to 3 kbits per cache. To



Figure 10 Architecture of (a) complete cache, (b) D-Cache and (c) I-Cache.

420 M. Jhamb et al.
verify the functionality of the cache architecture, the gate-level
simulations are conducted as shown in Figs. 11 and 12. The

data and control signals adopted in the design of D-Cache
are described in Table 4. The signals for I-Cache are similar
to that of the D-Cache.
7.1. Gate-level simulation results

Fig. 11(a) shows the read operation simulations. The cache is
loaded with some initial data to show a variety of scenarios.

The first request shows a cache hit. During the first request
(req_in goes high), ins_in is low (read operation) and address
is (0045)16. Since this address is pre-loaded, there is a cache

hit and the cache provides the data to the processor. The
ack_out signal goes high after data are loaded into the data
bus. As req_in goes low, ack_out correspondingly goes low

and thus completes the handshake. The time duration between
req_in going high and ack_out going high is the read access
time. The second request shows the case of a cache miss. When
the req_in goes high, the cache reads the address, (0005)16, and
instruction. Since the address is not present in the cache,

D_Cache sends a refill request to the memory interface. Mem-
ory interface forwards the request to the higher memory level
along with the address. This can be seen as a change in
mem_addr and mem_req going high. When data from memory

arrive, mem_ack goes high and the handshake is completed.
The correct data is then given to the processor and ack_out
goes high. When the req_in goes low, then ack_out also goes

low. The access time for cache miss is higher than that of cache
hit case owing to the refill operations. The third request shows
another cache hit case following the cache miss earlier and the

last request is again a cache miss.
Fig. 11(b) shows simulations for write operations in

D-Cache. First a read operation is performed with address

(4545)16. The output data is (E5)16. Then a write operation is
performed in the same location with new data being (4E)16.
Next a read operation is performed on the same address.
The output data change to (4E)16. Thus the write operation

is performed successfully. The last request is that of a cache



Fig. 10 (continued)

Evaluation of level-I asynchronous cache on FPGA 421
miss for which the cache simply provides an acknowledgement
to the processor.

Fig. 12 shows the read operation simulations on I-Cache.
The scenarios taken are similar to that of the D-Cache.
The read and write access times for instruction cache and
data cache are shown in Table 5. It has already been stated

that our implementation considers cache only, hence the main
memory access time is not included.



Fig. 10 (continued)

422 M. Jhamb et al.
An external main memory is also designed which is capable
of interfacing with our cache memory using asynchronous

pipeline. It is found that the main memory access time is of
the order of 10 ns, which is quite high as compared to the
cache memory access time.
For comparing the performance of implemented
micropipelined asynchronous cache architecture with the

corresponding synchronous counterpart, the Table 6
presents the read and writes access times of the synchronous
version.



Table 3 FPGA utilization for the implemented cache architecture.

Used Available Utilization

Complete cache

Logic utilization

Total number of slice registers 476 1408 33%

Number used as flip flops 44

Total number of 4-input LUTs 801 1408 56%

Logic distribution

Number of occupied slices 503 704 71%

Number of slices containing related logic

Only 503 503 100%

Total equivalent gate count 8378 – –

Macro statistics

Registers 102 – –

Flip flops 102 – –

Comparators 2 – –

Multiplexers 30 – –

D-Cache

Logic utilization

Total number of slice registers 244 1408 17%

Number used as flip flops 24 – –

Total number of 4-input LUTs 439 1408 31%

Logic distribution

Number of occupied slices 274 704 38%

Number of slices containing related logic

Only 274 274 100%

Total equivalent gate count 4426 – –

Macro statistics

Registers 44 – –

Flip flops 44 – –

Comparators 1 – –

Multiplexers 25 – –

I-Cache

Logic utilization

Total number of slice registers 217 1408 15%

Number used as flip flops 12 – –

Total number of 4-input LUTs 331 1408 23%

Logic distribution

Number of occupied slices 205 704 29%

Number of slices containing related logic

Only 205 205 100%

Total equivalent gate count 3483 – –

Macro statistics

Registers 26 – –

Flip flops 26 – –

Comparators 1 – –

Multiplexers 5 – –

Memory interface

Logic utilization

Total number of slice registers 7 1408 1%

Number used as flip flops –

Total number of 4-input LUTs 31 1408 2%

Logic distribution

Number of occupied slices 21 704 2%

Number of slices containing related logic

Only 21 21 100%

Total equivalent gate count 613 – –

Macro statistics

Registers 36 – –

Flip flops 36 – –

Evaluation of level-I asynchronous cache on FPGA 423



Figure 11 Gate level simulation for 3-kbits D-Cache (a) read operation and (b) write operation.

Figure 12 Gate level simulation for read operation of 3-kbits I-Cache.

Table 4 Description of signals in cache architecture pertaining to D-Cache.

Signal Description

Rst It is the RESET signal that brings the cache to a known initial state. It is asynchronous and no operations can be performed while

this signal is high

Req_in It is the request from the processor

Addr_in It is the 16-bit address from the processor

Ins_in This carries the instruction from the processor. A low value indicates a read operation while a high value indicates a write

operation

Data_in It carries a 8-bit data to be stored in the cache during a write operation

M_Data It carries four words of data to be stored in the cache from the higher level memory at the time of refill operation

Mem_Ack It is the acknowledgement from the higher level memory indicating that it has serviced the request from cache for a refill. The data

from higher level memory is read after this signal goes high

Mem_Req This is the request sent from the cache to the higher level memory requesting for a refill. This signal is controlled by the memory

interface

Mem_Addr This is the complete 16-bit address sent by the cache to the higher level memory for a refill

Data_out This bus contains the 8-bit output data from a read operation for the processor

Ack_out This is the acknowledgement sent from the cache to the processor once the specified operation has been performed

424 M. Jhamb et al.



Table 5 Read and write access times.

Data cache Instruction cache

Read-hit (ns) 4.3 4.1

Read-miss (ns) 5.9 5.8

Write-hit (ns) 5.8 –

Write-miss (ns) 4.3 –

Table 6 Read and write access times for synchronous

implementation.

Data cache Instruction cache

Read-hit (ns) 2 2

Read-miss (ns) 3 3

Write-hit (ns) 3 –

Write-miss (ns) 2 –

Evaluation of level-I asynchronous cache on FPGA 425
8. Conclusion

In this work, we have presented the high level implementation

of L1-Cache system based on asynchronous communication
oriented design styles. Each of the units of cache architecture
is pipelined asynchronously using asynchronous interfaces

(Fig. 4). No doubt, the enhanced pipelining increases the area
and energy owing to the increased control circuitry required
for handling enormous number of handshakes, we have saved
considerable area by omission of clock generation, distribution

and gating. The implemented cache model is configurable in
terms of many parameters, e.g. line count, line size etc. This
parameterization permits the implemented model to be

adapted to any problem specification without changing the
developed VHDL code. The results reveal that the design effec-
tively achieves remarkable average case performance with a

relatively small design complexity when compared to the syn-
chronous counterparts. Though the asynchronous design has
an inherent advantage of automatic power down, our work
primarily focuses on implementing the asynchronous cache

with enhanced simplicity from the synchronization perspective.

References

Albonesi, D., 2000. Selective cache ways: on-demand cache resource

allocation. J. Instr.-Level Parallelism 2.

Anderson, J., Najm, F., 2004. Power Estimation Techniques for

FPGAs. VLSI Syst. 12 (10), 1015–1027.

Bahar, R., Albera, G., Manne, S., 1998. Power and performance

tradeoffs using various caching strategies. In: Proceedings interna-

tional symposium on low power electronics and design, pp. 64–69.

Deliparaschos, K.M., Doyamis, G.C., Tzafestas, S.G., 2008. A

parameterised genetic algorithm IP core: FPGA design, implemen-

tation and performance evaluation. Int. J. Electr.

Elrabaa, M.E.S., 2012. A new FIFO for transferring data between two

unrelated clock domains. Int. J. Electr. 99 (8), 1063–1074.

George, V., Zhang, H., Rabaey J., 1999. The design of low energy

FPGA. In: International symposium on low power electronics and

design, pp. 183–193.
Hac, A., 1993. Performance and reliability improvement by using

asynchronous algorithms in disk buffer cache memory. Acta

Inform. 30 (2), 131–146 (Springer-Verlag).

Jin, L., Cho, S., 2006. Reducing cache traffic and energy with macro

data load. ISLPED 2006, 147–150.

Jouppi, N.P., 1993. Cache write policies and performance. In:

Proceedings of the 20th annual international symposium on

computer architecture, pp. 191–201.

Kin, J., Gupta, M., Mangione-Smith, W., 1997. The filter cache: an

energy efficient memory structure. MICRO 1997, 184–193.

Lee, H., Smelyanskiy, M., Newburn, C., Tyson, G., 2001. Stack value

file: custom microarchitecture for the stack. HPCA 2001, 5–14.

Liljeberg, P., Tuominen, J., Tuuna, S., Plosila, J., Isoaho, j., 2004. Self-

timed approach for noise reduction in NoC. In: Interconnect-

centric design for advanced SoC and NoC. Kluwer Academic

Publishers (Chapter 11).

Milenkovic, A., Milenkovic, M., Barnes, N., 2003. A performance

evaluation of memory hierarchy in Embedded systems. In:

Proceedings 35th southeastern symposium system theory, pp.

427–431.

Nyström, M., Lines, A.M., Martin, A.J., 2003. A pipelined asyn-

chronous cache system. Technical Report (revised 2005).

Patterson, D.A., Hennessey, J.L., 2003. Computer Architecture A

Quantitative Approach, 3rd ed. Morgan Kaufmann Publishers,

San Francisco, CA, USA.

Peeters, A., 1996. Single-rail Handshake Circuits. Eindhoven Univer-

sity of Technology, (PhD thesis).

Peir, J.-K., Hsu, W.W., Smith, A.J., 1998. Implementation issues in

modern cache memories. IEEE Trans. Comput. 48 (2).

Putnam, A., Eggers, S., Bennett, D., Dellinger, E., Mason, J., Styles,

H., Sundararajan, P., Wittig, R., 2009. Performance and power of

cache-based reconfigurable computing. In: Proceedings Interna-

tional symposium on computer architecture, pp. 395–405.

Racunas, P., Patt, Y.N., 2003. Partitioned first-level cache design for

clustered microarchitectures. ICS 2003, 22–31.

Reinman, G., Jouppi, N.P., 1999. CACTI2.0, An integrated cache

timing and power model. COMPAQ Western Research Lab.

Ross, A., Vahid, F., Dutt, N., 2004. Automatic tuning of two-level

caches to embedded applications. Des. Autom. Test Eur. 1, 102–

108.

Ross, A., Vahid, F., Dutt, N., 2005. Fast configurable-cache tuning

with a unified second-level cache. In: IEEE/ACM international

symposium on low power electronics and design.

Segars, S., 2001. Low power design techniques for microprocessors. In:

ISSCC tutorial note.

Shang, L., Kaviani, A., Bathala, K., 2002. Dynamic power consump-

tion in the Virtex-II FPGA family. In: Proceedings ACM interna-

tional symposium field-programmable gate arrays, pp. 157–164.

Tennenhouse, D., 2000. Proactive computing. Commun. ACM 43 (5),

43–50.

Warrier, T.S., Anupama, B., Mutyam, M., 2013. An application-aware

cache replacement policy for last-level caches, ARCS 2013, LCNS

Volume 7767. Springer-Verlag, Berlin Heidelberg, pp. 207–219.

Zhang, Chuanjun, Vahid, Frank, Najjar, Walid, 2003. A highly

configurable cache architecture for embedded systems. In: 30th

ACM/IEEE International symposium on computer architecture.

Zhang, Chuanjun, Vahid, Frank, Najjar, Walid, 2003. Energy benefits

of a configurable line size cache for embedded systems. In:

Proceedings of the IEEE computer society annual symposium on

VLSI (ISVLSI’03), 87.

Zhang, Chuanjun, Vahid, Frank, Najjar, Walid, 2005. A highly

configurable cache for low energy embedded systems. ACM Trans.

Embedded Comput. Syst. 4 (2), 363–387.

http://refhub.elsevier.com/S1319-1578(15)00105-6/h0005
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0005
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0010
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0010
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0020
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0020
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0020
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0025
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0025
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0035
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0035
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0035
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0040
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0040
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0050
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0050
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0055
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0055
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0075
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0075
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0075
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0085
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0085
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0095
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0095
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0105
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0105
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0105
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0125
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0125
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0145
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0145
http://refhub.elsevier.com/S1319-1578(15)00105-6/h0145

	A high level implementation and performance evaluation of level-I asynchronous cache on FPGA
	1 Introduction
	2 Related work
	3 Cache
	3.1 Basic terminologies and functions
	3.2 Cache parameters
	3.3 Cache operation

	4 Design
	4.1 Design of asynchronous interface
	4.2 Cache architecture
	4.2.1 Design of L-control
	4.2.2 Design of R-control
	4.2.3 Design of core

	4.3 Flow of operations
	4.3.1 Read operation
	4.3.2 Write operation
	4.3.3 Write-back strategy


	5 Design flow
	6 Implementation
	7 Performance evaluation
	7.1 Gate-level simulation results

	8 Conclusion
	References


